
CISC 371 Class 9

Second-Order Optimization – Newton’s Method and Scaling Methods

Texts: [1] pp. 128–130; [2] pp. 83–88, 58–66

Main Concepts:

• Local quadratic approximation

• Newton’s Method

• Damped Newton’s Method uses backtracking

• Scaling the weights is altered descent

Sample Problem, Computer Vision: How can we find the bottom of a deep and

narrow valley?

In Class 8, one function seemed to have slow convergence using the steepest descent algorithm.

We do not know whether the main reason for slow convergence is the nature of the function, the

small stepsize, or that we chose a less than ideal search direction. It is, of course, possible that all

three factors have contributed to the slow convergence.

If we examine the first plot of steepest descent, which is re-plotted in Figure 9.1, we see that

the direction of steepest descent does not “point” towards the minimizer, which is at the origin.

This suggests that another search direction might be a better choice for some situations.

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Figure 9.1: Descent direction from ~w0 for the quadratic function in Equation 8.7, showing contours

in gray and the direction of steepest descent in blue. The direction of steepest descent does not

point directly towards the minimizer, which is at the origin.

61



9.1 Scaled Descent

A more exaggerated situation is a function that looks like a valley that is narrow, deep, and has

a shallow minimum. One example is the quadratic function and its derivatives

f1(~w) = 100w2
1 − 10w1w2 + w2

2 + 100 (9.1)

∇f1(~w) =
[

200w1 − 10w2 , −10w1 + 2w2

]

∇2f1(~w) =

[

200 −10
−10 2

]

The function f1 in Equation 9.1 is illustrated in Figure 9.2. A simple computation shows that

the Hessian matrix – which is constant for all points ~w – has eigenvalues that are approximately

λ1 ≈ 1.5 and λ2 ≈ 200.5, so the Hessian matrix is not well conditioned.

Figure 9.2: Surface plot of the “deep valley” function f1 of Equation 9.1. At the origin, the global

minimum has one relatively flat direction and one relatively curved direction.

For this function, we can try to find the minimizer by steepest descent with a fixed stepsize.

Suppose that we use the same starting point as we used in Class 8, and after some experimentation

we determine a stepsize that does not exhibit oscillation. The arguments that we can use might be

~w0 =

[

3.0
−3.2

]

s = 0.005 (9.2)

After 100 iterations of steepest descent, using the arguments in Equation 9.2, we would find

that the fixed-stepsize algorithm descended into the valley relatively quickly, and then descended

towards the minimizer relatively slowly. The path of the estimated minimizer is shown in Fig-

ure 9.3, superimposed on contours of the function f1.

A fundamental difficulty with the function f1 is the relative scale of the entries in the weight

vector: the function is 10 times more sensitive to entry w1 than it is to entry w2. The difficulty also

62



-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Figure 9.3: Iterative descent of the quadratic function f1 in Equation 9.1, using steepest descent

with a fixed computed fixed stepsize. Contours are shown in gray and the path of descent descent,

taking 100 steps, is shown in black. The first step was nearly to the local “bottom” of the valley

and the subsequent 99 steps were towards the minimizer.

appears in the gradient, where a step in the w1 direction will have about 10 times the magnitude of

a step in the w2 direction.

From numerical linear algebra, one way to manage such a disparity is to precondition, or scale,

the variables. Scaling the variables, for the example of f1 in Equation 9.1, can be performed by

thinking of substituting a new variable in place of ~w. For example, we might select a variable ~v

that reduces the effect of w1. One way to do this is by having v2 = w2, and having v1 = 10w1 or

w1 = 0.1v1. Mathematically, the relationship between the original variable ~w and the new variable

~v would be

~w =

[

w1

w2

]

= ~g(~v) =

[

0.1v1
v2

]

=

[

0.1 0
0 1

] [

v1
v2

]

= BM~v (9.3)

In Equation 9.3, we subscript the matrix to indicate that we manually selected the scaling

factors. As described in the extra notes for this class, this modifies the method of steepest descent

to use the iteration

~wk+1 = ~wk − sBM [∇f1(~wk)]
T (9.4)

Because we have scaled the problem by a factor of 10, we can multiply the stepsize by 10. This

would give us argument values of

~w0 =

[

3.0
−3.2

]

s = 0.05 BM =

[

0.1 0
0 1

]

(9.5)

When we perform scaled steepest descent with a fixed stepsize, the optimization is much better.

