
CISC 271 Class 31

Classification – Logistic Regression

Text Correspondence: Hastie et al., 2009 [6], pp 119–122

Main Concepts:

• Linear activation – limited ability to separate

• Semilinear – early use of logistic function

• Models of errors – least squares, probabilities

• Bridge – other areas of machine learning

Sample Problem, Machine Inference: How can we learn the “best” binary separation

of data?

In a landmark 1969 book – re-issued in 1988 and 2017 – Marvin Minsky and Seymour Pa-

pert [10] proved that entire classes of seemingly simple problems cannot be solved by Perceptron-

like models of an artificial neuron. The models included the original Perceptron of Frank Rosen-

blatt [11], plus the Widrow-Hoff original model [17] and variants [18]. The criticism applied also

to a single “layer” of simple artificial neurons.

An example of such unlearnable data are shown in Figure 31.1.

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 31.1: Sample data that cannot be correctly “learned” with a single simple artificial neuron.

These are sometimes called “exclusive-or”, or XOR, data because their pattern is visually like the

truth table of the logical function.

Work that is now considered foundations for neural networks, was first published as a technical

report by Rumelhart et al. in 1985 [12] and communicated by Hinton in a 1986 article that is widely

172 © R E Ellis 2024



cited [13]. This work re-discovered work by Paul Werbos in 1974, re-published in 1994 [16], that

described how to automatically differentiate complicated compositions of functions.

The concept is simple. Instead of using the linear weighted sum of an observation that is in an

augmented “vector” x̂i, which we compute as ui = x̂T

i ŵ, they considered a nonlinear activation

function φ(·). This activation function must have a few key attributes by being:

• Easy to compute

• Continuous

• Differentiable

• Optionally, bounded derivatives

In the original technical report, on Page 9, Rumelhart et al. we emphasize that they wrote:

“. . . we have used the logistic activation function . . . ”

As we have explored earlier, the logistic function satisfies these key attributes.

31.1 Semilinear Activation – Logistic Function As A Sigmoid Curve

Previously, we created a score zi for the ith observation that was represented as a “vector” ~xi.

We represented a separating hyperplane H by using a unit vector ~n and a bias scalar a so that the

score, which was the distance to the hyperplane, could be written as

zi = ~nT~xi + a (31.1)

We also explored how the logistic function is one way to map a linear summation to a proba-

bility. We represented this activation function of the score as

p(~xi) =
1

1 + e−~n T ~xi+a
(31.2)

In artificial neural networks, Equation 31.2 is modified. The computations of the unit weight

vector ~n and its associated bias scalar a are typically omitted. Instead, the weight vector ~w and the

bias scalar b are used directly. The logistic activation function for neural networks can be written,

in terms of the augmented “vector” x̂i for the ith observation and the augmented weight vector ŵ,

as

φi = φ(ŵ; x̂i) =
1

1 + e−x̂ T

i
ŵ

(31.3)

The scaling effects that distinguish Equation 31.3 from Equation 31.2 are empirically negligible

in extensive iterative computations. When plotted, the curve of Equation 31.3 is “S”-shaped and

the computation is sometimes called a sigmoid activation function.

173 © R E Ellis 2024



31.2 Models Of Residual Error

Neural networks and logistic regression both use Equation 31.3 to perform binary classification

of observations. An important technical detail is the accumulation of residual errors into a single

scalar value that can be optimized.

For the ith observation, the data are represented in an augmented “vector” x̂i and the label is

yi ∈ {0, 1}. There are two common formulations of the objective function that accumulates the

residual errors for the observations. These are often called the squared error and the negative log

error. The first objective is one that we previously explored: this is the squared Euclidean norm of

the residual error vector ~e, which we can write as

E2(X̂) =
m
∑

i=1

(yi − φi)
2 (31.4)

The second objective uses the logarithm of the likelihood that the activation value φi matches

the label yi. To ensure that positive numbers arise, the negative logarithm of the likelihood is

defined as

li
def
=

{

− ln(1− φi) if y = 0
− ln(φi) if y = 1

(31.5)

Using Equation 31.5, the negative-log objective function is written as

EL(X̂) =

m
∑

i=1

li (31.6)

The differences between the squared-error objective of Equation 31.4 and the negative-log ob-

jective of Equation 31.6 can be visualized by plotting the error for a scalar argument z. Figure 31.2

show the logistic function and – using the squared error objective – the error for the label y = 0,

the error for the label y = 1, and the total error as the argument z is varied over a small domain.

We can see that the individual errors are bounded below at 0 and are bounded above at 1. The total

error is bounded below at z = 0, bounded above at 1, and asymptotically approach 1 as z increases

or decreases without limit.

Figure 31.3 show the logistic function and – using the negative logarithmic likelihood objec-

tive – the error for the label y = 0, the error for the label y = 1, and the total error as the argument

z is varied over a small domain. We can see that the individual errors are bounded below at 0 and

increase without bounds. The total error is bounded below at z = 0 and increases without bounds

as z increases or decreases without limit.

174 © R E Ellis 2024



-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(A)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(B)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(C)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(D)

Figure 31.2: Logistic function and squared residual error. (A) Logistic function of a scalar argu-

ment z. (B) Error for label y = 0 is shown in blue. (C) Error for label y = 1 is shown in blue. (D)

Total error, which is the sum of the error for the label values, is shown in blue.

