
CISC 371 Class 3

Stationarity and Convexity

Texts: [1] pp. 7–8; [2] pp. 7–8, 14–17

Main Concepts:

• Stationary point, minimizer, and saddle point

• First-order condition

• Convex function

• Gradient inequality

Sample Problem, Signal Processing: For the step response of a simple dynamical

system that oscillates, why does the quadratic approximation change substantially for

a small change in the initial estimate of the minimizer?

From prerequisite material in basic calculus, we know that the maximum or minimum value

of a function occurs when the derivative is zero. For the remainder of this course, we will assume

that an objective function f , that has a scalar argument, is:

Continuous: satisfies the Weierstrass /Jordan definitions of continuity

Differentiable: satisfies the existence condition everywhere

Continuously differentiable: the derivative is continuous

As needed, we can restrict the domain of f to be a subset of the real numbers.

To better understand what can happen when we try to optimize a function that has a scalar

argument, we can recall some of the necessary and sufficient conditions for there to be a strict

local minimizer of the objective.

3.1 Stationary Point of a Function of a Scalar Argument

A stationary point of a function is a point at which the derivative of a function is zero.

Definition: stationary point of f(t)

For any t ∈ R and any f :R → R, a scalar t∗ ∈ R is a stationary point of f is defined

as

f ′(t∗) = 0 (3.1)
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Observation: By definition, a stationary point is a point at which an infinitesimal change in the

argument produces zero change in the value of the function. This implies that stationarity is a

necessary condition for optimality.

Theorem: first-order necessary condition for optimality

If t∗ ∈ R is a local minimizer of f , then t∗ is a stationary point

Proof: See Theorem 3.9 in the extra notes for this class

Observation: Stationarity is a necessary condition for a local minimizer, for a strict local max-

imizer, and for a local maximizer. Theorem 3.9 is often called a first-order condition for the

existence of a minimizer.
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Figure 3.1: The function f1(t) = −t/(t2+1) has two stationary points. (A) The function is shown

in black and stationary points are shown in red. The stationary point at t = +1 is a local minimizer

and the stationary point at t = −1 is a local maximizer. (B) The derivative of f1 is shown in blue

and its zeros are shown in red. Zeros of the derivative are stationary points of the function.

Stationarity is a necessary condition for optimality but it is not sufficient. An important kind of

stationary point is a saddle point, which is neither a local minimizer nor a local maximizer.

Definition: saddle point of f(t)

For any t ∈ R, and any f :R → R, a scalar t∗ ∈ R is a saddle point of f is defined as

(t∗ is a stationary point) ∧ ¬(t∗ is a local maximizer) ∧ ¬(t∗ is a local minimizer)

(3.2)

15



-3 -2 -1 0 1 2 3

-60

-40

-20

0

20

40

60

-3 -2 -1 0 1 2 3

-50

0

50

100

150

200

A B

Figure 3.2: The function f2(t) = 3t5 − 20t3 + 5 has three stationary points. (A) The function is

shown in black and stationary points are shown in red. The stationary point at t = +2 is a local

minimizer; the stationary point at t = −2 is a local maximizer; the stationary point at t = 0 is a

saddle point. (B) The derivative of f2 is shown in blue and its zeros are shown in red.

For a function that has a scalar argument, using a higher derivative is suggestive and may not

be conclusive. For example, the function f2 = 3t5 − 20t3 +5 has three stationary points, shown in

Figure 3.2. The second derivative correctly identifies the local maximizer and the local minimizer

but is inconclusive at the saddle point. Another example is the function f3(t) that is illustrated in

Figure 3.3, for which all of the derivatives are zero at the saddle point.

