
CISC 371 Class 12

Neural Networks – Single Neuron

Article: Rumelhart et al, Learning internal representations by back-propagating errors [1]

Main Concepts:

• A single neuron is a linear term and an activation function

• The gradient is found using the Chain Rule

• Optimization uses steepest descent

• For multiple observations, the descent vector is a vector summation

Sample Problem, Machine Learning: How can we write a descent method for an

artificial neuron using linear algebra?

An artificial neuron is often illustrated as in Figure 12.1. In Class 11, we explored the linear

algebra that we will use for computation with an artificial neuron. Here we will complete the

mathematical model with an activation function, develop an optimization using steepest descent,

and extend the model to include multiple data vectors.

(A) (B)

Figure 12.1: Illustrations of an artificial neuron. The input vector ~x is scaled by the weights

w1, w2, . . . , wn and biased by b; the result u is the input to the activation function φ that produces

the neuron output z. (A) Data flow for an artificial neuron. (B) The external parameter is the input

~x and the output is z.

82



12.1 Activation Function of an Artificial Neuron

The activation function of an artificial neuron is a function that has a scalar argument, expressed

as φ : R → R or written as φ(u). Many activation functions have been used for artificial neurons.

A constraint is that, with neural networks, the labels for observations are either 0 or 1. We will use

three activations functions in this course.

12.1.1 Activation Function – Sigmoid

One function, which in early work was used for a neuron in a “hidden” layer of a neural

network, is a map of a real number to the open interval (0, 1) that is smooth, invertible, easily

differentiated, and asymptotically approaches the bounds of the interval as the argument of the

function approaches ±∞. This “sigmoid” – or S-shaped – activation function, and its derivative,

are based on the logistic function:

zS = φS(u) =
1

1 + e−u

ψS(u)
def
= φS

′(u) = φ(u)(1− φ(u))

(12.1)

12.1.2 Activation Function – ReLU

Another commonly used activation function is the Rectified Linear Unit function, often written

as the ReLU function. This function is zero for a scalar argument that is negative, and is the scalar

argument otherwise. The derivative of the ReLU function is the Heaviside function, which implies

that the activation function and its derivative can be easily computed. We will write the ReLU

function as

zR = φR(u) = max(0, u)

ψR(u)
def
= φR

′(u) = H(u)

(12.2)

12.1.3 Activation Function – Heaviside

An activation function that is sometimes used for the output neuron of a neural network is the

Heaviside function; sometimes this is called a unit step function. This function is zero for a scalar

83



argument that is negative and unity otherwise. The derivative of the Heaviside function is always

unity. We will write the Heaviside function and its derivative as

zH = φH(u) =















0 if u < 0

1 if u ≥ 0

ψH(u)
def
= φH

′(u) = 0

(12.3)

12.1.4 Activation Function – Identity

When we compute a neural network, for simplicity we will have the output neuron produce a

value that is just the linear term u. This activation function is the identity function, which is simply

zI = φR(u) = u

ψI(u)
def
= φI

′(u) = 1

(12.4)

12.2 Data Vectors and Data Observations

Our neural networks will have p layers. In this class, we will consider a single neuron, so the

network has only a single layer that we will call Layer 1. We will use a leading superscript to

denote the layer number for functions, variables, parameters, and data.

For neural networks, the data are typically represented as vectors ~xj ∈ R
n. In this course, we

prefer to represent data as observations, so we will write

~xj
def
= xT

j (12.5)

For a single neuron, the data term will be written as

~x = xT (12.6)

We will have to use a bias scalar to find the linear term for a neuron, so we will augment the

data parameter with the value 1. This implies that the data 1-form that is the input parameter to a

neuron, using the notation of Equation 12.6, is [x 1] ∈ R
n+1.

84



12.3 Variables and Parameters

We will use semicolon notation to separate the input parameter(s) of a function from the pa-

rameters. In general, we will write a function as

f(variables; parameters) (12.7)

For example, for a function f : R → R that depends on a parameter x, we will use Equa-

tion 12.7 to write f as

f(~w; x) (12.8)

12.4 Binary Classification

Our binary supervised classification problem is:

Given: labelled data (~xj, yj)
Find: augmented weight vector ~w that optimally classifies the data

We can formulate the optimization as a nonlinear least-squares problem. In neural networks,

we need to be careful to distinguish when we are using the classification from when we are using

the activation function. The former is used when we formulate the binary output of a neural

network; the latter is used when we formulate inner, or “hidden”, layers. These are closely related

so we will define them together.

For us, the difference between the label y of an augmented data 1-form [x 1], and the classifi-

cation or activation function of a data vector, is the residual error.

Definition: residual error of x for the activation function

For any ~x ∈ R
n augmented as x =

[

~xT 1
]

, any label y ∈ {0, 1}, any ~w ∈ R
n+1, the

function u :Rn+1 → R that is u(~w) = x~w, and an activation function φ :R → R, the

residual error r for the activation function is defined as

rφ(φ(u(~w)))
def
= y − φ(u(~w)) (12.9)

Definition: residual error of ~x for the classification function

85



For any 1-form x ∈ R
n augmented as [x 1], any label y ∈ {0, 1}, any ~w ∈ R

n+1, the

function u :Rn+1 → R that is u(~w; x) = [x 1]~w, an activation function φ :R → R,

and a classification function q :R → {0, 1}, the residual error r for the classification

function is defined as

rq(q(φ(u(~w; x))))
def
= y − q(φ(u(~w; x))) (12.10)

Our examples will use an objective function that is a quadratic function of the argument; this

is often called the squared-error loss function. Other loss functions can be considered but we will

use a quadratic objective for simplicity. We will use the quadratic function

g(r) =
1

2
rT r (12.11)

We will construct neural networks that have a single “output”, which here is the value of the

function. The concepts from a single-output network can be generalized to multiple outputs.

