
1

CISC 323, Winter 2003, Design Patterns 1

Midterm Reminders

The midterm is next Tuesday: March 4, 7-9 p.m.
If you have a conflict and haven't told us, send e-mail TODAY!
(conflicts with other Queens courses or exams)

Location: Stirling Hall rooms A, B and C
By last name (regardless of section):

Last Name Room
A-J Stirling A
K-O Stirling B
P-Z Stirling C

Midterm covers all material through Friday.
Readings for all topics on web site.
Monday: review, Q&A

CISC 323, Winter 2003, Design Patterns 2

Design Pattern #5: Builder

This is a "creational" design pattern: has to do with how
objects are created

Situation: a program is creating a data structure (or file)
Two aspects to the job:
• figuring out what to create (from parsing an input file,

computing, changing an existing data structure, etc.)
• creating the data structure

Builder pattern separates these two aspects

CISC 323, Winter 2003, Design Patterns 3

Example: RTF converter

This example based on example in courseware

Task: read an RTF file and convert it to another format

RTF = Rich Text Format
• a simple, portable representation for formatted text
• many word processing programs will read and write RTF

(Word, WordPad, Word Perfect, etc.)
• format is text with commands interspersed

CISC 323, Winter 2003, Design Patterns 4

Examples of RTF

Line in RTF file:
Mary had a \b little \b0 lamb.

Produces:
Mary had a little lamb.

Another way:
Mary had a {\b little} lamb.

Produces the same result.

More commands to change fonts, color, lots of different
formatting features.
Example code on web recognises a tiny subset of RTF.

2

CISC 323, Winter 2003, Design Patterns 5

Task: Convert RTF to HTML

read in an RTF file and build an HTML file to show roughly
the same thing
straightforward way looks like this:

while (not at the end of RTF file):
read a bit more of the RTF file
figure out what HTML commands are needed

to get the same effect
write the HTML commands to the output
file

Two things going on here:
• parsing and understanding the RTF
• building the HTML file

CISC 323, Winter 2003, Design Patterns 6

Builder: Separation of Concerns

The Builder pattern separates these two aspects of the task
A Builder object knows how to create an HTML file
• provides methods such as:

addString(String s)
addChar(char c)
setBold(boolean on)
setFontSize(double size)

A Director object reads and parses the RTF and calls
methods in the Builder to write the HTML

CISC 323, Winter 2003, Design Patterns 7

Sequence of Events (1)
User creates a Builder, specifying the output file.

Builder writes HTML header stuff to file.

CISC 323, Winter 2003, Design Patterns 8

Sequence of Events (2)
User creates a Director, specifying the input file and the Builder
object to use.

3

CISC 323, Winter 2003, Design Patterns 9

Sequence of Events (3)
User calls Director's construct() method.

construct method takes charge of the rest of the conversion
• reads RTF
• calls methods in Builder

CISC 323, Winter 2003, Design Patterns 10

Sequence of Events (4)
Example: construct reads the normal character 'a'

calls builder.addChar('a')
Builder writes 'a' to the HTML file

CISC 323, Winter 2003, Design Patterns 11

Sequence of Events (5)
Another Example: construct reads the special character '\'

reads more characters to see that the command is '\b'
calls builder.setBold(true)
Builder writes "" to the HTML file

CISC 323, Winter 2003, Design Patterns 12

Sequence of Events (6)
When input file is exhausted, construct calls builder.finish()

finish method writes ending HTML tags and closes file

4

CISC 323, Winter 2003, Design Patterns 13

Advantages

separation of concerns
• one class handles the RTF format
• another hands the HTML format

changes to a format require change to only one part of the
code

CISC 323, Winter 2003, Design Patterns 14

Disadvantages

a bit more initial programming effort to separate code in this
way, may be awkward:

slight performance penalty: extra method calls

CISC 323, Winter 2003, Design Patterns 15

Expanded Scenario

Need to be able to read RTF files and translate into several
formats:
• HTML
• plain text (ignore fonts, bold, etc.)
• GUI component for display on screen
• internal data structure (parse tree?) for further processing

Now Builder pattern is much more useful

CISC 323, Winter 2003, Design Patterns 16

Without Builder Pattern

Four methods (or classes):
• translate RTF to HTML
• translate RTF to plain text
• read RTF and generate a GUI component
• read RTF and generate a parse tree

Each method reads and parses RTF input.
• logic for RTF input intertwined with logic for each kind

of output
• a nuisance for programmer, even with cut-and-paste
• changes or corrections to RTF reading must be done in 4

places

5

CISC 323, Winter 2003, Design Patterns 17

With Builder Pattern

Much easier.

Same Director for all 4 translations.

Four Builders, one for each output format

If change is needed to RTF format reading, it is made in one
place (the Director)

HTML and plain text Builders create files

GUI and parse tree Builders create objects in memory
• Builder has additional method to let user retrieve the

object

CISC 323, Winter 2003, Design Patterns 18

Class Diagram (with 2 Builders)

-TextBuilder builder

+Director(TextBuilder b)
+construct(Reader in)

Director <<interface>>
TextBuilder

+addChar(char c)
+addString(String s)
+setBold(boolean on)
+setFontSize(double size)
+finish()

ParseTreeBuilder

+ParseTreeBuilder()
+getParseTree(): RTFParseTree

HTMLTextBuilder

uses

+HTMLTextBuilder(PrintWriter out)

CISC 323, Winter 2003, Design Patterns 19

Program to Translate RTF to HTML
<open input file inFile>
<open output file outFile>
TextBuilder builder = new HTMLTextBuilder(outFile);
Director dir = new Director(builder);
dir.construct(inFile);

CISC 323, Winter 2003, Design Patterns 20

Program to Create an RTF Parse Tree
<open input file inFile>
TextBuilder builder = new ParseTreeBuilder();
Director dir = new Director(builder);
dir.construct(inFile);
RTFParseTree tree = builder.getParseTree();

6

CISC 323, Winter 2003, Design Patterns 21

Example Code On Web

Program to convert from one of three input formats:
• plain text
• RTF
• list of student records

to one of three output formats:
• plain text
• RTF
• HTML

Without Builder might take 9 conversion methods
• one for each combination of input and output format

With Builder it takes 3 Directors and 3 Builders
Uses a TextDirector interface with three implementations

CISC 323, Winter 2003, Design Patterns 22

General Form of Builder Pattern

CISC 323, Winter 2003, Design Patterns 23

Another Example: Using Java Files

Want program to read a Java program and create a parse
tree
Another program to pretty-print a Java program (write to a
file, no parse tree needed)
Yet another program to read a Java program and generate
statistics

Use one Director for parsing the Java program
Builder for creating "parse tree":
• parse tree Builder really creates an internal tree
• pretty-printing Builder just writes output to a file
• statistics Builder records statistics for user to query

Code for parsing a Java file shared

CISC 323, Winter 2003, Design Patterns 24

More About Directors

In most examples, a director is reading from a file –
translating from one format to another
Also possible to have a director creating a data structure
from scratch.
Example: Java GUI class generator
• reads specifications for GUI components
• creates file with Java class to create the GUI

Can use pretty-printing Builder from previous example to
generate the Java class files
Director will read specifications and call Builder methods