-2 -1 0 1 2

-8

-6

-4

-2

0

2

4

6

8

Figure 3.3: A graph of the function f3(t) = t3 shows that the only stationary point, which is

t∗ = 0, is a saddle point. At t∗ = 0, the second derivative is also zero and a second-order test is

inconclusive.
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From prerequisite elementary calculus, we recall that a function with a scalar argument has

three fundamental kinds of stationary points t∗ that can also be classified according to the sign of

the second derivative of the function:

• A strict local minimizer has f ′′(t∗) > 0

• A strict local maximizer has f ′′(t∗) < 0

• A saddle point has f ′′(t∗) = 0, with t∗ not a local minimizer and not a local maximizer

3.2 Convexity of a Function of a Scalar Argument

In optimization, the concept of being “concave-up” is called convexity. Functions can be con-

vex and sets can be convex; for now, we only need to understand the idea of a convex function that

has a scalar argument. In simple words, a convex function is where, if we pick any two points,

function is “below” the line that “connects” the points.

From prerequisite material in linear algebra, a line segment is the linear interpolation between

two vectors. If we have two vectors in a vector space, such as ~u and ~v, then the line segment that

“connects” the vectors can be described by a free scalar variable θ, where 0 ≤ θ ≤ 1. A vector on

this line segment can be written as

(1− θ)~u+ θ~v for 0 ≤ θ ≤ 1 (3.3)

For a function f that has a scalar argument, which is f :R → R, we can select any point t1 ∈ R

and any point t2 ∈ R. We can define 2D vectors that are

~u
def
=

[

t1
f(f1)

]

~v
def
=

[

t2
f(f2)

]

(3.4)

Substituting the terms of Equation 3.4 into Equation 3.3, a point (1− θ)t1+ θt2 corresponds to

a point on the line segment that has a second entry equal to (1−θ)f(t1)+θf(t2). This is illustrated

in Figure 3.4, showing the case of θ = 0.6 as an example.

We can define a strictly convex function using these ideas.

Definition: strictly convex function f(t)

For any t1 ∈ R, any t2 ∈ R, any θ ∈ R++, and any f :R → R, that function f is a

strictly convex function is defined as

((t1 6= t2) ∧ (0 < θ < 1)) → (f((1− θ)t1 + θt2)) < ((1− θ)f(t1) + θf(t2)))

(3.5)
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Figure 3.4: A function f(t) is evaluated at two points. (A) The points, and the values of the func-

tion, can be interpreted as 2D vectors that a line segment “connects”. (B) Any value of 0 ≤ θ ≤ 1

interpolates the vectors; the interpolation for θ = 0.6 is shown in blue.

Observation: The line segment that “connects” the points and valuations is a chord of the graph

of the function. A strictly convex function that is evaluated at any point t3, such that t1 < t3 < t2,

will have f(t3) that is strictly less than the value on the chord. This is illustrated in Figure 3.5.
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Figure 3.5: The graph of a function f(t) that is evaluated at two points. (A) The line segment

that “connects” the evaluations is “above” the graph of the function. (B) For θ = 0.6, the value

f((1− θ)t1 + θt2) is strictly less than (1− θ)f(t1) + θf(t2).
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A convex function has conditions that differ from those of a strictly convex function. The points t1

and t2 can be the same, and the function must be less than or equal to the interpolated value.

Definition: convex function f(t)

For any t1 ∈ R, any t2 ∈ R, any θ ∈ R+, and any f : R → R, that function f is a

convex function is defined as

(0 ≤ θ ≤ 1) → (f((1− θ)t1 + θt2)) ≤ ((1− θ)f(t1) + θf(t2))) (3.6)

In this course, the practical difference between a convex function and a strictly convex function

occurs at a local minimizer. A convex function can be “flat” around a local minimizer, which

means that the value of the function is unchanged. A strictly convex function cannot be “flat” at a

minimizer because the value of the function must be strictly less than the interpolated value.

A function can be mathematically “flat”, which means that equality to an interpolation can

be proved. A function can also be computationally “flat”, which means that computations near

the local minimizer result in values that are numerically indistinguishable from the value of the

function at the minimizer. A family of functions that are mathematically strictly convex, but which

computationally can be treated as “flat” near the origin, can be parameterized with a positive integer

k that specifies fk = t2k+2 + 1. Three functions in this family are illustrated in Figure 3.6, which

have increasingly higher second derivatives that are strictly convex.
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Figure 3.6: Graphs of a family of functions fk = t2k+2 + 1. As k increases, the function specified

by k is increasingly “flat” at the origin.

