
CISC 271 Class 32

Nonlinear Separation – Embeddings and Gram Matrix

Texts: Hastie et al., 2009 [6], pp. 547–550

Main Concepts:

• Embed vectors in a high–dimensional space

• Kernel functions for embedded dot products

• Gram matrix from kernel function

Sample Problem, Machine Inference: How can we use nonlinearly separable data?

In machine learning, binary classification problems do not always have a linearly separable

structure. Data vectors that are not linearly separable can sometimes be mapped to linearly sep-

arable vectors by means of a non-linear transformation. Nonlinear transformations are common

in the SVM literature, in part because the dual representation of the SVM conveniently represents

and solves certain kinds of these transformations.

For this class, we will use a special notation for the row of a matrix. Our data are provided as

a data matrix A ∈ R
m×n. We expect that each column of A contains values of a variable, so each

column is a vector ~aj ∈ R
m. The rows are observations, which we expect to be values of variables.

a row is a “vector” in the sense that it is an ordered set of real numbers, but a row is not necessarily

a member of a vector space.

For our purposes of data analysis, we will temporarily disregard this ditinction and we will

cautiously perform computations on rows. We will write the rows of a matrix A ∈ R
m×n as the

partition

A
def
=











a1
a2
...

am











with ai ∈ R
n (32.1)

We will define the dot product of two rows, u ∈ R
n and v ∈ R

n, as

u · v def
=

n
∑

k=1

ukvk

= u v T (32.2)

179 © R E Ellis 2024



32.1 Linear Separation Using an Embedding

The principal method for managing non-linearly separable data, which is commonly used in

machine learning and data analytics, is to map each data vector to a higher-dimensional vector

space. In many applications, data vectors that seem to be not linearly separable can be mapped to

another vector space in which they are linearly separable.

For example, we might be provided with labeled data vectors that are in a 2D vector space. The

next higher dimension is 3D. Some forms of mappings that are effective in practice are to copy the

entries of u into a new size 3 vector, then to put some function of each data vector u into the third

entry. These forms would map a 2D vector u to a 3D vector û.

These are examples of embeddings, which are smooth maps of one dimension into a space of

higher dimension. Although it is not exact, we can think of an embedding as being an “inverse

projection”: a projection maps a higher-dimensional vector space to a lower-dimensional vectors

space and an embedding reverse this process.

Suppose we are given a 2D data set that has 24 observations with label +1 and 16 observations

with label -1 in the picture-like data set that is illustrated in Figure 32.1. By inspection, we can

determine that these sets are not linearly separable – but they do seem to be non-linearly separable.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

4

5

Figure 32.1: Pictorial data in 2D. The observations with label +1 are plotted as a plus sign; obser-

vations with label -1 are plotted as open circles.

Suppose that we try an embedding map that, for each row “vector” ui, “copies” the row into

the first two entries of a 3D row “vector” ûi and then computes the squared length of ui as the third

entry of ûi. The idea is that observations that are further from the original are embedded as 3-entry

rows that have a larger third entry. This would be the map

~u →֒ û which is
[

u1 u2

]

→֒
[

u1 u2 u2
1 + u2

2

]

=
[

u1 u2 ‖u‖2
]

(32.3)

180 © R E Ellis 2024



As we can see in Figure 32.2, these 3D data are linearly separable.

Figure 32.2: Pictorial data in 3D. The observations with label +1 are plotted as a plus sign; obser-

vations with label -1 are plotted as open circles. These data are separable by a 3D plane that, from

this view, projects to a 2D horizontal line.

We can explore another embedding that will also linearly separate these data. Consider embed-

ding each entry of u as the square of the entry of û, and set û3 to be the product of the entries. For

technical reasons, let us multiply the third entry of ~u2 by
√
2, so that the second embedding is

u →֒ û which is
[

u1 u2

]

→֒
[

u2
1 u2

2

√
2u1u2

]

(32.4)

The 2D original data, embedded as 3D data using Equation 32.4, are linearly separable as

shown in Figure 32.2.

Figure 32.3: Pictorial data in 3D. The observations with label +1 are plotted as a plus sign; obser-

vations with label -1 are plotted as open circles. These data are separable by a 3D plane that, from

this view, projects to a 2D vertical line.

181 © R E Ellis 2024



Consider embedding a row “vector” u ∈ R
n into a higher-dimensional vectors space, as û ∈

R
p. This would be a transformation of a data matrix A ∈ R

m×n to a new matrix Â ∈ R
m×p. This

requires more memory to store the matrix and, if we perform principal components analysis, might

require the computation of a scatter matrix Ŝ ∈ R
p×p in size.

The embedding function of Equation 32.4 is a special case of a polynomial embedding, specif-

ically as a quadratic function of the inner product. Recall, from basic algebra, that the number of

terms of a polynomial grow combinatorially with the order of the polynomial. Here, the dimension

p of the new vector space would grow combinatorially, as would the memory requirements. It is

easy to imagine that there might be a combinatorial explosion of memory requirements for even a

modest order of polynomial embedding.

32.2 Kernel Functions and the Gram Matrix

Let us carefully examine entry (i, j) of the matrix AAT . This is the dot product of the ith

observation in A and the jth observation in A. We can write the ith row of A as ai and the jth row

of A as aj .

Using Equation 32.2, the matrix AAT can be computed. How can we compute the right-

transpose product of the embedded matrix, which is ÂÂT ? We must return to the definition of the

embedding to better understand this computation.

We can write the embedding function φ : Rn → R
p, using row-like observations, as φ(u). If

the embedding function has certain properties, it is possible to perform the necessary computations

for finding ÂÂT actually embedding the data in a higher-dimensional space.

