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Branch and Bound Algorithms

(This material is not covered in the text.  See the “Recommended 

Readings” for some online resources.)‏

Suppose you are excavating in the Valley of the Kings, in Egypt.  

You think you have found the path to King Tut's tomb, but you 

don't know for sure which way to go.  
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Branch and Bound Algorithms

(This material is not covered in the text.  See the “Recommended 

Readings” for some online resources.)‏

Suppose you are excavating in the Valley of the Kings, in Egypt.  

You think you have found the path to King Tut's tomb, but you 

don't know for sure which way to go.  

However, you’ve been told that there is a route that will get you 

there in no more than 6 hours.
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As soon as you set out, you come to a crossroad … there are three 

ways you could go (forward, left, or right).  How to choose?
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As soon as you set out, you come to a crossroad … there are three 

ways you could go (forward, left, or right).  How to choose?

Ok, there are some sign posts:

The left sign says Tut's Tomb : between 2 and 10 hours

The forward sign says Tut's Tomb: between 3 and 7 hours

The right sign says Tut's Tomb: between 8 and 12 hours
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Obviously we can discard the road on the right - its best 

possibility is worse than the estimate we already have.  

|

|

‏(8,12)---------+---------(2,10)

|

|

‏(3,7)

Current estimate: 6 hours
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Obviously we can discard the road on the right - its best 

possibility is worse than the estimate we already have.  

|

|

(2,10)---------+---------X

|

|

‏(3,7)

Current estimate: 6 hours

This is called pruning or fathoming.
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But what about the other two possibilities?  

The left sign says between 2 and 10 hours

The forward sign says between 3 and 7 hours

Without further information, we pick one …

Say we pick the road on the left … and we immediately come to 

another crossroad.
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Here let us suppose there are only two branches

The left road sign says: between 7 and 10 hours

The right road sign says: between 5 and 8 hours

|

|

(2,10)---------+---------X

/        \ |                  

(7,10)    (5,8)      |                   

(3,7)              

Current estimate: 6 hours
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Obviously we can prune off the road on the left …

but should we continue with the road on the right here, or go back 

to the other choice from the previous crossroad?

Suppose we decide to back up and try that route, and find another

crossroad!

|

|

(2,10)---------+---------X

/        \ |                  

X        (5,8)      |                   

(3,7)              

/     \

Current estimate: 6 hours
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This one has two branches, with signs:

The left road sign says: between 3 and 4 hours

The right road sign says: between 3 and 7 hours

|

|

(2,10)---------+---------X

/        \ |                  

X        (5,8)      |                   

(3,7)              

/     \

‏(3,7)   (3,4)

Current estimate: 6 hours
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The left road here has an upper bound that is lower than our 

previous estimate!

We now know that there is a route that takes no more than 4 

hours.
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Remember that other possibility :

The right road sign says: between 5 and 8 hours

This is no longer of any interest … we know there is a better 

route, even though we don’t yet know exactly which way to go.

|

(2,10)---------+---------X

/        \ |                  

X       (5,8)       |                   

(3,7)              

/     \

‏(3,7)   (3,4)

Current estimate: 4 hours
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Remember that other possibility :

The right road sign says: between 5 and 8 hours

This is no longer of any interest … we know there is a better 

route, even though we don’t yet know exactly which way to go.

|

(2,10)---------+---------X

/        \ |                  

X        X           |                   

(3,7)              

/     \

‏(3,7)   (3,4)

Current estimate: 4 hours
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This illustrates the essential characteristics of a branch and 

bound solution.  

1.  The problem to be solved is an optimisation problem in which 

we have to make a sequence of decisions.  WLOG, assume we are 

trying to minimise the objective function.

2.  There is an initial upper bound on the optimal solution. 

3.  For any feasible partial solution P, we can compute two things:

- a lower bound on the solutions that can be built from P

- an upper bound on the best solution that can be built from P
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We can think of the algorithm as a form of intelligent back-

tracking.

We keep track of partial solutions (usually conceptualising them 

as a tree).

For each partial solution, we compute bounds on the complete 

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 

solution.

We update our information about the optimal solution.
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We can think of the algorithm as a form of intelligent back-

tracking.  

We keep track of partial solutions (usually conceptualising them 

as a tree).

For each partial solution, we compute bounds on the complete 

solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 

solution.

We update our information about the optimal solution.
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as a tree).
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solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 

solution.

We update our information about the optimal solution.



November 4, 2009 CISC-365* 18

We can think of the algorithm as a form of intelligent back-

tracking.  

We keep track of partial solutions (usually conceptualising them 

as a tree).

For each partial solution, we compute bounds on the complete 

solutions obtainable from that point.

At each step, we choose a partial solution to expand.
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We update our information about the optimal solution.
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We can think of the algorithm as a form of intelligent back-

tracking.  

We keep track of partial solutions (usually conceptualising them 

as a tree).

For each partial solution, we compute bounds on the complete 

solutions obtainable from that point.
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We eliminate partial solutions that cannot lead to the optimal 

solution.

We update our information about the optimal solution.
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We can think of the algorithm as a form of intelligent back-

tracking.  

We keep track of partial solutions (usually conceptualising them 

as a tree).

For each partial solution, we compute bounds on the best 

complete solution obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 

solution.

We update our information about the optimal solution.



