Parnas Tables: An Experience with Formal
Verification 1n an Industrial Setting

Parnas Tables _ _
An Experience with Formal Verification in an Industrial Setting

This talk describes the use of a
method of formal verification
generally called Parnas Tables

Method was developed by D.
L.Parnas

Method was extended and made
to work by OPGI staff

First use of large scale formal
verification in Canada

Background - 1

« 1990 Darlington Nuclear Generating Station
brought on-line

& first time trip-decision logic in reactor safety
shutdown system (SDS) entirely software

¢ two independent systems (physically and
logically)

¢ designed differently to reduce common mode
errors

= 7000 lines of FORTRAN
= 13000 lines of PASCAL

Background - 2

¢ 1987 regulator (AECB) concerns

= not properly engineered

- software functional but not of “high quality”

~uncertain risk

~lack of confidence in product, process, and people
¢ software was already written

~ software had been extensively tested

-~ many design documents did not exist

~those that did, not suited to a formal process

Background - 4

« underlying problems

¢ no agreed upon, measurable definition
of acceptability for the engineering of
safety critical software

¢ no widely accepted common practices
for specification, design, verification,
and testing of safety critical software

¢ not possible to quantify the achieved

reliability of software component of a
safety system

Background - 5

« David Parnas hired by regulator to
advise on process

= procedure based on Parnas Tables
& formal verification
¢ rendered code into tabular format

¢ rendered requirements into tabular
format

¢ proofs to show code and requirements
the same

Darlington Station

CANDU reactor

Reactor Core

SO CaTROL B
HRITOET OO
BOOETER FUFL Rl

L R T O AAD POECR Pl T

BOCE-TTEN PR, Rl

Lol L-TUR L K L 2, §

."?-‘?:

[g R TR

#
i

= [k
ST sty L

o
::—I_ ==

| TR LA P O ma L
||| HLRDL™
|

Fas"uhj (me dasrum

H

|

-,_,--' - -
o~ "_/'/ EF Ao [00 e | g

MODLAATON w6l 07 L s

WODTRBTOA St FT

SECOND SHUTDOWN SYSTEM ' FIRST SHUTDOWN SYSTEM

“HANNELIZED CARLING VIA CONDUIT CHANNMNELIZED CABLING VIA CHANNELIZED
O CHANNELIZED INSTRUMFNT AOOMS CABLE PANS TO CONTROL EQUIPMENT ROOM
I |
i . .
| i
- r1p System =
| |
1 1
[} gors & i
Ir . =g -
1 I
3 chematic |
’r
| SOLENOID i
] VALVE :
i - ELE
I ! |
\ E |
TYPICAL I
QUICK ACTING VALVES ! |
VERTICAL
FIRST ION CHAMBER ~ ELEV.
SHUTDOWN 6649
SYSTEM TRIP VERTICAL 1
PARAMETERS IN-CORE
DETECTOR
TrNK IL\
9 POISON STORAGE TANKS H
s
////////”f///////////l/f/f/lf//////I///I/I/I/[I//////A47//////{////Iﬂ//////ﬂf//[/f////[/A’f&ft’//l/////f//.:.-.’.{/J/ﬂ -
LINE FROM EACH OF &
8 POISON STORAGE TANKS | - - —
1
s HORIZONTAL .~
S !
SHUTDOW#" IuN CHAMBER
PARAMETERS | HORIZONTAL
IN-CORE DETECTOR CALANDRIA SHELL

TYPICAL F
G0 GUIDE TUBE

Reasons for Parnas Table Verification

¢ regulator required that software be
verified before put into use

¢ \We had done a verification based
on a method by Nancy Levison but
it was deemed inadequate

¢ Hydro agreed “reluctantly” to the
formal verification

software already written but no
formal requirements documents

Process unproven
Likely to be expensive
Likely to be lengthy

Computer Environment

Dedicated computers and operating
system

Two diverse, independent,
hardened and obsolete computer
systems

Each system is triply redundant

Little human interaction during
execution

Receives digital input from
measuring devices

Outputs a go/no-go signal to trip
the reactor

Why they agreed
If you borrow a lot of money you need to
pay it back
$2000/kWe engphys.mcmaster.ca ($8B)
$4000/kWe EDA ($14B)

At 8% this works out to about 1.8M$ per
day in interest using the lower figure

Reactor on (3524Mw) you could earn
$6,766,080 @ $80 $/Mwhr or
$3,805,920 @ $45 $/Mwhr

Formal verification only cost of the order
of 60 X 60 X 52 X 100 = 18M$ - as long
as it didn’t hold up the license

