
CISC 371 Class 6

Stationarity and the Hessian Matrix

Texts: [1] pp. 23–34; [2] pp. 27–51

Main Concepts:

• Stationarity is D~vf(~w
∗) = 0 for all ~v

• Stationarity is necessary for minimization

• Hessian matrix ∇2 f or Hf

• Eigenvalues of the Hessian matrix

• Saddle points

Sample Problem, Data Analytics: Where, in a temperature map, is the temperature

“steady”?

In Class 1, we defined the meaning of a vector ~w ∗ being a minimizer of a function f(~w). In

Class 4, we defined the meaning of a scalar argument t∗ being a stationary point of a function f(t).

We will now explore stationarity for a function that has a vector argument, and the extension of the

concept of a second derivative for such a function.

6.1 Stationary Point of a Function with a Vector Argument

In plain English, a stationary point of f(~w) is a point ~w ∗ where the function f is “flat”. Of the

multiple equivalent definitions, we will mean that, at a stationary point, the directional derivative

is zero in every direction. There is a technical requirement – shared by all definitions – that the

stationary point must be an interior point; for now, we will use the definition in Section 3.1 for

functions that are defined everywhere in a vector space R
n:

~w ∗ is a stationary point of f(~w) is defined as: for all ~v ∈ R
n, D~vf(~w

∗) = 0

For this definition, a simple theorem is that the gradient is zero at a stationary point. This

version of stationarity is, in 1-form notation,

~w ∗ is a stationary point of f(~w) if and only if ∇ f(~w ∗) = 0

The vector statement, which is commonly used as the definition of stationarity, is

~w ∗ is a stationary point of f(~w) if and only if [∇ f(~w ∗)]T = ~0
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The entry-wise statement, which is also commonly used as the definition of stationarity, is

~w ∗ is a stationary point of f(~w) if and only if, for all 1 ≤ j ≤ n,
∂f(~w ∗)

∂wj

= 0

Our definition and theorems on stationarity all share an implication. At a stationary point ~w ∗,

an infinitesimal change of ~w ∗ in any direction produces zero change in the value of f .

In a vector space, as for a scalar argument, a necessary condition for a point to be a strict

minimizer – or to be a minimizer – is that it is a a stationary point. Also as for a scalar argument,

this property is not a sufficient condition. To explore stationarity further, we need to extend the

concept of second derivative from a scalar argument to a vector space.

6.2 The Hessian Matrix of a Function

For a function with a scalar argument, which is written as f : R → R or as f(t), the second

derivative is variously written as f ′′(t) or as
d2f

dt2
(t). For a function with a vector argument, which

is written as f :Rn → R or as f(~w), there is no single second derivative. We can easily write the

combined second derivatives in two ways: as individual entries or as a Jacobian matrix.

As entries, the function f(~w) can be differentiated first by entry j of the vector ~w and then by

entry i if ~w. Abbreviating the result of the differentiations as hij , we can write

hij
def
=

∂2

∂wi∂wj

(6.1)

The values hij can be interpreted as being entries of a n×n matrix, which we will write as ∇2f .

Because a fundamental result of basic calculus is that order of differentiation does not matter, we

can infer that hij = hji so the matrix must be symmetric. The matrix with these entries is defined

as the Hessian matrix, which is
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(6.2)
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Because the second partial derivative is a symmetric operator, the Hessian matrix is symmetric.

Another way to write the Hessian matrix is to use the derivative of the transpose of the gradient

of f . The gradient of f is a 1-form, so the transpose of the gradient is a vector. The jth entry of

the vector is the function
∂

∂wj

f(~w). We can find the Jacobian matrix of the transpose, the entries

of which correspond to the entries of the Hessian matrix defined in Equation 6.2. This definition is

∇2f(~w0)
def
= ∇ [∇ f(~w0)]

T = ∇
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(6.3)

The equivalence of Equation 6.3 and Equation 6.2 arises in part from the symmetry of partial

differentiation.