The path of the estimated minimizer and contours of the function f1 are shown in Figure 9.4.

63



-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Figure 9.4: Manually scaled steepest descent of the quadratic function f1 in Equation 9.1, using

a fixed stepsize. Contours are shown in gray and the path of descent descent, taking 100 steps, is

shown in black. The first step was nearly to the local “bottom” of the valley and the subsequent 99

steps were towards the minimizer.

What if we use a different scaling matrix? As described in the extra notes for this class, we can

scale with any symmetric positive definite matrix B and be performing a descent method. Suppose

that we use the inverse of the Hessian matrix of Equation 9.1, which is

BH = [∇2f1(~w)]
−1 =









1

150

1

30
1

30

2

3









(9.6)

When we use the same values of the arguments as in Equation 9.5, and use BH instead of BM ,

we more rapidly converge to the minimizer. The path of the estimates of the minimizer is shown

in Figure 9.5, superimposed on contours of the function f1.

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Figure 9.5: Hessian scaled steepest descent of the quadratic function f1 in Equation 9.1, using a

fixed stepsize. Contours are shown in gray and the path of descent descent, taking 100 steps, is

shown in black. The steps are small but are steadily directed towards the minimizer.

64



These attempts at scaling suggest a question: does the symmetric positive definite matrix B

need to be fixed for the entire iteration? Or can the matrix be variable, depending on the step

Bk? There are many effective ways to select such a matrix. One way can be derived from a more

detailed exploration of a Taylor’s series for a function, which was an idea that we used when we

tried to minimize a function with a scalar argument.

9.2 Newton’s Method

For a function with a scalar argument, one way that we used when searched for a local minimum

was to use a local quadratic curve to model the function. Let us extend this idea further.

We can use a quadratic model, of a function with a vector argument, to derive a second-

order gradient-based method. For historical reasons that are related to zero-finding, using a local

quadratic model is called Newton’s Method.

We can derive Newton’s Method by modeling the function as a truncated Taylor series that is

expanded around a point ~w0, which is

g(~w) = f(~w0) +∇f(~w0)[~w − ~w0] +
1

2
[~w − ~w0]

T∇2f(~w0)[~w − ~w0] (9.7)

Before we solve Equation 9.7 for a stationary point, we should recall the material from Class 6.

In the extra notes for that class, Equation 6.8 provides a necessary condition for a quadratic form

~v TK~v to have a strict local minimizer – the matrix K must be positive definite. Using this result

for Equation 9.7 gives us an important condition:

The model function in Equation 9.7 has a single stationary point that is a strict local

minimizer if the Hessian matrix, evaluated at ~w0, is positive definite. (9.8)

If Condition 9.8 holds, then we can differentiate Equation 9.7 with respect to ~w, which is

∂

∂ ~w
g(~w) = ∇f(~w0) + [~w − ~w0]

T∇2f(~w0) (9.9)

The derivative term in Equation 9.9 is, of course, a 1-form. We can solve for the search direction

[~w − ~w0] by setting the transpose of the derivative to be the zero vector, so

[∇f(~w0) + [~w − ~w0]
T∇2f(~w0)]

T = ~0

→ [∇f(~w0]
T +∇2f(~w0)[~w − ~w0] = ~0

→ ∇2f(~w0)[~w − ~w0] = −[∇f(~w0]
T (9.10)

65



The vector [~w − ~w0] in Equation 9.10 is a search direction ~d. Because the Hessian matrix at

~w0 is symmetric and positive definite, we know that the linear equation has a solution. Using exact

mathematics, we can write the search direction from ~w0 as

~d = [~w − ~w0] = −[∇
2f(~w0)]

−1[∇f(~w0]
T (9.11)

The search direction ~d is called the Newton direction. We can use Equation 9.11 to develop an

iteration

~wk+1 = ~wk + ~d

= ~wk − [∇2f(~wk)]
−1[∇f(~wk]

T (9.12)

The iteration of Equation 9.12 leads us to develop Newton’s Algorithm for gradient descent.