Actual Verification Process

Team to create PF tables from
existing requirements document

Team to create PF tables from the
code

Team to compare the two documents
and prove they are equivalent

All done by hand — Almost no tool
support

Procedure L{eclaration:

procedure Find(e : integer; V : vector: varindex : i :
Code Sample in var found : Boolean); e
Pascal var low, high, med : integer;
begin
{Initialization}
low := 1; high :=n;
found := false;
index := 1,
(Body}
while not found and (low < high) do
begin
med := (low + high) div 2;
if Vimed] <e then low :=med + 1 else
it Vimed] > e then high :=med -1 else
begin
index := med; found := true
end {else}
end {while}
end {Find}

Procedure invocation:
Find(x, A, j, present)

Parameter binding: '
(‘e = val(x)) A 'V = val(A)) A (index = j) A (found = present)

Sample PF Table

\\

R((%, ‘A, j, ‘present), (x', A, |, present’)) =
(tsn)aVi[{1<i<n) - (A< A1)) »
31[(1 <zSn)A(A[z]= X)) =.

e faise

ANCIX A

]
|||

Fig.3 Tabular expression of the relational specification of the program shown in Fig, 2,

Verification Process
(from a paper by Parnas)

Inspectors ...need “quiet time to think”

..Inspections must be interrupted by
breaks,evenings and weekends

..results of inspections must be
scrutinized carefully in open
discussions

Reality

| worked roughly 60-70 hrs. a week for
a year and so did a lot of team
members

breaks tended to be trips to Hasty
Mart for a bag of cheesies and a coke

most inspection results were Excel
tables passed over a network of Macs

Discussions were infrequent but there
was an open door policy (we also
didn’t have doors)

Sample SDS1 code

oooaoooo0ooo0o0o0o0o0o0o0o00o00o0000000000000000000a0n

TITLE: Average Power Calculation

PROJECT 38, Darlington GS

SOURCE FILE NAME: AVPOW
MODULE NAME: AVPOW (Subroutine)
TARGET MACHINE (S) : PROGRAM LISTING:
SDS1 Trip Computer, Channels: D,E,F 38-68258-PLN-057
REV DATE AUTHOR DESCRIPTION
00 88.08.30 N.D.Thai Freeze 2 issue
01 89.02.06 N.Thai Freeze 3 (SCR's 31,61,68,71)
G.Rousseau
P.Rosta
W.Collins
89.04.20 D.N.Andrejic Freeze 3 (SCR's 101, 98, 108, 115)
89.04.30 D.N.Andrejic Freeze 3 (SCR's 116, 101 correction)
89.05.06 D.N.Andrejic Freeze 3 (SCR's 115 - consistency)
89.05.11 D.N.Andrejic Freeze 3 (SCR's 82 - unused variables)
89.05.24 D.N.Andrejic Freeze 3 (corrections - limit check)
89.06.02 D.N.Andrejic Freeze 3 (updated SUMLPV check)
89.06.29 D.N.Andrejic Freeze 3 (adjusted LPPC cycling)
89.07.07 D.N.Andrejic Freeze 3 (corrected case construct)
89.07.07 D.N.Andrejic Issued for Freeze 3 PIT
02 89.07.21 D.N.Andrejic Freeze 3 (SCR's 160, 175: comments)

DESCRIPTION:

There are TSAP (12) NOP detectors selected to
produce NAP (4) average powers, ie. each average

power is the average of SAP (3) detectors

Sample SDSI code

255
299
+
+
+
499
500
+
+
899

ENCNT = ENCNT + 1
IF (CALSEQ(ENCNT) .NE.LPCLID) CALL SFATAL (ELPSEQ)
IF (CALSEQ (EXCNT+1) .NE.LPCLID) CALL SFATAL (ELPSEQ)
IF ((LPPC.LT.0) .OR. (LPPC.GT.LPPCL)) CALIL SFATAL (ELPRNG)
IF (LPPC.EQ.LPPCL) LPPC = 0
LPPC = LPPC + 1
IF (LPPC.NE.1l) GOTO 299
DO 255 I=1,NAP

SUMLPV (I) = 0
ENLPS(I) = 0
CONTINUE

CONTINUE
IF (LPPC.GT.TSAP) GO TO 500
LPSN = LPSID (LPPC)

LPN = (LPPC-1)/SAP + 1
IF (.NOT. (
(LPAI (LPSN) .GE.LPAILL) .AND. (LPAI (LPSN) .LE.LPAIHL)
.AND. (CAMT (LPSN) .GE.CAMTLL) .AND. (CAMT (LPSN) . LE . CAMTHL)
)) GO TO 499
ENLPS (LPN) = ENLPS(LPN) + 1
CCLPCV (LPPC) = (LPAI (LPSN)-LPOS+CAMT (LPSN)) *CGAIN (LPSN)
SUMLPV (LPN) = SUMLPV (LPN)+CCLPCV (LPPC)
CONTINUE
GO TO 899

J = LPPC - TSAP
LPNPFP (J) = DEFAP
IF((ENLPS(J).GE.1l) .AND. (ENLPS (J) .LE.SAP)
.AND. (SUMLPV (J) .GE.LPSUML) .AND. (SUMLPV (J) . LE.LPSUMH))
LPNPFP (J) = SUMLPV (J) *PFPPMV/ (ENLPS (J) *CPPF)
CONTINUE
EXCNT = EXCNT + 1
RETURN

Sample code statistics

Sample is 433 lines
328 lines are comment

68 lines are declaration (one
variable per line

34 lines are executable (6K$/line)?

