
November 4, 2009 CISC-365* 1

Branch and Bound Algorithms

(This material is not covered in the text. See the “Recommended

Readings” for some online resources.)‏

Suppose you are excavating in the Valley of the Kings, in Egypt.

You think you have found the path to King Tut's tomb, but you

don't know for sure which way to go.

November 4, 2009 CISC-365* 2

Branch and Bound Algorithms

(This material is not covered in the text. See the “Recommended

Readings” for some online resources.)‏

Suppose you are excavating in the Valley of the Kings, in Egypt.

You think you have found the path to King Tut's tomb, but you

don't know for sure which way to go.

However, you’ve been told that there is a route that will get you

there in no more than 6 hours.

November 4, 2009 CISC-365* 3

As soon as you set out, you come to a crossroad … there are three

ways you could go (forward, left, or right). How to choose?

November 4, 2009 CISC-365* 4

As soon as you set out, you come to a crossroad … there are three

ways you could go (forward, left, or right). How to choose?

Ok, there are some sign posts:

The left sign says Tut's Tomb : between 2 and 10 hours

The forward sign says Tut's Tomb: between 3 and 7 hours

The right sign says Tut's Tomb: between 8 and 12 hours

November 4, 2009 CISC-365* 5

Obviously we can discard the road on the right - its best

possibility is worse than the estimate we already have.

|

|

‏(8,12)---------+---------(2,10)

|

|

‏(3,7)

Current estimate: 6 hours

November 4, 2009 CISC-365* 6

Obviously we can discard the road on the right - its best

possibility is worse than the estimate we already have.

|

|

(2,10)---------+---------X

|

|

‏(3,7)

Current estimate: 6 hours

This is called pruning or fathoming.

November 4, 2009 CISC-365* 7

But what about the other two possibilities?

The left sign says between 2 and 10 hours

The forward sign says between 3 and 7 hours

Without further information, we pick one …

Say we pick the road on the left … and we immediately come to

another crossroad.

November 4, 2009 CISC-365* 8

Here let us suppose there are only two branches

The left road sign says: between 7 and 10 hours

The right road sign says: between 5 and 8 hours

|

|

(2,10)---------+---------X

/ \ |

(7,10) (5,8) |

(3,7)

Current estimate: 6 hours

November 4, 2009 CISC-365* 9

Obviously we can prune off the road on the left …

but should we continue with the road on the right here, or go back

to the other choice from the previous crossroad?

Suppose we decide to back up and try that route, and find another

crossroad!

|

|

(2,10)---------+---------X

/ \ |

X (5,8) |

(3,7)

/ \

Current estimate: 6 hours

November 4, 2009 CISC-365* 10

This one has two branches, with signs:

The left road sign says: between 3 and 4 hours

The right road sign says: between 3 and 7 hours

|

|

(2,10)---------+---------X

/ \ |

X (5,8) |

(3,7)

/ \

‏(3,7) (3,4)

Current estimate: 6 hours

November 4, 2009 CISC-365* 11

The left road here has an upper bound that is lower than our

previous estimate!

We now know that there is a route that takes no more than 4

hours.

November 4, 2009 CISC-365* 12

Remember that other possibility :

The right road sign says: between 5 and 8 hours

This is no longer of any interest … we know there is a better

route, even though we don’t yet know exactly which way to go.

|

(2,10)---------+---------X

/ \ |

X (5,8) |

(3,7)

/ \

‏(3,7) (3,4)

Current estimate: 4 hours

November 4, 2009 CISC-365* 13

Remember that other possibility :

The right road sign says: between 5 and 8 hours

This is no longer of any interest … we know there is a better

route, even though we don’t yet know exactly which way to go.

|

(2,10)---------+---------X

/ \ |

X X |

(3,7)

/ \

‏(3,7) (3,4)

Current estimate: 4 hours

November 4, 2009 CISC-365* 14

This illustrates the essential characteristics of a branch and

bound solution.

1. The problem to be solved is an optimisation problem in which

we have to make a sequence of decisions. WLOG, assume we are

trying to minimise the objective function.

2. There is an initial upper bound on the optimal solution.

3. For any feasible partial solution P, we can compute two things:

- a lower bound on the solutions that can be built from P

- an upper bound on the best solution that can be built from P

November 4, 2009 CISC-365* 15

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the complete

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 16

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the complete

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 17

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the complete

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 18

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the complete

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 19

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the complete

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 20

We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them

as a tree).

For each partial solution, we compute bounds on the best

complete solution obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal

solution.

We update our information about the optimal solution.

November 4, 2009 CISC-365* 21

Let U be an upper bound on the cost of the optimal solution. U

can be obtained by randomly generating an arbitrary solution to

the problem, and using its cost as U.

Let S be the set of partial solutions still under consideration.

Initially S can consist of all possible “first choices”, or S can

contain just one element: the partial solution in which no choice

has been made.

For each P in S, let (LP,UP) be the bounds on the best possible

solution that can be built from P.

