
CISC 371 Class 8

First-Order Optimization – Steepest Descent

Texts: [1] pp. 71–78; [2] pp. 49–57

Main Concepts:

• Descent directions

• Convergence criteria

• Gradient descent with constant stepsize

• Stepsize selection by backtracking

Sample Problem, Data Analytics: If we only have a local view of physical terrain,

what direction do we use to find a river in a valley?

We now turn to the second of the three problems that we posed at the start of this course,

which is how to perform unconstrained optimization of an objective function that has a vector

argument. For us, optimization is the process of finding a local minimizer, which we will write

mathematically as

~w ∗ = argmin
~w∈Rn

f(~w) (8.1)

In optimization, we usually have a relatively local “view” of the function we are trying to

minimize. An example is in navigating in unknown terrain without GPS or any other aid. Suppose

that we left our vehicle beside a small river, climbed up, and now we are lost. We know that we are

located on the side of one of the hills depicted in Figure 5.3. One way out of this terrain is to walk

in the direction that is steepest downward. For the terrain that is shown, this will take us to either

the valley or the flat fields that surround the hills.

We will pose this type of optimization as searching in a vector space R
n for a minimizer ~w ∗.

We will do this search iteratively and in each step we will need to find:

• a direction vector ~d 6= ~0, and

• a stepsize s > 0

In Class 4, we introduced the concept of a direction, d, in searching for a scalar minimizer t∗

of an objective f(t). The scalar d was a unit value, so we had |d| = 1. The direction was used

to guide the local search for the minimizer and we required that the direction locally reduced the

value of the objective; mathematically, at a value w0, we required that f ′(w0)d < 0.
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Figure 8.1: A function that represents local terrain. From any point, we might try to descend in

the steepest direction to arrive at a river in a valley.

8.1 Descent Directions and the Gradient

To search for a minimizer ~w ∗ of a function f(~w), we will use a direction vector, which often –

but not always – is a vector that has a unit length. The fundamental concept in unconstrained

optimization is based on the idea of steepest descent, which we motivated by an imaginary trip

into hilly terrain.

Definition: descent direction

For any continuously differentiable function f : Rn → R, for any vector ~w0 ∈ R
n a

descent direction ~d at ~w0 is defined as

D~d
(~w0) < 0 (8.2)

Unlike most textbooks – which use an intuitive understanding of steepest descent – we will

define this term as the unit direction in which the directional derivative is minimal.

Definition: direction of steepest descent

For any continuously differentiable function f :Rn → R, for any vector ~w0 ∈ R
n such

that ~w0 is not a stationary point of f , the direction of steepest descent is defined as

~d = argmin
~v∈Rn:‖~v‖=1

D~v (~w0) (8.3)

Observations: For this course, in Definition 8.3 we will use the Euclidean norm. Another norm

can be used, e.g., the L∞ norm produces a coordinate descent algorithm that is useful in some
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problems. From the definition of the directional derivative, in a Euclidean search space with a

Euclidean norm ‖ · ‖2, Definition 8.3 is equivalent to

~d = argmin
~v∈Rn:‖~v‖2=1

∇f(~w0)~v (8.4)

Observation: For the Euclidean norm, Equation 8.4 can be solved using linear algebra. The

solution to Equation 8.5, provided in the extra notes for this class and not scaling to a unit vector,

is simply

~d = −[∇f(~w0)]
T (8.5)

Equation 8.5 provides a direction vector for use in an iteration. We must also select a stepsize.

8.2 Fixed Stepsize and Backtracking

In most practical optimization problems, a stepsize must be selected by the user. There is no

deterministic way to select a stepsize and the user must provide this, perhaps from an understanding

of the application that needs the optimization.

The fundamental algorithm in unconstrained optimization is the steepest descent algorithm.

This method, using a fixed stepsize and an unscaled gradient 1-form, is described as pseudocode

in Algorithm 8.1.