This would be considered
reasonably complex

The corresponding PF tables
would be about 21 pages.The
complete set was twenty four 2”
binders

Code Features

Baton Passing
Guarding
Convoluted execution

CRC checks

Simple calculations
L1, < WS, < L2

Sample SDSI code

255
299
+
+
+
499
500
+
+
899

ENCNT = ENCNT + 1
IF (CALSEQ(ENCNT) .NE.LPCLID) CALL SFATAL (ELPSEQ)
IF (CALSEQ (EXCNT+1) .NE.LPCLID) CALL SFATAL (ELPSEQ)
IF ((LPPC.LT.0) .OR. (LPPC.GT.LPPCL)) CALIL SFATAL (ELPRNG)
IF (LPPC.EQ.LPPCL) LPPC = 0
LPPC = LPPC + 1
IF (LPPC.NE.1l) GOTO 299
DO 255 I=1,NAP

SUMLPV (I) = 0
ENLPS(I) = 0
CONTINUE

CONTINUE
IF (LPPC.GT.TSAP) GO TO 500
LPSN = LPSID (LPPC)

LPN = (LPPC-1)/SAP + 1
IF (.NOT. (
(LPAI (LPSN) .GE.LPAILL) .AND. (LPAI (LPSN) .LE.LPAIHL)
.AND. (CAMT (LPSN) .GE.CAMTLL) .AND. (CAMT (LPSN) . LE . CAMTHL)
)) GO TO 499
ENLPS (LPN) = ENLPS(LPN) + 1
CCLPCV (LPPC) = (LPAI (LPSN)-LPOS+CAMT (LPSN)) *CGAIN (LPSN)
SUMLPV (LPN) = SUMLPV (LPN)+CCLPCV (LPPC)
CONTINUE
GO TO 899

J = LPPC - TSAP

LPNPFP (J) = DEFAP

IF((ENLPS(J).GE.1l) .AND. (ENLPS (J) .LE.SAP)
.AND. (SUMLPV (J) .GE.LPSUML) .AND. (SUMLPV (J) . LE.LPSUMH))
LPNPFP (J) = SUMLPV (J) *PFPPMV/ (ENLPS (J) *CPPF)

CONTINUE

EXCNT = EXCNT + 1

RETURN

~The Good News

*The AECB allowed Darlington to go into
production

~The Not-So-Good-News

*Having spent $18M+ proving the software
was correct the AECB now required the
software to be rewritten following a prescribed
process

Waterfall Phases

System

Requirements ‘

Software

Requirements _l
Analysis j

Program Design _l
Coding j
Testing —l

‘ Operations

CISC 323 winter 2006, Software Process 12

Safety Critical Software Process

. RELIABILITY. o
- DEMONSTRATION |

—» | VALIDATION
TESTING.

O e 1 M B SN W D N DS N S W A W b N SN N B W N P EN S SN B D B == (N BN N

SUBSYSTEM!
TESTING -

SRS
REVIEW

SYSTEMATIC
DESIGN
VERIFICATION

SYSTEMATIC
CODE
VERIFICATION

SDD
REVIEW

CODE
REVIEW

Software Engineering Lifecycle

Misconceptions - Issues

The SDS software initiates the shutdown

An increase in reliability results in an
iIncrease in safety

“..safety requires correctness..”

“The programmers had added something
extra thinking that they were improving
things”

“There was a coding error but it would
not adversely affect safety...”

“There was a coding error that did affect
safety...”

“..hazard analysis should not have been
performed on the code”

My Observations on the exercise

= The formal process grinds incredibly fine

= Upwards of 30M$ was spent with no
Increase in safety

=« Extensive focus on meeting
requirements but not on meeting
objectives.

= The degree of rigor applied to the
symbolic was disproportionate

=« The Formal process ignored real issues:
kernel,compiler,timing,optimal arithmetic

=« Formal methods require tool support to
be economically feasible

= Correctness is not enough. You must

demonstrate correctness. This means
loldeYed ~ XX

References

1. David Parnas, “Inspection of Safety-Critical Software using Program Function
tables”, Chapter 19, Software Fundamentals, Collected Papers, Addison-
Wesley, 2001

2. Ontario Hydro’s Experience with New Methods for Engineering Safety Critical
Software; M.Viola, Proceedings Safecomp 1995, Italy

3. Reactor Physics Aspects of CANDU Safety Analysis; G.M. Frescura