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(A)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(B)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(C)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

(D)

Figure 31.3: Logistic function and logarithmic residual error, the latter scaled to fit the plot. (A)

Logistic function of a scalar argument z. (B) Error for label y = 0 is shown in red. (C) Error for

label y = 1 is shown in red. (D) Total error, which is the sum of the error for the label values, is

shown in red.

175 © R E Ellis 2024



31.3 Implementations Of Logistic Activation

Using the logistic activation function, the squared-error objective can be implemented for a

single artificial neuron by an optimization method known as steepest descent. The derivation

requires nonlinear data analysis that is beyond the scope of this course but the equation is not

difficult to implement in MATLAB. The iteration looks like a modification of the Perceptron Rule

and uses a “learning rate” η, written in our notation as

ŵk = ŵk−1 + η(yi − φi)φi(1− φi)x̂
T

i
(31.7)

The difference between Equation 31.7 and the Perceptron Rule are the term ηφi(1−φi), which

combines the learning rate η and the derivative of the logistic function φi(1− φi).

The negative-log objective function can be computed using external software. For example,

MATLAB provides logistic regression as part of its Statistics and Machine Learning Toolbox. The

glmfit computes a generalized linear model. Specifically, we can use a binomial model because

each label yi can have exactly one of two values. For technical reasons, the probability unit or

“probit” function is preferred as the link function. This binomial regression scales the weight

vector ŵ to maximally separate the data, which can produce numerically large weights.

31.3.1 Example – Fisher’s Iris Data

We can test these implementations by using Fisher’s Iris data. Consider the petal data, which

we have used previously and which is readily available from many sources. We will use binary

labels so that the “beach-head” plant is assigned to label 1 and the other species are assigned to

label 0. The data can be plotted as shown in Figure 31.4.

-1 0 1 2 3 4 5 6 7 8 9

-1

0

1

2

3

4

5

Figure 31.4: Fisher’s Iris data for the petals measurements. The horizontal axis is each petal’s

length and the vertical axis is each petal’s width.

We can compute a separating hyperplane using Equation 31.7 and the squared-error objective

of Equation 31.4. We can also compute a logistic regression in MATLAB, using the negative-

176 © R E Ellis 2024



logarithmic likelihood objective function of Equation 31.6. As shown in Figure 31.5, both imple-

mentations can perfectly separate the petal data.

-1 0 1 2 3 4 5 6 7 8 9

-1

0

1

2

3

4

5

(A)

-1 0 1 2 3 4 5 6 7 8 9

-1

0

1

2

3

4

5

(B)

-1 0 1 2 3 4 5 6 7 8 9

-1

0

1

2

3

4

5

(C)

Figure 31.5: Fisher’s Iris data and separating hyperplanes. (A) Separation using a single artificial

neuron with logistic activation and a squared-error objective; the hyperplane is shown in black. (B)

Separation using logistic regression and the negative-logarithmic likelihood objective function; the

hyperplane is shown in magenta. (C) The hyperplanes superimposed on the data.

We can gain a deeper understanding of these implementations by plotting the scores, which

are zi = x̂T

i
ŵ. For the squared-error objective and the artificial-neuron computation, Figure 31.6

shows the labels as colored shapes according to their scores. Figure 31.6(A) is a conventional plot.

Figure 31.6(B) plots the labels as shapes and also uses the label value as a vertical axis, which

improves the visualization. We can observe that the scores have values, roughly, in the interval

[−30 + 15]. We can superimpose the logistic function, shown in Figure 31.6(C), which shown

that the upper-bounded behavior of the squared-error objective has preserved the smooth behavior

of the logistic function.

-30 -25 -20 -15 -10 -5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(A)

-30 -25 -20 -15 -10 -5 0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B)

-30 -25 -20 -15 -10 -5 0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(C)

Figure 31.6: Scores and labels for some of Fisher’s Iris data, separated using an artificial neuron

with a squared-error objective. (A) Scores are the horizontal axis; label 1 observations are shown

as blue crosses and label 0 observations are shown as red circles. (B) The label value is used as the

vertical axis. (C) The logistic function is superimposed on the labels as a black curve.

We can repeat this process for the computation of logistic regression that used the negative-

logarithmic likelihood as the objective function. Figure 31.7 shows the labels and logistic function

177 © R E Ellis 2024



in the same way that is shown in Figure 31.6. Logistic regression produced scores that have values,

roughly, in the interval [−200 + 80].

-200 -150 -100 -50 0 50 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(A)

-200 -150 -100 -50 0 50 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B)

-200 -150 -100 -50 0 50 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(C)

Figure 31.7: Scores and labels for some of Fisher’s Iris data, separated using logistic regression

with a negative-logarithmic likelihood objective. (A) Scores are the horizontal axis; label 1 ob-

servations are shown as blue crosses and label 0 observations are shown as red circles. (B) The

label value is used as the vertical axis. (C) The logistic function is superimposed on the labels as a

magenta curve.

The weights for logistic regression are an order of magnitude grater that the weights for our

artificial neuron, which is in part because of the unbounded nature of the negative-logarithmic like-

lihood objective function. The weights are “forcing” the scores as far apart as is computationally

acceptable in the implementation that was used to generate these results.

178 © R E Ellis 2024