Algorithm 8.1 Steepest Descent, fixed stepsize

Require: kmax > 0
Require: gmag > 0
w ← w0

fcurr ← f(t)

g ← ∇f(t)

d ← −[g]T

k ← 0
while ¬ (converged) do

w ← w + s*d ⊲ fixed stepsize

fcurr ← f(t)

g ← ∇f(t)

d ← −[g]T

k ← k+1

end while
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The convergence criteria in Algorithm 8.1 may include a combination of limiting the number of

iterations to a value kmax, and requiring the magnitude of the gradient to be below some positive

number gmag.

Because a “good” fixed stepsize s0 is seldom easy to find in practice, a common alternative is

to use backtracking to select a stepsize. As we explored in Class 4, a backtracking algorithm will

eventually find a stepsize that meets the Armijo condition. For searching in a vector space, we can

replace the scalar terms in Equation 4.10 with vector terms, using αk = ∇f(~wk)/2. Our version

of the Armijo backtracking condition is to loop until

f(~wk + βγs0~dk ) ≤ f(~wk) + αβγs0~dk (8.6)

We can incorporate Equation 8.6 into Algorithm 8.1 to develop a method for steepest descent

that uses backtracking to locally estimate the stepsize. This method is presented in Algorithm 8.2.

Algorithm 8.2 Steepest Descent, Armijo backtracking

Require: kmax > 0
Require: gmag > 0
w ← w0

fcurr ← f(w)

g ← ∇f(w)

d ← −[g]T

α ← g/2

k ← 0
while ¬(converged) do

s ← s0

fest ← f(w+s*d)

while fest>(fcurr+α*s*d) do

s ← β*s ⊲ Armijo backtracking

fest ← f(w+s*d)

end while

w ← w + s*d

fcurr ← f(w)

g ← ∇f(w)

d ← −[g]T

α ← g/2

k ← k+1

end while
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Example: quadratic function for which the origin is a minimizer. Let us try using the function

f1(~w) = ~w TK~w where K =

[

1/4 0
0 1

]

(8.7)

We can implement Algorithm 8.1 in MATLAB, using a starting point ~w0 =

[

−3.0
3.2

]

A surface plot of f1(~w), and contours with the point ~w0, are shown in Figure 8.2.
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Figure 8.2: The function f1(~w) in Equation 8.7. (A) Surface plot. (B) Contours and a point ~w0.

Two commonly used descent directions are the steepest descent of Equation 8.5, and coordinate

descent in the direction of the coordinate of the largest absolute value of ∇f(~w). The directions,

and slices along these directions, are shown in Figure 8.3. As expected, the slices are quadratic

functions of a scalar argument; here, we use t to parameterize steps along the slice.

To numerically optimize f1(~w), we can try two fixed stepsizes: s = 0.85 and s = 0.25.

These are larger and smaller than is optimal, which were situations that we encountered when we

studied functions with a scalar argument. The paths for four iterations of Algorithm 8.1 are shown

in Figure 8.4. If we use a local quadratic approximation to compute the optimal stepsize, the

algorithm of steepest descent will converge rapidly to the minimizer. When we use backtracking

with the Armijo conditions, setting s = 1.5 and β = 0.75, we find that it begins with excellent

behavior and produces a smoother search path as it approaches the minimizer.
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Figure 8.3: Descent directions from ~w0 for the quadratic function in Equation 8.7. (A) Contours

are shown in gray and the direction of steepest descent is shown in blue. (B) A slice of f1(~w) in the

direction of steepest descent; the optimal step is approximately 3.35 units from ~w0. (C) Contours

are shown in gray and the direction of coordinate descent is shown in magenta. (D) A slice of

f1(~w) in the direction of coordinate descent; the optimal step is approximately 3.20 units from ~w0.

