
Definition: local minimizer of f(~w)

For any ~w ∈ R
n, and any f :Rn → R, a vector ~t ∗ ∈ R

n is a local minimizer of f is

defined as

∃r ∈ R++(‖~w − ~t ∗‖ < r) → (f(~t ∗) ≤ f(~w)) (1.11)

Observation: In the definitions of minimizers, the function f can be discontinuous, e.g., can be

defined over the domain of integers.

We will occasionally need to use a few basic concepts from point-set topology. The main con-

cepts are interior points, boundary points, and open sets. Because our points are always members

of vector spaces, our definitions are relatively straightforward.

An interior point of a set V ⊆ R
n is a point that has a “ball” of points around it that are all in V.

Definition: interior point of V

For any V ⊆ R
n and any ~u ∈ V, the vector ~u is an interior point of V is defined as

∃r ∈ R++, ∀~w ∈ R
n ((‖~w − ~u‖ < r) → (~w ∈ V)) (1.12)

A boundary point is a point in a set that is not an interior point.

Definition: boundary point of V

For any V ⊆ R
n and any ~u ∈ V, the vector ~u is a boundary point of V is defined as

¬ (∃r ∈ R++, ∀~w ∈ R
n ((‖~w − ~u‖ < r) → (~w ∈ V))) (1.13)

A set V ⊆ R
n is an open set if V contains only interior points.

Definition: open set

A set V ⊆ R
n is an open set of V is defined as

∀~u ∈ V, ∃r ∈ R++, ∀~w ∈ R
n ((‖~w − ~u‖ < r) → (~w ∈ V)) (1.14)
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CISC 371 Class 2

Relevant Scalar Differential Calculus

Text: Crippen et al., 2008 [1] pp. 85–86, 94–96, 99–104

Main Concepts:

• Limits

• Derivatives

• Chain Rule

• Taylor Series

• Partial Derivatives

Sample Problem, Signal Processing: What is the instantaneous rate of change of a

function with a scalar argument?

This class is a brief summary of the main concepts that we will use from elementary differential

calculus. We will not prove these results because a student is expected to know the prerequisite

material. This tutorial is intended to help a student recall these basic ideas.

A Function with a Scalar Argument

We will deal with optimization objectives that have scalar values. Strictly speaking, we will use

functionals but the optimization literature names them functions. The latter term is more general

and we will adopt its use.

The simplest function in this course has a scalar argument that is a real number, so it is a

member of the set R. Such a function maps a real number to a real number. The domain of a

function may be restricted to a subset of the real numbers, such as a finite closed interval; mostly,

the domain will be all of R. For brevity, we will refer to any member of a domain as a point, which

we will write as t for the domain R. We can write a function f as

f : R → R

A simpler, more familiar notation is

f(t)

8



Limit of a Function that has a Scalar Argument

The modern definition of the limit of a function is the Bolzano-Weierstrass definition in terms

of values ǫ and δ for a finite limit. We will write the limit of a function f , at a value a, as

lim
t→a

f(t) = c

Continuous Function that has a Scalar Argument

Although continuity can be rigorously defined directly using the ǫ–δ formulation, we will take

continuity at a value a to mean

lim
t→a

f(t) = f(a)

This assumes that f(a) exists, which is the usual case in optimization.

Derivative of a Function that has a Scalar Argument

We will use both the Leibniz notation and the Lagrange notation for a derivative. We will

assume that the derivative is the same, regardless of the direction in which the limit is taken. The

derivative of f at the point a is

df(a)

dt
or

d

dt
f(a) or f ′(a)

def
= lim

h→0

f(a+ h)− f(a)

h

Figure 2.1 illustrates how a chord, which connects a point a to a point a+h for a function f(t),

has a limit that is the derivative of the function.