November 4, 2009 CISC-365* 22

While S is non-empty

Choose some P in S. (different choice rules can be used)‏

S = S \ {P}

For Each P’ that can be built from P with one more step,

compute (LP’,UP’)‏

If LP’ > U, discard P’

Else

If P’ is a partial solution, S = S + {P’}

If P’ is a full solution with a better cost than the best

full solution seen so far, remember P’ as the best

full solution

If UP’ < U, U = UP’

End For Each

End While

Return the solution being remembered

November 4, 2009 CISC-365* 23

Practical Considerations

Choosing the partial solution to expand:

Depth first - choose the best child of the most recently

expanded partial solution, if any

- if none, back up to the parent and try from

there

Breadth first - choose a partial solution closest to the root

of the solution tree

Best first - choose the partial solution with the lowest

lower bound

November 4, 2009 CISC-365* 24

For Best first, we need to think about how to manage the set of

“live” partial solutions so that we can quickly choose the one with

the lowest lower bound.

November 4, 2009 CISC-365* 25

For Best first, we need to think about how to manage the set of

“live” partial solutions so that we can quickly choose the one with

the lowest lower bound.

One method is to store the partial solutions in a min-heap. Each

new item can be inserted in O(log t) time, and each choice for the

next partial solution to be expanded can be extracted in O(log t)

time, where t is the number of solutions in the heap. Since t may

be O(2^n) where n is the number of decisions to be made, this

gives us O(n) time for selecting the next partial solution and for

inserting new partial solutions.

November 4, 2009 CISC-365* 26

The more accurate the lower and upper bounds for each partial

solution are, the more effectively the bad branches can be pruned.

In some applications, it may be worth using quite complex

algorithms to compute good bounds.

November 4, 2009 CISC-365* 27

The more accurate the lower and upper bounds for each partial

solution are, the more effectively the bad branches can be pruned.

In some applications, it may be worth using quite complex

algorithms to compute good bounds.

For a partial solution P, the lower bound consists of two parts:

Cost so far: the cost of decisions already made

Guaranteed future cost: unavoidable costs from future

decisions

The upper bound also consists to two parts:

Cost so far: same as above

Feasible future cost: the cost of any extension of P to a

complete solution

November 4, 2009 CISC-365* 28

The quality of the initial upper bound can be critically important.

Rather than randomly choosing a solution to give the initial upper

bound, it is sometimes worthwhile to invest the time to find a

fairly good solution for this purpose.

This can be done with an heuristic algorithm that runs in

polynomial time but doesn't always find the optimal answer.

For example, we might be solving a problem for which there is no

greedy algorithm solution. However, we might use a greedy

algorithm to get the initial upper bound, and then use branch and

bound to find the optimal solution.

November 4, 2009 CISC-365* 29

Let’s do an example!

The 0-1 Knapsack Problem: We have a collection of objects, each

with a known volume and a known value. We have a knapsack

with a known capacity. We want to choose the most valuable set

of objects that will fit in the knapsack.

This is an NP-Complete problem.

With n objects to choose from, there are potentially 2n possible

solutions to be considered (every subset of the set of objects).

But with a branch and bound algorithm, we can try to cut this

down a bit.

November 4, 2009 CISC-365* 30

First, what is our objective function?

The obvious one is to compute the value of items chosen, and try

to maximise it ...

November 4, 2009 CISC-365* 31

First, what is our objective function?

The obvious one is to compute the value of items chosen, and try

to maximise it …

… except that we have developed the algorithm in terms of

minimisation.

November 4, 2009 CISC-365* 32

First, what is our objective function?

The obvious one is to compute the value of objects chosen, and

try to maximise it …

… except that we have developed the algorithm in terms of

minimisation.

So let’s compute the value of the objects not chosen - minimising

this will maximise the value of the set of objects we choose.

November 4, 2009 CISC-365* 33

Second, how can we conceptualise this as a sequence of

decisions?

November 4, 2009 CISC-365* 34

Second, how can we conceptualise this as a sequence of

decisions?

Easy - list the objects in some order. At each stage, we make the

decision to include the next object or not.

November 4, 2009 CISC-365* 35

Choosing a solution to get an initial upper bound:

We can use a simple greedy algorithm, based on choosing the

object with the maximum ratio of value to volume.

November 4, 2009 CISC-365* 36

Computing lower and upper bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all

items already excluded. This certainly works as a lower bound on

the cost of all extensions of the partial solution … but we can do

better. How?

November 4, 2009 CISC-365* 37

Computing lower bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all

items already excluded. This certainly works as a lower bound on

the cost of all extensions of the partial solution … but we can do

better. How?

We can exclude all objects yet to be considered which will not fit

in the knapsack on top of the objects already chosen.

November 4, 2009 CISC-365* 38

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a

simple and valid extension is to imagine that we will also leave

out of the knapsack all the objects not yet considered. But we can

do better than that ...

November 4, 2009 CISC-365* 39

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a

simple and valid extension is to imagine that we will also leave

out of the knapsack all the objects not yet considered. But we can

do better than that ...

Remember that any solution gives us an upper bound on the cost

of an optimal solution ...

November 4, 2009 CISC-365* 40

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a

simple and valid extension is to imagine that we will also leave

out of the knapsack all the objects not yet considered. But we can

do better than that ...

Remember that any solution gives us an upper bound on the cost

of an optimal solution …

so applying the greedy heuristic to the remaining objects will give

us a better upper bound for the current partial solution.

