
CISC 371 Class 4

Minimizing by Inexact Line Search, or Backtracking

Texts: [1] pp. 106–114; [2] pp. 31–41

Main Concepts:

• Computational effort of function and derivative evaluations

• Bracketed case: approximation

• Forward-backward search for a better objective value

Sample Problem, Signal Processing: For the step response of a simple dynamical

system that oscillates, where is the first minimum of the oscillation?

The methods of interval bracketing and approximation are sometimes called “exact” methods,

which means that the purpose of the method is to find an estimate t̂ of the true minimizer t∗ of the

objective function.

When minimizing an objective function that has a vector argument, the minimization of a

function of a scalar argument is often a sub-process. Viewed from this larger perspective, it is often

acceptable to compute a “good” estimate t̂ that is not necessarily very close to the true minimizer

t∗.

A method for finding such a “good” estimate t̂ is called an inexact method. We will explore a

limited range of the many results for inexact methods in the context of a specific inexact method,

which is backtracking search.

4.1 Line Search

The process of finding a “good”, but less than optimal, argument of an objective function of a

scalar is sometimes called a line search. Later in this course, we will see how such a line arises in

the optimization of a function with a vector argument. Here, we will state the usual assumptions

of line search.

Because line search is a sub-process of a larger optimization method, the user supplies the line-

search method with information. One crucial piece of information is the direction to be searched.

A line search typically has a single current estimate, and the user specifies the direction in which

the line search is to be conducted. For a scalar argument, the direction d is either d = +1 when the

expected minimizer is greater than the current estimate, or d = −1 when the expected minimizer

is less than the current estimate.
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A method for line search is also supplied, by the user, with the objective function and a current

estimate tk of the true minimizer t∗. In addition, because the user has already calculated these

values for reasons having to do with the overall optimization, the line search is supplied with the

objective evaluated at the estimate, as fk, and the first derivative at the estimate, as f ′

k. A line

search therefore is supplied with:

• f(t): objective function that can be evaluated

• tk: current estimate of the true minimizer t∗

• fk: objective function evaluated at tk

• f ′

k: first derivative of the objective function evaluated at tk

• d = ±1: direction of the line search

4.2 Fixed-Stepsize Search

The most elementary form of line search is to take a prescribed step in the prescribed unit

direction. The user supplies the search method with a constant s0 and the line search computes the

new estimate of the true minimizer t∗ as

dk = −sign(f ′(tk))

tk+1 = tk + s0dk (4.1)

Equation 4.1 has a serious problem: as we approach a local minimizer, the sequence will

usually “oscillate” around the true value. Instead, at iteration number k, we scale the direction dk

by the magnitude of the derivative f ′(tk). This new estimate is, depending on whether we want to

use the direction dk or simply use the derivative, is

dk = −f ′(tk)

tk+1 = tk + s0dk

= tk − s0f
′(tk) (4.2)

Equation 4.2 is simple to implement and, for optimization in a vector space, a perhaps surpris-

ingly common method. For example, with the artificial neuron called the Perceptron, the basic

learning rule is a fixed stepsize that guarantees convergence for certain types of data. This method,

using a fixed stepsize and an unscaled derivative, is described as pseudocode in Algorithm 4.1.

In practice, selecting the stepsize can be difficult. One common problem that arises is that the

stepsize is too large; the search can variously become worse, “oscillate” around a local minimum,

or produce an erratic sequence of estimates. An example of using a fixed stepsize is shown in
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Algorithm 4.1 Scalar minimization, fixed stepsize

Require: kmax > 0
Require: dmag > 0
t ← t0

fcurr ← f(t)

d ← -f’(t)

k ← 0
while ¬ (converged) do

t ← t + s0*d ⊲ fixed stepsize

d ← -f’(t)

fcurr ← f(t)

k ← k+1

end while
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Figure 4.1: Line search, with a fixed stepsize that is too large, fails to approximate the true local

minimum. The objective function is plotted as a solid black curve. (A) Initial estimate t1 shown

in black; a fixed stepsize produces an estimate, shown in blue, that is on the opposite side of the

nearest minimizer and has a larger function value than that of the initial estimate. (B) Another

application of the fixed stepsize update, shown in red, begins to approach the minimizer.

Figure 4.1. Because the stepsize is too large, the first application of Equation 4.2 results in an the

estimate of t∗ that is worse than the current estimate tk.

Another example of using a fixed stepsize is shown in Figure 4.2. Because the stepsize is

too small, repeated applications of Equation 4.2 result the estimate of t∗ approaching the original

estimate t1 at a slow rate.
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Figure 4.2: Line search, with a fixed stepsize that is too small, fails to approximate the true local

minimum. The objective function is plotted as a solid black curve. The initial estimate t1 is shown

in black. Successive updates with a fixed stepsize, shown in blue and red, slowly approach the true

minimizer.

4.3 Inexact, or Backtracking, Line Search

In practice, optimization that is conducted with an objective function that has a vector argument

may be relatively tolerant to error in the line-search estimate t̂ of the true minimizer t∗. From the

large corpus of theoretical and applied results is available, in this course we will use only a small

subset of results.

We will make an important assumption about a user invoking a line-search method: the stepsize

s0 that the user provides may be too large but will not be too small. This assumption is justified in

practice because a too-small stepsize is detectable as a long computation to convergence; but, a too-

large stepsize might produce either a divergent computation or – perhaps worse – a convergence to

an undesirable local minimum of the overall objective function.

