
CISC 371 Class 5

Directional Derivative, Gradient, and Level Curves

Texts: [1], pp. 625–631

Main Concepts:

• Partial derivative ∂/∂wj

• Directional derivative D~u

• Gradient ∇ f

• Jacobian matrix J~f

Sample Problem, Data Analytics: For any place in a meteorological map, How much

does the temperature increase in a given direction?

In this course, we will use a limited amount of vector calculus. Our primary uses will be to:

• Develop a vector from a real-valued objective function that has a vector argument

• Develop a matrix from a real-valued vector function

• Understand how to select a search direction in a vector space

• Determine when to terminate an iterative search process

In elementary differential calculus, a function has a real-valued scalar argument and a real-

valued result, or output. The amount that such a function varies, for a variation in the argument, is

the first derivative of the function. This is defined as

df

dt
(t)

def
= lim

h→0

f(t+ h)− f(t)

h
(5.1)

There are three natural extensions of Equation 5.1, to:

• A scalar function with a vector argument of size m, written as f(~w)

• A vector function with a scalar argument, having m entries, written as ~f(t)

• A vector function with a vector argument of size n, having m entries, written as ~f(~w)

We are primarily interested in the first two extensions because they arise often in numerical

optimization.

31



In multivariable calculus, a function is expressed as having two or more real-valued arguments.

A function of two variables, f(tw1, w2), does not seem to have a derivative as defined in Equa-

tion 5.1. Instead, such as function has two partial derivatives that are defined as

∂f

∂w1

(w1, w2)
def
= lim

h→0

f(w1 + h, w2)− f(w1)

h

∂f

∂w2

(w1, w2)
def
= lim

h→0

f(w1, w2 + h)− f(w1)

h

(5.2)

In this course, we will use an objective function with a vector argument that we will write

as f(~w). To extend Equation 5.2 to vectors, we can recall from linear algebra the idea of an

elementary vector. The jth entry of ~ej is 1 and every other entry is 0. Using this idea, we can

express the partial derivatives of Equation 5.2 as

∂f

∂wj

(~w)
def
= lim

h→0

f(~w + h~ej)− f(~w)

h
(5.3)

Equation 5.3 is the same as the definition from multivariable calculus, using vectors instead of

multiple scalar arguments. The usual rules for finding a partial derivative are the same, such as

holding other variables as constant when performing the differentiation.

We can think of Equation 5.3 in two ways that will be useful later in this course:

• The partial derivative for coordinate j

• The derivative of f(~w) in the direction ~ej

For example, suppose that we want to numerically examine a map of North America than

comes from a computation on effects of climate change. One question that we could ask is: for

any location on the map, how much will the temperature rise or fall in a certain direction? We

could answer this question by sampling in some direction by a fixed distance, and subtracting the

temperatures. This would not be the “real” answer: what we should do is try to find the limit of

the finite temperature difference as the fixed distance goes to zero. An example of a temperature-

prediction map is shown in Figure 5.1.

32



Figure 5.1: A “heat map” of estimated future temperatures in North America, where the coldest

regions are colored as magenta and the hottest as deep red. A temperature is a scalar value at a

point and the temperature may increase or decrease in any direction from an interior point in the

continent. From Wang et al. 2016 [2].

5.1 The Directional Derivative

What if we use a vector other than an elementary vector? Suppose that we used a vector ~v in

place of ~ej in Equation 5.3. This would give us the derivative in the direction of the vector ~v. The

directional derivative has many notations; we will write it as

D~vf(~w)
def
= lim

h→0

f(~w + h~v)− f(~w)

h
(5.4)

Using the Chain Rule, the directional derivative can be shown as equivalent to the sum of the

products of each partial derivative with the corresponding entry of ~v, so

D~vf(~w) =
∂f

∂w1

v1 +
∂f

∂w2

v2 + · · ·+ ∂f

∂wn

vn

=
n

∑

j=1

∂f

∂wj

vj

(5.5)

We would like to use a more concise notation for the sum. Let us explore a few options that

are available.