Algorithm 9.1 Newton’s Method, fixed stepsize

Require: kmax > 0
Require: gmag > 0
w ← w0

fcurr ← f(w)

g ← ∇f(w)

H ← ∇2f(w)

d ← −H\[gT ]

k ← 0
while ¬ (converged) do

w ← w + d ⊲ fixed Newton’s step

fcurr ← f(w)

g ← ∇f(w)

H ← ∇2f(w)

d ← −H\[gT ]

k ← k+1

end while

We can implement Algorithm 9.1 and test it on the same functions as we used in Class 8:

f2(~w) = ~w TK~w

f3(~w) = −e~w TK ~w with K =

[

1/4 0
0 1

]

starting at ~w1 =

[

−0.6
0.9

]

(9.13)

The result of a single iteration for f2 of Equation 9.13, with the same starting point that was used in

Class 8, is shown in Figure 9.6. This immediately converges, because the model function exactly

matches the objective function. The minimizer of the model is the same as that of the objective.

66



-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Figure 9.6: Iterative descent of the function f2 defined in Equation 9.13 using Newton’s Method

with the computed fixed stepsize. The first step converges within computing tolerance because the

model function is exact.

Next, we can try Newton’s Method with the computed fixed stepsize on the exponential func-

tion f3 of Equation 9.13. The results of four iterations are shown in Figure 9.7.

The effects of Newton’s Method for the exponential function f3 of Equation 9.13 are quali-

tatively similar to the effects of steepest descent using an overly large stepsize. The successive

estimates of the minimizer, ~wk, oscillate around the true minimizer while slowly converging. Vi-

sually, the direction of descent seems to be appropriate; the difficulty appears to be in the choice

of the stepsize.

9.3 Damped Newton’s Method Using Backtracking

There are many ways to ameliorate the difficulty observed in Figure 9.7. A common method

is to damp the effect of the magnitude of the computed stepsize in Newton’s Method. Instead of

using the computed magnitude of the descent vector ~d, we can select a different stepsize. An easy

way to select a damped stepsize is to use Armijo backtracking, just as we did when minimizing

a function with a scalar argument. Pseudocode for a damped Newton’s Method is described in

Algorithm 9.2.

As shown in Figure 9.8, only three iterations of Algorithm 9.2 are needed to minimize f3.

67



-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A B

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C D

Figure 9.7: Iterative descent of the exponential function f3 defined in Equation 9.13 using New-

ton’s Method with the computed fixed stepsize. (A) The first step is to the opposite quadrant, closer

to the minimizer at the origin. (B) The second step returns to the original quadrant, converging to-

wards the minimizer. (C) The third returns to the opposite quadrant. (D) The fourth step has nearly

converged at the minimizer.

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2

-2

0

2

4

6

8

10

12

14

A B C

Figure 9.8: Iterative descent of the function f3 using a damped Newton’s Method with backtrack-

ing. (A) The first step is close to the minimizer at the origin. (B) The second step stays in the

quadrant opposite to ~w1. (C) The third step has nearly converged.

68



Algorithm 9.2 Damped Newton’s Method, using backtracking

Require: kmax > 0
Require: gmag > 0
w ← w0

fcurr ← f(w)

g ← ∇f(w)

H ← ∇2f(w)

d ← −H\[gT ]

α ← g/2

k ← 0
while ¬ (converged) do

s ← s0

fest ← f(w+s*d)

while fest>(fcurr+α*s*d) do

s ← β*s ⊲ Armijo backtracking

fest ← f(w+s*d)

end while

w ← w + s*d ⊲ damped Newton’s step

fcurr ← f(w)

g ← ∇f(w)

H ← ∇2f(w)

d ← −H\[gT ]

α ← g/2

k ← k+1

end while

What happens with damped Newton’s Method when we alter the starting point slightly? Sup-

pose that we use an initial estimate of

~wB =

[

−1.0
1.4

]

We will find that the iteration diverges, instead of converging to the minimizer. The effect of a

single step of the damped Newton’s Method, using backtracking, is shown in Figure 9.9.

69



Figure 9.9: A single iteration of the function f3, using a damped Newton’s Method with back-

tracking. From a slightly altered starting point, the algorithm immediately diverges.