The Hessian matrix is symmetric, and each entry is a real number, so the eigenvalues are real

number and the eigenvectors are in the vector space Rn. We know, from elementary linear algebra,

that there are five characterizations of symmetric matrices that can be distinguished by using the

eigenvalues. For a symmetric matrix H = HT , these are:

• ∇2f is positive definite, written ]∇2f ] ≻ 0, where each eigenvalue λi > 0

• ∇2f is positive semidefinite, written [∇2f ] � 0, where each eigenvalue λi ≥ 0

• ∇2f is indefinite if there is some eigenvalue λi > 0 and some eigenvalue λj < 0

• ∇2f is negative definite, written [∇2f ] ≺ 0, where each eigenvalue λi < 0

• ∇2f is positive semidefinite, written [∇2f ] � 0, where each eigenvalue λi ≤ 0

In Class 4, we observed that there were three kinds of stationary points for a function with

a scalar argument. These were associated with the sign of the second derivative at the stationary

point t∗. How are eigenvalues of the Hessian matrix associated with the possible kinds of stationary

points?
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There are three kinds of eigenvalue combinations for which we can make a sure decision about

the objective function, and two kinds for which we must remain uncertain. The combinations of

eigenvalues are:

H ≻ 0: ~w ∗ is a strict local minimizer

H ≺ 0: ~w ∗ is a strict local maximizer

H is indefinite: ~w ∗ is a saddle point

H � 0 or H � 0: ~w ∗ can be any of the above three kinds of stationary point, or a local mini-

mizer, or a local maximizer

6.3 Examples of Functions with a 2D Vector Argument

What is the “shape” of a function that has a Hessian matrix with mixed-sign or zero eigenval-

ues?

For a function with a vector argument that has 2 entries – in elementary calculus, for a func-

tion of two variables – the characterizations of stationary points by the eigenvalues of the Hessian

matrix is modestly complicated. The Hessian matrix is a 2× 2 matrix so there are three character-

izations that we can explore:

• Indefinite eigenvalues, one λi > 0 and one λj < 0

• Semidefinite eigenvalues, one λi > 0 and one λj = 0

• Null eigenvalues, both λi = 0 and λj = 0

In the definite characterization, the Hessian matrix has two positive eigenvalues. Geometrically,

this implies that there the function f(~w) is convex in any direction. A traditional example is the

“bowl” function

f(~w) = w2

1 + w2

2 (6.4)

A surface plot of the function defined in Equation 6.4 is shown in Figure 6.1.

In the indefinite characterization, the Hessian matrix has one positive eigenvalue and one neg-

ative eigenvalue. Geometrically, this implies that there is a direction in which the function f(t) is

convex and a direction in which the function f(t) is concave. A traditional example is the “saddle”

function

f(~w) = w2

1
− w2

2
(6.5)

A surface plot of the function defined in Equation 6.5 is shown in Figure 6.2.

In the semidefinite characterization, the Hessian matrix has one positive eigenvalue and one

zero eigenvalue. Geometrically, this implies that there is a direction in which the function f(t) is
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Figure 6.1: The “bowl” function has, at the stationary point ~w ∗ = ~0, a Hessian matrix with two

positive eigenvalues.

Figure 6.2: The “saddle” function has, at the stationary point ~w ∗ = ~0, a Hessian matrix with

one positive eigenvalue and one negative eigenvalue. The positive eigenvalue corresponds to the

direction in which f(~w) increases positively without limit. The negative eigenvalue corresponds

to the direction in which f(~w) decreases negatively without limit.

convex and a direction in which the function f(t) is flat – locally, neither increasing nor decreasing.

One example looks like a piece of a tortilla that is gently curved along an axis, such as

f(~w) = (w1 + w2)
2 (6.6)

A surface plot of the function defined in Equation 6.6 is shown in Figure 6.3.
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Figure 6.3: The “taco” function has, at the stationary point ~w ∗ = ~0, a Hessian matrix with one

positive eigenvalue and one zero eigenvalue. The positive eigenvalue corresponds to the direction

in which f(~w) increases positively without limit. The zero eigenvalue corresponds to the direction

in which f(~w) is constant.

In the null-matrix characterization, the Hessian matrix has both eigenvalues equal to zero.

Geometrically, this implies that the function f(x) is locally flat in all directions. One example is

the “monkey saddle” function, which can be specified as

f(~w) = w1(w
2

1 − 3w2

2) (6.7)

A surface plot of the function defined in Equation 6.6 is shown in Figure 6.4.

Figure 6.4: The “monkey saddle” function has, at the stationary point ~w ∗ = ~0, a Hessian matrix

with both eigenvalues equal to zero. Locally, the function is flat at the stationary point. There

are 3 directions is which f(~w) increases positively without limit and 3 directions is which f(~w)

decreases negatively without limit.