The insight for the kernel trick in PCA with a data matrix A is: the embedding does not need

to be computed! In finding the entries of ÂÂT , only the dot products of the embedded vectors are

needed. It is possible to compute the dot products without computing the embedding, for certain

useful embeddings.

We can see that the matrix AAT is symmetric and positive semidefinite. The entry (i, j) of this

symmetric matrix is ai a
T
j . If we embed the observation ai in a higher-dimensional space as âi,

and embed the observation aj as âj , the dot product of Equation 32.2 would be

âi â
T
j = φ(ai)[φ(aj)]

T (32.5)

As defined in the extra notes for this class, a kernel function is a function that is symmetric and

positive semidefinite. For an appropriate kernel function κ(·, ·) that is defined for the vector space

R
n, the mapping in Equation 32.5 can be avoided and the dot product can be computed directly.

182 © R E Ellis 2024



For example, the embedding φ(·) in Equation 32.3 has a kernel function that is

κ(u, v) = u v T + (u v T )2 (32.6)

The embedding embedding φ(·) in Equation 32.4 has a kernel function

κ(u, v) = (u v T )2 (32.7)

The kernel function in Equation 32.7 is a second-order polynomial of the dot product of two

vectors. Computing a high-order polynomial kernel is not complicated, but storing the full embed-

ding may result in a combinatorial explosion of memory use.

For any data matrix A, and any kernel function κ(·, ·) defined on the observations that are the

rows of A, the Gram matrix is the matrix Ŵ that has the entries

Ŵij
def
= κ(ai, aj) (32.8)

As described in the extra notes, and proved in many textbooks on matrix analysis, the Gram

matrix Ŵ of a design matrix is symmetric and positive semidefinite.

32.3 Some Kernel Functions for Row Spaces

The kernel function of Equation 32.6 is a specialized instance that is not widely used. Here

are some examples of commonly used kernel functions and their interpretations. Here, we will

describe the kernel function for a pair of rows as κ(u, v) and understand that we can also compute

the kernel function for vectors κ(~u,~v).

Linear Kernel: The dot product of rows is the basic kernel function

κ(u, v) = u v T (32.9)

Polynomial Kernel: The dot product of vectors can be added to a constant c and raised to a power

p, which is kernel function

κ(u, v) = (u v T + c)l (32.10)

Equation 32.10 is usually presented for c = 1. An alternative that is sometimes presented is

c = 0, which is an exact power kernel function.

183 © R E Ellis 2024



Gaussian Kernel: The square of the norm of the distance between vectors can be used in the

unscaled normal distribution function e−x2/2. In PCA literature, this is usually presented

with a variance σ2 as the kernel function

κ(u, v) = exp

(−‖u− v‖2
2σ2

)

(32.11)

The variance σ2 is a crucial hyper-parameter in kernel PCA. A small variance causes the

Gram matrix to approach the identity matrix. A large variance causes the entries in the

Gram matrix to approach a constant value. The variance can be supplied by the user and can

sometimes be estimated from the data matrix A.

In MATLAB, the Gaussian kernel is

κ(u, v) = exp
(

−‖u− v‖2
)

(32.12)

Laplacian kernel: The norm of the distance between vectors, rather than the square of the norm,

can be used in an exponential function.

κ(u, v) = exp

(−‖u− v‖
σ

)

(32.13)

Sigmoid kernel: The inner product of vectors can be used as an argument in the hyperbolic tan-

gent function that is common in neural networks. This must be done with care because not

all of the sigmoid hyper-parameters produce a positive semidefinite Gram matrix from a

full-rank design matrix X . The sigmoid kernel is

κ(~u,~v) = tanh(γ~u T~v + β) (32.14)

A sufficient condition for Equation 32.14 to produce a positive semidefinite Gram matrix is

that γ is positive and β is negative, which is γ > 0 and β < 0. The conditions are so sensitive

that MATLAB does not currently offer this kernel as an option.

184 © R E Ellis 2024



Extra Notes

32.4 Extra Notes for The Gram Matrix and Kernel Functions

Definition: Gram matrix of a finite set of vectors

For any non-empty finite set X = {~x : ~x ∈ R
n} of cardinality mX , any m ∈ N++ :

m ≤ mX , any i ∈ N++ : i ≤ m, any j ∈ N++ : j ≤ m, any ~xi ∈ X, any ~xj ∈ X, and

any positive semidefinite symmetric function κ :X× X → R, the Gram matrix of the

members {~xi :1 ≤ i ≤ m} is defined as the matrix Ŵ that is

Ŵij
def
= κ(~xi, ~xj) (32.15)

Observation: Because the function κ(·, ·) is positive semidefinite symmetric, the Gram matrix of

a set of members of X is symmetric and positive semidefinite.

In linear algebra, the set X is typically a vector space R
n and the kernel function κ is typically

an inner product 〈·, ·〉. In machine learning, the set X can be quite diverse, including strings

of symbols in text analysis. The positive semidefinite symmetric function κ may be a measure,

especially a metric, on the set X.

Definition: Kernel function

For any non-empty set X, any n ∈ N+, a symmetric function κ : X × X → R is a

positive semidefinite kernel function is defined as:

a function for which the Gram matrix is positive semidefinite, or

Ŵ � 0 (32.16)

Observation: In linear algebra, an inner product on R
n is a kernel function. For a vector space and

a kernel that is an inner product, if the vectors ~xi are linearly independent then the Gram matrix is

positive semidefinite.

End of Extra Notes

185 © R E Ellis 2024