Example: exponential function for which the origin is a minimizer. Let us try using the function

f2(~w) = −e~w TK ~w where K =

[

1/4 0
0 1

]

(8.8)

Our starting point will be

~w0 =

[

−0.6
0.9

]

Our two fixed stepsizes will be s = 4 and s = 1, which have been selected to produce similar

behaviour to the searches for the quadratic function f1(~w). In Figure 8.5, we observe that lo-

cally quadratic approximation produces a path that is “jagged”, with nearly orthogonal new search

directions during the iteration. When we use backtracking with the Armijo conditions, setting
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Figure 8.4: Steepest descent of the function defined in Equation 8.7 using fixed and optimal

stepsizes. (A) Stepsize of s = 0.85 produces an oscillating path in the search space. (B) Stepsize

of s = 0.25 converges slowly towards the minimizer. (C) Backtracking converges slower than

optimal stepsizes and with a less “jagged” search path.

s = 10 and β = 0.75, we find that it begins with excellent behavior and slows substantially as it

approaches the minimizer. None of these methods is ideal for the function f2(~w).
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Figure 8.5: Steepest descent of the exponential function defined in Equation 8.8 using fixed and

variable stepsizes. (A) Stepsize of s = 4 produces an oscillating path in the search space. (B)

Stepsize of s = 1 converges slowly towards the minimizer. (C) Backtracking with s = 10 and

β = 0.75 converges slower than quadratically selected stepsizes and slows substantially near the

minimizer.

The function f2(~w) presents us with a conundrum. We do not know why convergence is rel-

atively slow for backtracking, even with a relatively large initial stepsize. Some possible and

interacting causes could be the nature of the function, the search direction, and the stepsize. We

will explore some of these possibilities in the next class.
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Extra Notes

8.3 Extra Notes on Steepest Descent

We can use linear algebra to derive Equation 8.5. We will first define “steepest descent” for the

Euclidean vector norm ‖ · ‖2.

Definition: Euclidean direction of steepest descent

For any continuously differentiable function f :Rn → R, for any vector ~w0 ∈ R
n such

that ~w0 is not a stationary point of f , the Euclidean direction of steepest descent is

defined as

~d = argmin
~v∈Rn:‖~v‖2=1

D~v (~w0) (8.9)

Observation: When using the Euclidean norm, we can substitute the transpose of a vector in place

of the 1-form in the directional derivative. As discussed in Class 6, we can represent Equation 5.5

in various ways:

D~vf =

n
∑

j=1

∂f

∂wj

vj

= [∇f ]T · ~v (8.10)

A fundamental theorem for vector norms is the Cauchy-Schwartz inequality. This inequality,

for the dot product in a Euclidean vector space, is

|~u · ~v| ≤ ‖~u‖‖~v‖ (8.11)

The inequality of Equation 8.11 can be used to prove a basic lemma.

Lemma: minimum dot product

For any ~u ∈ R
n 6= ~0, the unit vector ~v ∈ R

n : ‖~v‖2 = 1 that minimizes the Euclidean

dot product ~u · ~v is

−~u

‖~u‖2
= argmin

~v∈Rn:‖~v‖2=1

~u · ~v (8.12)
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Proof: Let ~u ∈ R
n and ~v ∈ R

n :‖~v‖2 = 1. From the definition of the Euclidean norm,

~u · ~u = ‖~u‖2
2

→ ~u ·
~u

‖~u‖2
= ‖~u‖2

→ ~u ·
−~u

‖~u‖2
= ‖~u‖2(−1)

This equality, plus the Cauchy-Schwartz inequality of Equation 8.11, implies that
−~u

‖~u‖2
is a lower

bound for ~u · ~v/‖~v‖2, so

−~u

‖~u‖2
= argmin

~v∈Rn:‖~v‖2=1

~u · ~v

This leads directly to the theorem for steepest descent.

Theorem: direction of steepest descent

For any continuous differentiable f :Rn → R, for any ~w0 ∈ R
n such that ~w0 is not a

stationary point of f , the direction of steepest descent is

−[∇f ]T

‖[∇f ]T‖2
= argmin

~v∈Rn:‖~v‖2=1

D~vf(~w0) (8.13)

Proof: ~w0 is not a stationary point of f , so ∇f(~w0) 6= 0 and [∇f(~w0)]
T 6= ~0. Expanding the

directional derivative, and using Lemma 8.12, is

argmin
~v∈Rn:‖~v‖2=1

D~vf(~w0) = argmin
~v∈Rn:‖~v‖2=1

[∇f(~w0)]
T · ~v

=
−[∇f(~w0)]

T

‖[∇f(~w0)]T‖2

End of Extra Notes
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