A useful geometrical construction for a 2D stationary point ~w ∗ is to create an infinite line in

the 2D plane that (a) contains the stationary point and (b) has a given direction vector ~v. We can

write such a line, using vector notation, as
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~l(t) = ~w ∗ + t~v

We can use a point on such a line as the argument to an objective function. This is the compo-

sition of functions

f(~l(t))

The composition can be used to visualize a cross-section of the objective function in a vertical

plane that is perpendicular to the horizontal coordinate plane and that contains the line l(µ). This

cross-sectioning is particularly powerful when we choose a line direction that is an eigenvector of

the Hessian matrix of the objective function at the stationary point ~w ∗ of interest.

The function described by Equation 6.5 has an indefinite Hessian matrix. The cross-section

through the stationary point that is in the direction of the negative eigenvector is a concave parabola.

The cross-section through the stationary point that is in the direction of the positive eigenvector is

a convex parabola. These curves are shown in Figure 6.5.
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Figure 6.5: Cross-sections of the “saddle” function, through the stationary point and in the direc-

tions of the eigenvectors of the Hessian matrix at the stationary point. (A) The direction for the

negative eigenvalue is a concave parabola. (B) The direction for the positive eigenvalue is a convex

parabola.

The function described by Equation 6.6 has a positive semidefinite Hessian matrix. The cross-

section through the stationary point that is in the direction of the null eigenvector is a “flat” line.

The cross-section through the stationary point that is in the direction of the positive eigenvector is

a convex parabola. These curves are shown in Figure 6.6.

The function described by Equation 6.7 has a Hessian matrix with zero in each entry; both

eigenvalues are zero and, by convention, the eigenvectors are elementary vectors that form an

orthogonal basis for the 2D plane. The cross-section through the stationary point that is in the

direction of the first eigenvector is a cubic curve with a “flat” inflection at the stationary point.

48



-3 -2 -1 0 1 2 3

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

A B

Figure 6.6: Cross-sections of the “taco” function, through the stationary point and in the directions

of the eigenvectors of the Hessian matrix at the stationary point. (A) The direction for the null

eigenvalue is a constant function, drawn as a horizontal line. (B) The direction for the positive

eigenvalue is a convex parabola.

The cross-section through the stationary point that is in the direction of the second eigenvector is a

“flat” line. These curves are shown in Figure 6.7.
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Figure 6.7: Cross-sections of the “monkey saddle” function, through the stationary point and in

the directions of the eigenvectors of the Hessian matrix at the stationary point. (A) The direction

for the first eigenvalue is a cubic that has an inflection at the stationary point. (B) The direction for

the second eigenvalue is a constant function, drawn as a horizontal line.

If the Hessian matrix is semidefinite, then the function f(~w) is locally flat at the stationary

point ~w ∗ in an important sense: ~w ∗ might be a local minimizer but it is not a strict local minimizer,

because there is a direction in which f(~w) does not change its “height” or value.
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If the Hessian matrix is indefinite, then the function f(~w) has a curious local curvature at the

saddle point ~w ∗: in at least one direction the function f(~w) is convex or “up’, and in at least one

direction the function f(~w) is concave or “down”. This provides us with a sufficient condition for

a stationary point to be a saddle point.

Extra Notes

6.4 Extra Notes on the Hessian Matrix

To understand the second-order characterization of a stationary point, we can use a simple

theorem and its variant.

Theorem: strict minimizer and a symmetric matrix

For any K ∈ (Rn)× (Rn) : K = KT , for the function g(~v)
def
= ~v TK~v,

(K ≻ 0) → (~0 is a strict local minimizer ofg) (6.8)

Proof: By expansion, g(~0) = 0. For any ~v 6= ~0, (K ≻ 0) → (g(~v) > 0). Therefore, ~0

is a strict minimizer of g.

Observation: A similar argument shows that if K ≺ 0, then ~0 is a global maximizer of g.

Together, these results justify the statements regarding the definite nature of the Hessian matrix

and how a stationary point is a local optimizer of a function. If we take an infinitesimally small

step in any direction from such a stationary point of a function, then a second-order approximation

to the function will “look” like the quadratic model g.

End of Extra Notes
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