33



Because ~v is a vector, it is specifically a column vector with m rows. The structure of ~v

constrains Equation 5.5 to be one of three forms:

• The dot product of a vector of partial derivatives with ~v:
































∂f

∂w1

∂f

∂w2

...

∂f

∂wn

































· ~v

• The dot product of ~v with a vector of partial derivatives

~v ·

































∂f

∂w1

∂f

∂w2

...

∂f

∂wn

































• The product of a “row matrix” of partial derivatives with ~v
[

∂f

∂w1

∂f

∂w2

· · · ∂f

∂wn

]

~v

We will choose the third notation, recognizing that it is not universally used in the literature

on optimization. For extra clarity, we will always use an underscore to indicate a row matrix; for

example, we will write the row vector with symbol “a” and m columns as

a
def
=

[

a1 a2 · · · an
]

(5.6)

For this course, a mathematical object that looks like a row matrix will be called one-form or

a 1-form. We will not use the term “row matrix” so that we can avoid confusion in writing, but

a student who thinks of a 1-form as a row-type object should be able to understand the following

course material.

34



The idea of a 1-form leads us to a fundamental definition for numerical optimization.

Definition: gradient operator of f(~w)

For ~w ∈ Rn and any continuously differentiable f :Rn → R, the gradient operator of

a function f(~w) is defined as the 1-form

∇ f(~w)
def
=

[

∂f

∂w1

(~w)
∂f

∂w2

(~w) · · · ∂f

∂wn

(~w)

]

(5.7)

We will use the term gradient as a shorthand for “gradient operator applied to the function f(~w)”.

We can now combine Equation 5.4 and Equation 5.5 into a single result:

D~vf(~w) = [∇ f(~w)]~v (5.8)

Many texts in numerical optimization will treat the result of using the gradient operator as a

vector. Treating the gradient as a vector is easy to represent and easy to manipulate, but is incorrect

from the viewpoint of differential geometry. The vector representation and can cause difficulties

in understanding concepts such as the contour density in a 2D plot of a scalar function that has a

size-2 vector argument.

We will make an explicit assumption about the search space V in which we seek a minimizer: V

is a Euclidean space. Not all search spaces are Euclidean; a familiar example is the representation

of a point in a 2D plane using polar coordinates φ and ρ, where φ is the angle of a point from the X

axis and ρ is the radius from the origin to the point. For a non-Euclidean search space, converting

between a 1-form and a vector requires a Riemannian metric or another advanced geometrical

object that is beyond the scope of this course.

For the important and usual condition, where the search space V is Euclidean, conversion

between a 1-form and a vector can be done with the ordinary transpose operator. This operator

produces the two equations1 for conversion

[~a]T = a

[a]T = ~a
(5.9)

When using either form of Equation 5.9, it is important to keep in mind the requirement that

the search space must have a Euclidean structure.

1In a non-Euclidean geometry, Equation 5.9 would require using metric tensor g for the search space V and its

inverse tensor.

35



5.2 The Jacobian Matrix

An immediate use of the gradient is to express the first derivative of a vector function that has

a vector argument. We can write such a function as ~f(~w), which expands as

~f(~w)
def
=











f1(~w)
f2(~w)

...

fm(~w)











(5.10)

The derivative of f1(~w) in Equation 5.10 is ∇ f1(~w). Written as a 1-form, the gradient is

∇ f1(~w) =

[

∂f1
∂w1

∂f1
∂w2

· · · ∂f1
∂wn

]

(5.11)

The derivative of f2(~w) in Equation 5.10 is ∇ f2(~w), which is

∇ f2(~w) =

[

∂f2
∂w1

∂f2
∂w2

· · · ∂f2
∂wn

]

(5.12)

Likewise, the derivatives of f3(~w) through fm(~w) have the same structure, which is gradient 1-

forms. Gathering these “rows”, and omitting the argument ~w as an abbreviation, produces the

Jacobian matrix

J~f
(~w)

def
=











































∇ f1

∇ f2

∇ f3

...

