CISC 271 Class 33

Nonlinear Separation – Kernel PCA

Hastie et al., 2009 [6], pp. 547-550

kip.15in

Main Concepts:

- Avoid directly embedding vectors
- Gram matrix has embedded dot products
- Kernel PCA: algorithm

Sample Problem, Machine Inference: How can we separate data nonlinearly?

From previous classes, we understand that we can embed a vector $\vec{u} \in \mathbb{R}^n$ in a higherdimensional space as $\hat{u} \in \mathbb{R}^p$, which performs $\vec{u} \hookrightarrow \hat{u}$. The transformation, or mapping, can be written as

$$\phi : \mathbb{R}^n \hookrightarrow \mathbb{R}^p \quad \text{or} \quad \hat{u} = \phi(\vec{u})$$
(33.1)

Let us recall how we have performed principal components analysis (PCA) thus far. For a data matrix $A \in \mathbb{R}^{m \times n}$, we first computed the zero-mean matrix $M \in \mathbb{R}^{m \times n}$ by finding the mean of each column as \bar{a}_i and subtracting this mean from each entry of the respective column.

If we were to embed each observation in A, the result would be a matrix $A \in \mathbb{R}^{m \times p}$. It is unclear how we can use this matrix for clustering or for linear separation of the data. For example, a weight vector would be $\hat{w} \in \mathbb{R}^p$ and how we are to interpret this higher-dimensional vector may not be obvious.

Let us explore PCA in more detail. We will re-write the zero-mean matrix M, use an alternative scatter matrix that relies on observations, and then show that we can use the Gram matrix of a kernel function to elegantly avoid the computationally intensive process of vector embedding.

33.1 Principal Components Analysis And Scatter Of Observations

We can re-write the process of finding a zero-mean matrix M, using linear algebra, if we introduce a *centering* matrix G_m that depends on the number m of observations in our data.

This centering matrix can be derived by expanding the definition of the zero-mean matrix:

$$\bar{A} = \frac{1}{m} \vec{1}^{T} A$$

$$M = A - \vec{1} \bar{A}$$

$$= IA - \frac{1}{m} \vec{1} \vec{1}^{T} A$$

$$= \left[I - \frac{1}{m} \vec{1} \vec{1}^{T} \right] A$$

$$= G_{m} A$$

$$\Rightarrow \quad G_{m} \stackrel{\text{def}}{=} \left[I - \frac{1}{m} \vec{1} \vec{1}^{T} \right] \qquad (33.2)$$

We can see that the centering matrix G_m of Equation 33.2 is symmetric and positive-semidefinite, having a rank of m - 1 because it is the identity minus a rank-1 matrix.

The rank of the zero-mean matrix M is a number r which is no greater than the number of variables n, so we would say that

$$\operatorname{rank}(M) = r$$
 where $r \le n$ (33.3)

We defined the scatter matrix for PCA using the variables, which is

$$S_V = M^T M \tag{33.4}$$

The singular value decomposition (SVD) of the zero-mean matrix M can be written as

$$M = U\Sigma V^T \tag{33.5}$$

Equation 33.4 can be written, using Equation 33.5, as a spectral decomposition

$$S_V = V \Sigma^T \Sigma V^T$$

= $V \Lambda_V V^T$ (33.6)

Combining Equation 33.6 with Equation 33.3, we know that the eigenvalue matrix Λ_V of S_V will have r non-zero leading diagonal entries, each entry being a positive real number.

In PCA, we produced each score vector \vec{z}_j as the product of the zero-mean matrix M and the j^{th} loading vector \vec{v}_j , which is also the j^{th} right singular vector of the zero-mean matrix M, as $\vec{z}_j = M\vec{v}_j$. We can gather the score vectors into a score matrix Z that we can write concisely as

$$Z_v = MV = U\Sigma = U\Lambda_V^{1/2} \tag{33.7}$$

The eigenvalue matrix Λ_V and the singular-value matrix Σ are, from the derivation of the SVD, related as the square roots of their respective entries.

Consider the scatter matrix of the *observations*. We can write this as the "right-transpose" product of the zero-mean matrix M. This matrix $S_u \in \mathbb{R}^{m \times m}$ is the symmetric positive semidefinite matrix defined as

$$S_U = M M^T \tag{33.8}$$

Using Equation 33.8 and the SVD of the zero-mean matrix M, we can write

$$S_U = U\Lambda_U U^T \tag{33.9}$$

Because the rank of M is r, and because we have used the SVD of the zero-mean matrix M consistently, we can make a simple and remarkable observation:

The first r entries of Λ_V and Λ_U are identical

Note that the sizes of the original Λ_V and Λ_U – that is, the eigenvalue matrices including zero eigenvalues – are in general different. But, because of the SVD, the diagonal entries are the same up to the number r that is the rank of the zero-mean matrix M.

If we perform PCA by using the observation-style scatter matrix S_U , then the scores – gathered into a matrix Z_U – would be

$$Z_U = MU = U\Sigma = U\Lambda_U^{1/2} \tag{33.10}$$

Because Z_V in Equation 33.7 and Z_U in Equation 33.10 are equal, it does not matter mathematically whether we use the variable-style scatter matrix S_V to perform PCA, or the observation-style scatter matrix S_U . The resulting scores are identical.

