
Parnas Tables: An Experience with Formal
Verification in an Industrial Setting

Bill Kelly OPGI (retired)

This talk describes the use of a
method of formal verification

generally called Parnas Tables
Method was developed by D.

L.Parnas
Method was extended and made

to work by OPGI staff
First use of large scale formal

verification in Canada

Parnas Tables
An Experience with Formal Verification in an Industrial Setting

Background - 1

1990 Darlington Nuclear Generating Station
brought on-line

first time trip-decision logic in reactor safety
shutdown system (SDS) entirely software
two independent systems (physically and
logically)
designed differently to reduce common mode
errors

7000 lines of FORTRAN
13000 lines of PASCAL

1987 regulator (AECB) concerns
not properly engineered
software functional but not of “high quality”
uncertain risk
lack of confidence in product, process, and people

software was already written
software had been extensively tested
many design documents did not exist
those that did, not suited to a formal process

Background - 2

Background - 4

underlying problems
no agreed upon, measurable definition
of acceptability for the engineering of
safety critical software
no widely accepted common practices
for specification, design, verification,
and testing of safety critical software
not possible to quantify the achieved
reliability of software component of a
safety system

Background - 5

David Parnas hired by regulator to
advise on process
procedure based on Parnas Tables

formal verification
rendered code into tabular format
rendered requirements into tabular
format
proofs to show code and requirements
the same

Darlington Station

CANDU reactor

Reactor Core

Trip System
Schematic

Reasons for Parnas Table Verification

regulator required that software be
verified before put into use
We had done a verification based
on a method by Nancy Levison but
it was deemed inadequate
Hydro agreed “reluctantly” to the
formal verification

software already written but no
formal requirements documents
Process unproven
Likely to be expensive
Likely to be lengthy

Computer Environment

Dedicated computers and operating
system

Two diverse, independent,
hardened and obsolete computer

systems
Each system is triply redundant
Little human interaction during

execution
Receives digital input from

measuring devices
Outputs a go/no-go signal to trip

the reactor

Why they agreed
If you borrow a lot of money you need to
pay it back
$2000/kWe engphys.mcmaster.ca ($8B)
$4000/kWe EDA ($14B)
At 8% this works out to about 1.8M$ per
day in interest using the lower figure
Reactor on (3524Mw) you could earn
$6,766,080 @ $80 $/Mwhr or
$3,805,920 @ $45 $/Mwhr
Formal verification only cost of the order
of 60 X 60 X 52 X 100 = 18M$ - as long
as it didn’t hold up the license

Actual Verification Process

Team to create PF tables from
existing requirements document
Team to create PF tables from the
code
Team to compare the two documents
and prove they are equivalent
All done by hand – Almost no tool
support

Code Sample in
Pascal

Sample PF Table

Verification Process
(from a paper by Parnas)

Inspectors ...need “quiet time to think”
..inspections must be interrupted by
breaks,evenings and weekends
..results of inspections must be
scrutinized carefully in open
discussions

Reality
I worked roughly 60-70 hrs. a week for
a year and so did a lot of team
members
breaks tended to be trips to Hasty
Mart for a bag of cheesies and a coke
most inspection results were Excel
tables passed over a network of Macs
Discussions were infrequent but there
was an open door policy (we also
didn’t have doors)

Sample SDS1 code
C TITLE: Average Power Calculation
C
C ===
C PROJECT 38, Darlington GS
C ===
C
C SOURCE FILE NAME: AVPOW
C
C MODULE NAME: AVPOW (Subroutine)
C
C TARGET MACHINE(S): PROGRAM LISTING:
C =================================== ================
C SDS1 Trip Computer, Channels: D,E,F 38-68258-PLN-057
C
C REV DATE AUTHOR DESCRIPTION
C === ======== ======== ==
C 00 88.08.30 N.D.Thai Freeze 2 issue
C 01 89.02.06 N.Thai Freeze 3 (SCR's 31,61,68,71)
C G.Rousseau
C P.Rosta
C W.Collins
C 89.04.20 D.N.Andrejic Freeze 3 (SCR's 101, 98, 108, 115)
C 89.04.30 D.N.Andrejic Freeze 3 (SCR's 116, 101 correction)
C 89.05.06 D.N.Andrejic Freeze 3 (SCR's 115 - consistency)
C 89.05.11 D.N.Andrejic Freeze 3 (SCR's 82 - unused variables)
C 89.05.24 D.N.Andrejic Freeze 3 (corrections - limit check)
C 89.06.02 D.N.Andrejic Freeze 3 (updated SUMLPV check)
C 89.06.29 D.N.Andrejic Freeze 3 (adjusted LPPC cycling)
C 89.07.07 D.N.Andrejic Freeze 3 (corrected case construct)
C 89.07.07 D.N.Andrejic Issued for Freeze 3 PIT
C 02 89.07.21 D.N.Andrejic Freeze 3 (SCR's 160, 175: comments)
C ===
C DESCRIPTION:
C
C There are TSAP (12) NOP detectors selected to
C produce NAP (4) average powers, ie. each average
C power is the average of SAP (3) detectors

Sample SDS1 code
ENCNT = ENCNT + 1
IF (CALSEQ(ENCNT).NE.LPCLID) CALL SFATAL(ELPSEQ)
IF (CALSEQ(EXCNT+1).NE.LPCLID) CALL SFATAL(ELPSEQ)
IF((LPPC.LT.0).OR.(LPPC.GT.LPPCL)) CALL SFATAL(ELPRNG)
IF (LPPC.EQ.LPPCL) LPPC = 0
LPPC = LPPC + 1
IF (LPPC.NE.1) GOTO 299