∇ fm











































=











































∂f1
∂w1

∂f1
∂w2

∂f1
∂w3

· · · ∂f1
∂wn

∂f2
∂w1

∂f2
∂w2

∂f2
∂w3

· · · ∂f2
∂wn

∂f3
∂w1

∂f3
∂w2

∂f3
∂w3

· · · ∂f3
∂wn

...
...

...
. . .

...

∂fm
∂w1

∂fm
∂w2

∂fm
∂w3

· · · ∂fm
∂wn











































with Jij
def
=

∂fi
∂wj

(5.13)

The Jacobian matrix of Equation 5.13, evaluated at an argument ~w0, is a matrix of m × n real

numbers. It can be analyzed the way that any other matrix can be analyzed; for example, we can

ask whether the Jacobian matrix at a point ~w0 has full rank.

36



The Jacobian also tersely represents the partial derivatives of the individual functions fi with

respect to variable wj . By expansion, we can confirm that the product of a Jacobian matrix and

any search-space vector ~v is

J~f
~v =















D~vf1
D~vf2
D~vf3

...

D~vfm















(5.14)

It is important to know that some authors define the Jacobian in the “transpose” sense. When

reading work other sources, we must take care to determine the convention that is used.

5.3 Level Curves

A function that has a vector argument will evaluate to a single scalar value for each vector in

the domain of the function. For most of the functions that we will use in this course, there are

generally many – usually an infinitude – of domain vectors that map to the same scalar value.

If we refer to a scalar value as a level, then all of the domain vectors that map to a given level

can be gathered together. These vectors are the level curve of the function at the given level.

Definition: level curve of f(~w) at l is SC(f, l)

For any ~u ∈ Rn, any l ∈ R, and any f :Rn → R, the level curve of f at l is defined as

SC(f, l)
def
= {~u :f(~u) = l} (5.15)

Another word for a level curve is a contour. This word is strongly associated with 2D represen-

tations of the local 3D topography of our planet’s surface. We can use standard plotting software,

such as MATLAB, to draw the level curves of a function.

f1(~w) = ~mT
1
~w + c1 where ~m1 =

[

−1
1

]

and c1 = −2 (5.16)

f2(~w) = [~w − ~g2]
T [~w − ~g2] where ~g2 =

[

2
−1

]

(5.17)

For example, Figure 5.2 shows the surfaces and contours of a linear function and a quadratic

function. We will often find it useful to have both representations when we try to understand the

geometry of optimization.

37



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

A B C

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

D E F

Figure 5.2: Surface plots and level curves of convex functions that have a 2D vector argument. (A)

A surface plot of function f1(~w) defined in Equation 5.16. (B) A contour plot of f1(~w). (C) The

contours of f1(~w) with the transpose of a gradient, shown in blue. (D) A surface plot of function

f3(~w) defined in Equation 5.17. (E) A contour plot of f3(~w). (F) The contours of f2(~w) with the

transpose of a gradient, shown in red.

Figure 5.2 also show the transpose of a gradient that is superimposed on the contour plot, where

the arrow represents a unit vector. One way to interpret the gradient 1-form is that it describes the

instantaneous number of contours that are “crossed” in a unit step in the direction of its transpose.

Function f1(~w) has a constant gradient at every point ~w of [−1 1] so, in direction [−1 1]T , the

gradient will “cross”
√
2 unit-spaced levels. Function f2(~w), evaluated at the point shown in the

figure, will “cross” approximately 1.89 unit-spaced levels.