Let us use the observation-style scatter matrix S_U and the centering matrix G_m that we derived in Equation 33.2. We can write the matrix S_U , using the centering matrix G_m , as

$$S_U = MM^T$$

= $[G_m A][G_m A]^T$
= $G_m [AA^T]G_m^T$ (33.11)

Equation 33.11 prepares us for the use of a kernel function in our data analysis.

33.2 Kernel Functions and the Gram Matrix

Now, let us return to the process of embedding a vector in a high-dimensional vector space. If we try to perform PCA using the embedding, we must:

- Embed each observation from \mathbb{R}^n to \mathbb{R}^p
- Transform $A \hookrightarrow \hat{A}$
- Transform $M \hookrightarrow \hat{M}$
- Compute $\hat{S}_V \in \mathbb{R}^{p \times p}$

The dimension p can grow combinatorially from n, so this computation can rapidly become unwieldy. An alternative is to use the observation-style scatter matrix S_U . From Equation 33.11, we see that using S_U on our original data matrix A requires us to:

- Compute the inner-product matrix AA^T
- Center AA^T using G_m

The method of *kernel PCA* is the use of the Gram matrix for an observation-style scatter matrix S_U to perform PCA. The process that we can compute is:

- Define the kernel function $\kappa(\underline{a}_i, \underline{a}_j)$
- Compute the Gram matrix $\hat{W}_{ij} \stackrel{\text{def}}{=} \kappa(\underline{a}_i, \underline{a}_j)$ from the observations in the data matrix A
- Center the Gram matrix as the kernel observation-style scatter matrix \hat{S}_U , using the centering matrix G_m , as

$$\hat{S}_U = G_m W G_m^T \tag{33.12}$$

- Compute the singular values of Equation 33.12 in a matrix $\hat{\Sigma}$ and as the eigenvectors \hat{u}_i
- Compute the kernel PCA score vectors as

$$\hat{Z} = \hat{U}\hat{\Sigma} \tag{33.13}$$

We can see that each score vector in \hat{Z} of Equation 33.13 has m entries, that is, $\hat{z}_j \in \mathbb{R}^m$. We can compute a score for each observation, but by using the Gram matrix \hat{W} instead of using the observation-style scatter matrix S_U .

33.3 Example – Kernel PCA For Fisher's Iris Data

We can test our kernel PCA method on Fisher's Iris data set. First, let us try using a conventional method:

- Use PCA to find two score vectors, $\vec{z_1}$ and $\vec{z_2}$
- Use the MATLAB function kmeans to cluster the PCA scores

When we use this method, we see in Figure 33.1 that it incorrectly clusters two of the data vectors.

Figure 33.1: Fisher's Iris data set when processed using conventional PCA. (A) The data scored in 2D, with species *I. setosa* indicated as blue crosses and the other two species indicated as red circles. (B) Results of k-means clustering, showing that two data vectors are inappropriately clustered with the *I. setosa* data.

Next, let us try using kernel PCA. For the kernel function, we can use the Gaussian kernel. We need to select a hyper-parameter σ^2 for the Gaussian distribution; a guideline in data analysis is to first try the value and kernel that are

$$\sigma^{2} = m$$

$$\kappa(\underline{u}, \underline{v}) = \exp\left(\frac{-\|\underline{u} - \underline{v}\|^{2}}{2\sigma^{2}}\right)$$
(33.14)

We can calculate the Gram matrix \hat{W} for the 4D Iris data, which will produce a 150×150 symmetric positive semidefinite matrix. The rank of the Gram matrix is substantially less than the size of the matrix, which is not unusual for a Gaussian kernel function.

We find the spectral decomposition of the observation-style scatter matrix $\hat{S}_U = G_m \hat{W} G_m$ by centering the Gram matrix \hat{W} ; this gives us an orthogonal matrix \hat{U} and eigenvalues $\hat{\lambda}_j$. To be

prudent, we can produce a scree plot of the eigenvalues. From Figure 33.2, either 2 or 3 would seem to be appropriate choices; we can select 2 as the number of scores that we will use, preferring to use the smallest dimension that effectively solves our problem.

Figure 33.2: Scree plot of a Gram matrix, using a Gaussian kernel, for Fisher's Iris data set. We select 2 as the relevant number of scores for further use.

We can find the score vectors \hat{z}_1 and \hat{z}_2 from \hat{S}_U and \hat{U} , and then repeat the plotting of Figure 33.1(A) with the same label indicators. Likewise, we can perform k-means clustering and plot the results, which are shown in Figure 33.3.

Figure 33.3: Fisher's Iris data set when processed using kernel PCA. (A) The data scored in 2D, with species *I. setosa* indicated as blue crosses and the other two species indicated as red circles. (B) Results of k-means clustering, showing that all data vectors are appropriately clustered.

We have found that using kernel PCA with a Gaussian kernel function is effective at finding clusters that match the data labels. Our analysis is now ready for us to explain to others.