DO 255 I=1,NAP
SUMLPV(I) = 0
ENLPS(I) = 0

255 CONTINUE
299 CONTINUE

IF(LPPC.GT.TSAP) GO TO 500
LPSN = LPSID(LPPC)

LPN = (LPPC-1)/SAP + 1
IF(.NOT.(

+ (LPAI(LPSN).GE.LPAILL).AND.(LPAI(LPSN).LE.LPAIHL)
+ .AND.(CAMT(LPSN).GE.CAMTLL).AND.(CAMT(LPSN).LE.CAMTHL)
+)) GO TO 499

ENLPS(LPN) = ENLPS(LPN) + 1
CCLPCV(LPPC) = (LPAI(LPSN)-LPOS+CAMT(LPSN))*CGAIN(LPSN)
SUMLPV(LPN) = SUMLPV(LPN)+CCLPCV(LPPC)

499 CONTINUE
GO TO 899

500 J = LPPC - TSAP
LPNPFP(J) = DEFAP
IF((ENLPS(J).GE.1).AND.(ENLPS(J).LE.SAP)

+ .AND.(SUMLPV(J).GE.LPSUML).AND.(SUMLPV(J).LE.LPSUMH))
+ LPNPFP(J) = SUMLPV(J)*PFPPMV/(ENLPS(J)*CPPF)

899 CONTINUE
EXCNT = EXCNT + 1
RETURN

Sample code statistics
Sample is 433 lines
328 lines are comment
68 lines are declaration (one
variable per line
34 lines are executable (6K$/line)?
This would be considered
reasonably complex
The corresponding PF tables
would be about 21 pages.The
complete set was twenty four 2”
binders

Code Features

Baton Passing
Guarding
Convoluted execution
CRC checks
Simple calculations
L1i < WiSi < L2i

Sample SDS1 code
ENCNT = ENCNT + 1
IF (CALSEQ(ENCNT).NE.LPCLID) CALL SFATAL(ELPSEQ)
IF (CALSEQ(EXCNT+1).NE.LPCLID) CALL SFATAL(ELPSEQ)
IF((LPPC.LT.0).OR.(LPPC.GT.LPPCL)) CALL SFATAL(ELPRNG)
IF (LPPC.EQ.LPPCL) LPPC = 0
LPPC = LPPC + 1
IF (LPPC.NE.1) GOTO 299

DO 255 I=1,NAP
SUMLPV(I) = 0
ENLPS(I) = 0

255 CONTINUE
299 CONTINUE

IF(LPPC.GT.TSAP) GO TO 500
LPSN = LPSID(LPPC)

LPN = (LPPC-1)/SAP + 1
IF(.NOT.(

+ (LPAI(LPSN).GE.LPAILL).AND.(LPAI(LPSN).LE.LPAIHL)
+ .AND.(CAMT(LPSN).GE.CAMTLL).AND.(CAMT(LPSN).LE.CAMTHL)
+)) GO TO 499

ENLPS(LPN) = ENLPS(LPN) + 1
CCLPCV(LPPC) = (LPAI(LPSN)-LPOS+CAMT(LPSN))*CGAIN(LPSN)
SUMLPV(LPN) = SUMLPV(LPN)+CCLPCV(LPPC)

499 CONTINUE
GO TO 899

500 J = LPPC - TSAP
LPNPFP(J) = DEFAP
IF((ENLPS(J).GE.1).AND.(ENLPS(J).LE.SAP)

+ .AND.(SUMLPV(J).GE.LPSUML).AND.(SUMLPV(J).LE.LPSUMH))
+ LPNPFP(J) = SUMLPV(J)*PFPPMV/(ENLPS(J)*CPPF)

899 CONTINUE
EXCNT = EXCNT + 1
RETURN

The Good News
•The AECB allowed Darlington to go into
production

The Not-So-Good-News
•Having spent $18M+ proving the software
was correct the AECB now required the
software to be rewritten following a prescribed
process

Safety Critical Software Process

Misconceptions - Issues
The SDS software initiates the shutdown
An increase in reliability results in an
increase in safety
“..safety requires correctness..”
“The programmers had added something
extra thinking that they were improving
things”
“There was a coding error but it would
not adversely affect safety...”
“There was a coding error that did affect
safety...”
“..hazard analysis should not have been
performed on the code”

My Observations on the exercise

The formal process grinds incredibly fine
Upwards of 30M$ was spent with no
increase in safety
Extensive focus on meeting
requirements but not on meeting
objectives.
The degree of rigor applied to the
symbolic was disproportionate
The Formal process ignored real issues:
kernel,compiler,timing,optimal arithmetic
Formal methods require tool support to
be economically feasible
Correctness is not enough. You must
demonstrate correctness. This means
process

References
1. David Parnas, “Inspection of Safety-Critical Software using Program Function

tables”, Chapter 19, Software Fundamentals, Collected Papers, Addison-
Wesley, 2001

2. Ontario Hydro’s Experience with New Methods for Engineering Safety Critical
Software; M.Viola, Proceedings Safecomp 1995, Italy

3. Reactor Physics Aspects of CANDU Safety Analysis; G.M. Frescura