a a+h a a+h a

A B C

Figure 2.1: Graphically, the limit of a chord for f(t) between (a, f(a)) and (a + h, f(a + h)) is

the derivative of f(t) at a. (A) A convex function f(t), a scalar argument a, and a chord for a value

h. (B) The same function and scalar argument, with a smaller value for h. (C) The derivative of

f(t) at a is tangent to the curve of the function.
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The usual rules of finding derivatives will be used. In this course, the examples will mainly be

polynomials. The derivatives for powers of a variable t, where t0
def
= 1, are

d

dt
ta = ata−1

The derivative of a polynomial can be found using basic rules. We will also use trigonometric

functions and exponential functions. The basic derivatives for these functions are:

d

dt
sin(t) = cos(t)

d

dt
cos(t)=− sin(t)

d

dt
et = et

(t > 0) →
d

dt
ln(t) =

1

t

Constant, Sum, and Product Rules for Derivatives

Three simple rules we will use often are for two functions, f and g, which are assumed to be

differentiable on the domain V that is specified. The Constant Rule is

d

dt
(cf(t)) = c

d

dt
f(t) (2.1)

The Sum Rule is

d

dt
(f(t) + g(t)) =

d

dt
f(t) +

d

dt
g(t) (2.2)

The Product Rule is also referred to as Leibniz’s Rule:

d

dt
(f(t)g(t)) =

(

d

dt
f(t)

)

g(t) + f(t)

(

d

dt
g(t)

)

(2.3)

Chain Rule and Quotient Rule for Derivatives

The rule for the composition of functions is crucially important. For functions f and g that

meet the appropriate conditions for existence, domains, and ranges, the composition of f with g is

often written in either of two ways:
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f(g(t)) or f ◦ g(t)

Using Lagrange notation and composition notation, the Chain Rule is

(f ◦ g)′ = (f ′ ◦ g) g′ (2.4)

A commonly encountered situation is that variables are defined as functions of other variables.

For example, we might specify an independent variable t, and two dependent variables y and z, to

be related as

z = f(y) and y = g(t)

Using these related variables, and Leibniz notation, the Chain Rule is

d

dt
f(g(t)) =

dz

dt
=

dz

dy

dy

dt
(2.5)

d

dt

(

f(t)

g(t)

)

=

df

dt
g(t)− f(t)

dg

dt
g2

(2.6)

Taylor Series

An important relevant formula is the Taylor series. This is an infinite series for any “nice”

function f(t) or, formally, any analytic function. For any function that is analytic near a value

t0 ∈ R, the Taylor series is defined as

f(t) =

∞
∑

i=0

f (i)(t0)

i!
(t− t0)

i (2.7)

= f(t0) + f ′(t0)(t− t0) +
f ′′(t0)

2
(t− t0)

2 + · · ·

We will use the Taylor series to approximate a function for a value of t that is “near” a value

t0. A linear approximation is

f(t) ≈ f(t0) + f ′(t0)(t− t0) (2.8)

and a quadratic approximation is

f(t) ≈ f(t0) + f ′(t0)(t− t0) +
f ′′(t0)

2
(t− t0)

2 (2.9)
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There are many explicit form for the remainder term of Equation 2.7. We will sometimes

use the Lagrange error term for a Taylor series, which is an expression in terms of a higher-order

derivative. The interval of interest for t > t0 is [t0 , t] and the interval for t < t0 is [t , t0]. Assuming

that the (k+1)th derivative is continuous on the closed interval, the Lagrange remainder guarantees

that there exists a value ξ in the closed interval such that

f(t) =
k

∑

i=0

f (i)(t0)

i!
(t− t0)

i +
f (k+1)(ξ)

k!
(t− t0)

k+1 (2.10)

In particular, the error of a local linear approximation is bounded by the value in the interval

that has the largest second derivative, because

f(t) = f(t0) + f ′(t0)(t− t0) +
1

2
f ′′(ξ)(t− t0)

2 (2.11)

We will also use the Taylor series for a function that has a vector argument.

Partial Derivatives

Suppose that a function has two scalar arguments, which is a formal way of saying that it is a

function of two variables. We will write each of the two arguments by using a subscript, so we will

write the function as

f2(w1, w2)

Figure 2.2 illustrates how such a function can be depicted graphically.

Figure 2.2: A non-convex function of two variables, w1 and w2, produces a surface with points

(w1, w2, f(w1, w2)). In this example the function is continuous and is not convex.

Such a function of two variables does not have a single derivative. We will treat the derivatives

of such functions in two ways. The first way is to find how the function changes with respect to one
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