What went wrong? We can try plotting the surface of f3 near the starting point. As shown in

Figure 9.10, the function is inflected near the point ~wB. The point ~wB is not a stationary point, so

it does not satisfy the definition of a saddle point; something else has occurred.

Figure 9.10: A surface plot the function f3 near the point ~wB . The surface is inflected, or curved in

“opposite” directions. This is distinct from a saddle point that, by definition, is a stationary point.

When we compute the Hessian matrix∇2f3(~wB) and its eigenvalues, we find that the Hessian

matrix is indefinite at ~wB. We have failed to meet a necessary condition of Newton’s Method and

the consequence is a divergent computation.

Extra Notes

9.4 Extra Notes on Scaled Steepest Descent

There are two basic concepts, using a symmetric positive definite matrix, that are foundational

for many of the methods in unconstrained optimization.

Theorem: scaled steepest iteration

For any continuous differentiable f :Rn → R, for any ~w ∈ R
n, for any s ∈ R++, and

for any square full-rank matrix M ∈ R
n×n, the change of variables ~w = M~v produces

the steepest-descent iteration

~wk+1 = ~wk − s[MM T ][∇f(~wk)]
T (9.14)

70



Proof: Let ~w = ~g(M~v) be a change of variables. Then ~v = M−1 ~w because m is assumed to be of

full rank, and thus is invertible.

A new matrix B ∈ R
n×n can be defined as MM T . By construction, B is a symmetric matrix.

Because M is full rank, B ≻ 0 is positive definite.

The original function f can be written and differentiated as

f(~w) = f(~g(~v))

so

∇f(~g(~v)) =
∂f

∂~g

∂~g

∂~v

=
∂f

∂~g
M

= [∇f(~w)]M

→ [∇f(~g(~w))]T = [[∇f(~w)M ]T

= M T [∇f(~w)]T

The iteration for steepest descent, in terms of the changed variable ~v, can be written in terms

of the original variable ~w as

~vk+1 = ~vk − s[∇f(~g(~v))]T

= ~vk − sM T [∇f(~w)]T

≡ M−1 ~wk+1 = M−1 ~wk − sM T [∇f(~w)]T

≡ ~wk+1 = ~wk −MsM T [∇f(~w)]T

= ~wk −MsM T [∇f(~w)]T

= ~wk − sB[∇f(~w)]T

Observation: Theorem 9.14 states that any full-rank change of variables is a scaled steepest de-

scent. A basic matrix factorization is the Cholesky decomposition: for any symmetric positive

definite matrix B ∈ R
n×n : B ≻ 0, there is a lower-triangular matrix L ∈ R

n×n such that

B = LLT

This decomposition can be used to show that a scaled descent is equivalent to a change of variables.

71



Theorem: scaled steepest descent

For any continuous differentiable f :Rn → R, for any ~w0 ∈ R
n such that ~w0 is not a

stationary point of f , and for any symmetric matrix B ∈ R
n×n : B ≻ 0,

−B[∇f(~w)]T is a descent direction at ~w0 (9.15)

Proof: Let ~u = B[−∇f(~w)]T be a scaled version of the steepest descent direction [∇f(~w)]T .

From Definition 8.2, if ~u is a descent direction of f(~w0) then D~uf(~w0) < 0. Then

D~uf(~w0) = [∇f(~w0)]~u

= [∇f(~w0)]− [B∇f(~w)]T

= −[∇f(~w0)]B[∇f(~w)]T

For any positive definite matrix B, and for any ~v 6= ~0, the quadratic form is positive:

(~v 6= ~0)→ (~vTB~v > 0)

Because ~w0 is assumed to be a nonstationary point, [∇f(~w)]T 6= ~0, so

[∇f(~w0)]B[∇f(~w)]T > 0
≡ −[∇f(~w0)]B[∇f(~w)]T < 0
≡ D−B[∇f(~w)] T f(~w0) < 0

Therefore −B[∇f(~w)]T is a descent direction at ~w0.

End of Extra Notes

References

[1] Antoniou A, Lu WS: Practical Optimization: Algorithms and Engineering Applications.

Springer Science & Business Media, 2007

[2] Beck A: Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with

MATLAB. Siam Press, 2014

72