The physical interpretation of the gradient may be clearer if we refer to the motivating example

of Figure 5.1. A point in the map is measured, from some origin, in meters (m). At some point, in

some direction, the gradient measures the change of temperature in ◦K for a unit step. The units of

the gradient, which are ◦K/m, are not the units of temperature and are not the units of distance –

the gradient is certainly not a vector in the underlying space, which in this example is the map.

A level curve, as specified in Definition 5.15, can be found for a nonconvex function. Another

term for a level curve of a function is a contour. A set of contours is a contour plot, which is a

useful way of understanding a complicated function. An example of a MATLAB builtin function

38



is show in Figure 5.3, where we graph a surface mesh and a set of level curves. This function is

complicated enough that it is not easy to determine where the maxima, minima, and saddle points

are from the surface mesh. Careful study of the contour plot can reveal the locations of some of

the stationary points for this function.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

A B

Figure 5.3: Surface plot and level curves of a nonconvex function. (A) A surface plot of the

function suggests there are three local maxima and two local minima. (B) The level curves suggest

that there are at least three saddle points in the plotted region, located near concavities of contours.

Extra Notes

5.4 Extra Notes on Gradients of Linear and Quadratic Functions

There are two kinds of function that we will use often in this course: a linear function of a

vector, and a quadratic form of a vector. Before we derive the gradients of such functions, it is

useful to recall a basic result in linear algebra.

Theorem: Symmetry of transpose product

For any ~u ∈ Rn and for any ~v ∈ Rn,

~u T~v = ~v T~u (5.18)

39



Proof:

~u T~v = ~u · ~v =
n

∑

i=1

uivi =
n

∑

i=1

viui = ~v · ~u = ~v T~u

We can use Theorem 5.18 to prove a related result for any square matrix that is symmetric.

Theorem: Symmetry of transpose product

For any ~u ∈ Rn, for any ~v ∈ Rn, and for any symmetric matrix Bn×n,

~u TB~v = ~v TB~u (5.19)

Proof:

~u TB~v = [~u TB T ]~v = [B~u]T~v = ~v TB~u

We can use the definition of the directional derivative in Equation 5.4, and its equivalent form

in Equation 5.8, to find the gradients of two kinds of functions that we will use often.

Theorem: Gradient of a linear function

For any ~w ∈ Rn and for any vector ~a ∈ Rn, the gradient of the function

f(~w) = ~aT ~w

is

∇f(~w) = ~aT (5.20)

Proof:

D~vf(~w) = lim
h→0

~aT [~w + h~v]− ~aT ~w

h

= lim
h→0

~aT ~w + ~aT [h~v]− ~aT ~w

h

= lim
h→0

~aT [h~v]

h

= lim
h→0

h
(

~aT~v
)

h

= ~aT~v

⇒ ∇f(~w) = ~aT

40



Theorem: Gradient of a quadratic function

For any ~w ∈ Rn and for any symmetric matrix Bn×n, the gradient of the function

f(~w) = ~w TB~w

is

∇f(~w) = 2~w TB (5.21)

Proof:

D~vf(~w) = lim
h→0

[~w T + h~v]B[~w + h~v]− ~w TB~w

h

= lim
h→0

~w TB~w + ~w TB[h~v] + [h~v T ]B~w + [h~v T ]B[h~v]− ~w TB~w

h

= lim
h→0

~w TB[h~v] + [h~v T ]B~w + [h~v T ]B[h~v]

h

= lim
h→0

h
(

~w TB~v + ~v TB~w
)

+ h2(~v TB~v)

h

= ~w TB~v + ~v TB~w

= ~w TB~v + ~w TB~v

= [2~w TB]~v

⇒ ∇f(~w) = 2~w TB

References

[1] Nocedal J, Wright S: Numerical Optimization. Springer Science & Business Media, 2006

[2] Wang T, Hamann A, Spittlehouse D, Carroll C: Locally downscaled and spatially customizable

climate data for historical and future periods for North America. PloS one 11(6):e0156720,

2016

41