An implication of this assumption about the user is that we will never try to increase the stepsize

from the provided number s0. Instead, we will concentrate on decreasing the stepsize by as small

a quantity as we can. This process of decreasing the stepsize from the provided number s0 is

called backtracking. We will explore backtracking by considering a fundamental result from real

analysis.

The foundation for many methods of inexact line search is an approximation of the objective

function using a Taylor series. We will introduce a free variable u to parameterize the objective

function; this frees us from over-using the variable name “t”.

Expanding a Taylor series around the initial estimate tk, and

f(tk + u) = f(tk) + f ′(tk)u+ · · · (4.3)
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One nuance is that we are searching for a new estimate t̂ in the direction d. We will modify

Equation 4.3, then truncate second-order and higher-order terms, to get the approximation

f(tk + u) ≈ f(tk) + uf ′(tk)
or f(tk + sd) ≈ f(tk) + s|f ′(tk)|d

(4.4)

A geometric observation of Equation 4.4 is that an objective function with a local minimum

near tk will be convex. This implies that, locally, the objective function is “above” the tangent line.

An algebraic implication of the geometry is that, for a user-provided number s0, locally we will

always have f(tk + s) > f(tk) + s|f ′(tk)|d. From an earlier class in this course, Figure 3.7 shows

a locally convex function and the tangent line at a given estimate tk.

To begin our development of a method for backtracking, we can observe that we could expo-

nentially “back off” from the user-provided fixed stepsize that gives us tk + s0d. This could be an

exponential sequence such as

s = s0,
1

2
s0,

1

4
s0, . . .

=
1

2γ
s0 for γ = 0, 1, 2, . . .

= βγs0 for γ = 0, 1, 2, . . . (4.5)

with β = 1/2

Any backtracking hyper-parameter 0 < β < 1, when used in Equation 4.5, will produce an

exponential sequence that converges to zero. We might use such a sequence to select a stepsize.

One criterion that we could use is that the new estimate of the minimizer must produce a function

value that is less than the current estimate. This could be a simple comparison, such as

f(tk + βγs0d) < f(tk) (4.6)

One limitation of the back-off test in Equation 4.6 is that it will select the largest stepsize that

is less than or equal to the user-provided s0 and that provides an improvement in the estimate of

the minimizer. This is illustrated graphically in Figure 4.3, where the dashed line is the current

level of the function for the estimate tk.

There are many ways to backtrack from the fixed stepsize estimate of tk+1 = tk + s0d. One

way is to back-off the stepsize, in a sequence such as that of Equation 4.5, and simultaneously to

change the comparison from the simple one in Equation 4.6 to a more informed comparison.

The idea in backtracking is that, as we exponentially back-off from the user-supplied stepsize

s0, we can also exponentially reduce one side of an inequality constraint. We know, from the
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Figure 4.3: An objective function with a local minimum is plotted as a solid black curve. The

current level of the function, here at t1, is shown as a dashed line. A user-provided step of s0 is

shown in blue and the first exponential back-off value is shown in red. The largest back-off step

that improves the estimate will be selected.

gradient inequality, that for any value t that is near an estimate tk of a minimizer, we have

f(t) 6≤ f(tk) + s0f
′(tk) (4.7)

→ f(tk + βγs0d) 6≤ f(tk) + s0f
′(tk)

In a 1966 article, Larry Armijo [3] presented a proof for any objective function that has a strict

bound on its first derivative. He showed that there is some non-negative integer γ such that

f(tk − βγs0f
′(tk))− f(tk) ≤ −

1

2γ
s0|f

′(tk)|
2 (4.8)

His proof generalizes from a power of 1/2 to a power of any 0 < β < 1. Let us introduce the

shorthand

αk
def
= f ′(tk)/2 (4.9)

In an Armijo backtracking search, we can combine a generalization of Equation 4.8 with the

shorthand of Equation 4.9 to produce a concise constraint. We increment γ until we have

f(tk + βγs0dk) ≤ f(tk) + αkβ
γs0dk (4.10)

Armijo backtracking locally estimates the stepsize in minimization. We can code an iteration

or recursion that uses the user-supplied values of s0 and β to backtrack until Equation 4.10 is

satisfied. This method is presented in Algorithm 4.2. Backtracking with a parameter β = 1/2 is

illustrated in Figure 4.4, in which a stepsize of s/4 is needed to satisfy the Armijo condition.
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Algorithm 4.2 Scalar minimization, Armijo backtracking

Require: kmax > 0
Require: dmag > 0
t ← t1

fcurr ← f(t)

g ← f’(t)

d ← -g

α ← g/2

k ← 0
while ¬(converged) do

s ← s0

fest ← f(t+s*d)

while fest>(fcurr+α*s*d) do

s ← β*s ⊲ Armijo backtracking

fest ← f(t+s*d)

end while

t ← t + s*d

fcurr ← f(t)

g ← f’(t)

d ← -g

α ← g/2

k ← k+1

end while
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Figure 4.4: Line search by backtracking with a divisor of β = 1/2. The objective function is

plotted as a solid black curve. (A) The first backtracking stepsize s is too large; the scaled line

and objective at tk + s0d are shown in blue. (B) The back-tracked stepsize s/2 is still too large;

the scaled line and objective at tk + (s/2)d are shown in red. (C) The back-tracked stepsize s/4

satisfies the Armijo condition; the scaled line and objective at tk + (s/4)d are shown in magenta.
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