November 4, 2009 CISC-365* 21

Let U be an upper bound on the cost of the optimal solution.  U

can be obtained by randomly generating an arbitrary solution to 

the problem, and using its cost as U.

Let S be the set of partial solutions still under consideration.  

Initially S can consist of all possible “first choices”, or S can 

contain just one element: the partial solution in which no choice 

has been made. 

For each P in S, let (LP,UP) be the bounds on the best possible 

solution that can be built from P.
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While S is non-empty

Choose some P in S.  (different choice rules can be used)‏

S = S \ {P}

For Each P’ that can be built from P with one more step,

compute (LP’,UP’)‏

If LP’ > U, discard P’

Else

If P’ is a partial solution, S = S + {P’}

If P’ is a full solution with a better cost than the best

full solution seen so far, remember P’ as the best

full solution

If UP’ < U, U = UP’

End For Each

End While

Return the solution being remembered
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Practical Considerations

Choosing the partial solution to expand:

Depth first - choose the best child of the most recently 

expanded partial solution, if any

- if none, back up to the parent and try from

there

Breadth first - choose a partial solution closest to the root 

of the solution tree

Best first - choose the partial solution with the lowest 

lower bound
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For Best first, we need to think about how to manage the set of 

“live” partial solutions so that we can quickly choose the one with 

the lowest lower bound.
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For Best first, we need to think about how to manage the set of 

“live” partial solutions so that we can quickly choose the one with 

the lowest lower bound.

One method is to store the partial solutions in a min-heap.  Each 

new item can be inserted in O(log t) time, and each choice for the 

next partial solution to be expanded can be extracted in  O(log t) 

time, where t is the number of solutions in the heap.  Since t may 

be O(2^n) where n is the number of decisions to be made, this 

gives us O(n) time for selecting the next partial solution and for 

inserting new partial solutions.
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The more accurate the lower and upper bounds for each partial 

solution are, the more effectively the bad branches can be pruned.  

In some applications, it may be worth using quite complex 

algorithms to compute good bounds.
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The more accurate the lower and upper bounds for each partial 

solution are, the more effectively the bad branches can be pruned.  

In some applications, it may be worth using quite complex 

algorithms to compute good bounds.

For a partial solution P, the lower bound consists of two parts:

Cost so far: the cost of decisions already made

Guaranteed future cost: unavoidable costs from future 

decisions

The upper bound also consists to two parts:

Cost so far: same as above

Feasible future cost: the cost of any extension of P to a 

complete solution
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The quality of the initial upper bound can be critically important.

Rather than randomly choosing a solution to give the initial upper 

bound, it is sometimes worthwhile to invest the time to find a 

fairly good solution for this purpose.

This can be done with an heuristic algorithm that runs in 

polynomial time but doesn't always find the optimal answer.  

For example, we might be solving a problem for which there is no 

greedy algorithm solution.  However, we might use a greedy 

algorithm to get the initial upper bound, and then use branch and 

bound to find the optimal solution.
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Let’s do an example!

The 0-1 Knapsack Problem:  We have a collection of objects, each 

with a known volume and a known value.  We have a knapsack 

with a known capacity.  We want to choose the most valuable set 

of objects that will fit in the knapsack.

This is an NP-Complete problem.  

With n objects to choose from, there are potentially 2n possible 

solutions to be considered (every subset of the set of objects).

But with a branch and bound algorithm, we can try to cut this 

down a bit.
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First, what is our objective function?

The obvious one is to compute the value of items chosen, and try 

to maximise it ...
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First, what is our objective function?

The obvious one is to compute the value of items chosen, and try 

to maximise it …

… except that we have developed the algorithm in terms of 

minimisation.
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First, what is our objective function?

The obvious one is to compute the value of objects chosen, and 

try to maximise it …

… except that we have developed the algorithm in terms of 

minimisation.

So let’s compute the value of the objects not chosen - minimising 

this will maximise the value of the set of objects we choose.
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Second, how can we conceptualise this as a sequence of 

decisions?
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Second, how can we conceptualise this as a sequence of 

decisions?

Easy - list the objects in some order.  At each stage, we make the 

decision to include the next object or not.
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Choosing a solution to get an initial upper bound:

We can use a simple greedy algorithm, based on choosing the 

object with the maximum ratio of value to volume.  
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Computing lower and upper bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all 

items already excluded.  This certainly works as a lower bound on 

the cost of all extensions of the partial solution … but we can do 

better.  How?



November 4, 2009 CISC-365* 37

Computing lower bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all 

items already excluded.  This certainly works as a lower bound on 

the cost of all extensions of the partial solution … but we can do 

better.  How?

We can exclude all objects yet to be considered which will not fit 

in the knapsack on top of the objects already chosen.
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Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a 

simple and valid extension is to imagine that we will also leave 

out of the knapsack all the objects not yet considered.  But we can 

do better than that ...
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Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a 

simple and valid extension is to imagine that we will also leave 

out of the knapsack all the objects not yet considered.  But we can 

do better than that ...

Remember that any solution gives us an upper bound on the cost 

of an optimal solution ...
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Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a 

simple and valid extension is to imagine that we will also leave 

out of the knapsack all the objects not yet considered.  But we can 

do better than that ...

Remember that any solution gives us an upper bound on the cost 

of an optimal solution …

so applying the greedy heuristic to the remaining objects will give 

us a better upper bound for the current partial solution.