With these definitions and understanding, we can now simply state the difficulty we encoun-

tered in estimating a local minimizer for the dynamical response function: the function is not

locally convex.
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3.3 Basic Gradient Inequality

We can easily derive a result that will explain how a function behaves near a local minimizer.

We will use this result, in a future class, to understand how a simple and widely used optimization

algorithms works.

First we will need to recall, from prerequisite material in differential calculus, the Lagrange

form of the remainder term in the Taylor series expansion for a continuously differentiable and

analytic function that has a scalar argument. That is, we need to recall how to find a local linear

approximation to a “smooth well behaved” function.

Consider a function with a scalar argument, f :R → R, that has an infinite number of deriva-

tives that are all continuous – this is a smooth function. Suppose that the Taylor series for this

function converges everywhere – this is an analytic function. This function has a Taylor series that

may have an infinite number of terms, which is another way of saying that it is an infinite series.

We can truncate the Taylor series so that the function f is approximated by a finite sum of terms.

We want to understand how the truncated Taylor series of the function behaves on some in-

terval of interest, such as [tL , tR]. There are many ways to represent the truncation, including

simply neglecting the higher-order terms or using a “little-o” representation. Here, we will use the

Lagrange form of the remainder. This remainder requires that we can place an upper bound on the

absolute value of some derivative.

The first-order Lagrange error term for a Taylor series can be written by knowing that there

exists, in the interval of interest, some value ξ ∈ [tL , tR] that can be used to express the truncated

terms of the series. This a basic calculus result allows us to express the Taylor series around an

argument t0 ∈ [tL , tR], for any argument t ∈ [tL , tR], as

f(t) = f(t0) + f ′(t0)(t− t0) +
1

2
f ′′(ξ)(t− t0)

2 (3.7)

If f is convex on the interval [tL , tR], and ξ ∈ [tL , tR], then 0 ≤ f ′′(ξ). We can write

Equation 3.7 as an inequality

f(t) ≥ f(t0) + f ′(t0)(t− t0) (3.8)

Equation 3.8 is remarkable and useful. It is remarkable because it implies that, if a function f

is convex on an interval then, for every point t in the interval, the function has the tangent line at t

as a lower bound. Another way of saying this result is that a locally convex function f is “above”

every possible tangent line. This is illustrated in Figure 3.7 for two points in an interval.
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Figure 3.7: Graphs of a locally convex function and the tangent lines at two points. (A) the

derivative at t1 is negative and the function is “above” the tangent line at t1. (A) the derivative at

t2 is positive and the function is “above” the tangent line at t2.

Extra Notes

3.4 Extra Notes on Stationarity

The first-order optimality condition for a function with a scalar argument can be proved using the

definition of the derivative.

Theorem: first-order necessary condition for optimality

For any t ∈ R, any t∗ ∈ R, and any continuously differentiable f :R → R,

(t∗ is a strict local minimizer of f) → (t∗ is a stationary point) (3.9)

Proof: Assume that t∗ is a local minimizer of f . By definition, there exists r ∈ R+

such that, for all u ∈ R : (|u− t∗| < r), f(u) ≥ f(t∗).

Let h = u− t∗. Then

f(u) ≥ f(t∗)
≡ f(u)− f(t∗) ≥ 0
≡ f(t∗ + h)− f(t∗) ≥ 0
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We can bound f ′(t∗) by taking limits from the left and from the right, using the above

bounds:

lim
h→0−

f(t∗ + h)− f(t∗)

h
≥ 0

∧ lim
h→0+

f(t∗ + h)− f(t∗)

h
≥ 0

→ lim
h→0

f(t∗ + h)− f(t∗)

h
= 0

so f ′(t∗) = 0

End of Extra Notes
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