12.5 ANN – Single Neuron

Our first artificial neural network is a single neuron. As described above, we will use the

Heaviside function for activation. The network will have an input parameter, which we write as x,

that has some number n1 entries, so x ∈ R
n1 .

Recall that we will have to use a bias scalar to find the linear term for the neuron, so we will

augment the data parameter with the value 1. This implies that the data 1-form that is the input

parameter to this neuron is [x 1] ∈ R
n+1.

For a single neuron, the weight vector of the network is simply the weight vector of the neuron.

Writing the weight vector for the neuron as ~w, we therefore have

~w ∈ R
n1+1 (12.12)

For simplicity, and to better match the objective function of Equation 12.11, the artificial neuron

that provides the output of the network will have a Heaviside step activation function. We will write

this neuron as having the identity function as its activation function, so our examples we will have

φ(u; x)
def
= φH(u) (12.13)

86



The objective function for the neuron is

f(r; y, x)
def
= g(r) (12.14)

g(r; y, x)
def
=

1

2
rT r

r(φ; y, x)
def
= y − φ(u; x)

φ(u; x)
def
= φH(~w; x)

u(~w; x)
def
=

[

~xT 1
]

[~w]

~x(; x)
def
= xT (12.15)

We can differentiate each term in Equation 12.14 as

∂f1

∂g
= 1

∂g

∂r
= r

∂r

∂φ
= −1

∂φ

∂u
= ψ = 1 (12.16)

∂u

∂ ~w
=

[

~xT 1
]

The gradient of Equation 12.14, using the terms in Equation 12.16 and neglecting the data

parameter x for conciseness, is

∇f(~w) =
∂f

∂g

∂g

∂r

∂r

∂φ

∂φ

∂u

∂u

∂ ~w
(12.17)

= (1)(r)(−1)(1)
[

~xT 1
]

The direction of steepest descent is the negation of the transpose of Equation 12.17, which is

~d
def
= −

[

∂u

∂ ~w

]T [

∂φ

∂u

]T [

∂ r

∂φ

]T [

∂g

∂r

]T [

∂f

∂g

]T

(12.18)

= −

[

~x

1

]

(1)(−1)(r)(1)

87



We will write the direction vector ~d(~w) using two terms: the back-propagation term b from the

objective function and the steepest direction term ~s. The descent direction in Equation 12.18 will

be written as

b
def
=

[

∂ r

∂φ

]T [

∂g

∂r

]T [

∂f

∂g

]T

(12.19)

= (−1)(r)

~s
def
=

[

∂ u

∂ ~w

]T [

∂ φ

∂ u

]T

(12.20)

=

[

~x

1

]

(1)

~d(~w) = −[~s ]b (12.21)

In Equation 12.21, the scalar term that is provided by the objective function and the residual

function is back-propagated to the descent direction ~d. The direction ~s in Equation 12.20 is the

transpose of [x 1], where ~x is the transpose of the data parameter x.

12.6 Optimization by Steepest Descent

In artificial neural networks, the usual training rule has a constant learning rate, written as η.

This is a method of steepest descent for the objective function of Equation 12.14, which is

~wk+1 = ~wk − η [∇f(~wk)]
T

= ~wk + η ~d(~wk) (12.22)

12.7 Multiple Observations

For multiple observations m, each being xj , Equation 12.20 and Equation 12.21 to find a

descent vector ~dj . The descent vector for the multiple observations is

~d
def
=

m
∑

j=1

~dj (12.23)

The vector ~dj of Equation 12.23 is used in the iteration of Equation 12.22 to learn the weight

vector for the m observations.

88



12.8 Example: Fisher’s Iris Data

In 1936, Ronald Fisher [2] described a set of data that were botanical measurements of flowers

that had been gathered on the Gaspé Peninsula of Canada. He used linear discriminant analysis to

study the data and we can use an artificial neuron to replicate his findings.

The data are in an easily accessed MATLAB repository. We can extract only the petal measure-

ments and derive binary labels for samples that are the species Iris setosa or another species. The

petal sizes provide us with vectors ~xj and the species provide us with labels yj .

We can use the sigmoid activation function for learning how to classify the data to match the

labels. For example, we can use a fixed stepsize of s = 0.03 in the algorithm for steepest descent

that we derived in Class 8. Using the objective function of Equation 12.14, and the activation

function φ(·) and derivative ψ(·) of Equation 12.1, we can develop a relatively small MATLAB

function that can be an argument for code that implements the steepest descent with a fixed stepsize.

The data and a separating hyperplane are shown in Figure 12.2. As expected, the method of

steepest descent estimated a minimizer that separates the data vectors according to the species.

4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

(A) (B)

Figure 12.2: Vector representation of petal sizes for Fisher’s iris data. Vectors for species Iris

setosa are shown as blue crosses and vectors for other species are shown as red circles. (A) The

data, labeled as in Fisher’s article. (B) Classifications by a single sigmoidal artificial neuron; the

0-level contour of the sigmoidal function is shown as a black line.

89



Extra Notes

12.9 Extra Notes on Output-Layer Differentiation

When we add a layer of neurons to the output neuron, we will need to clarify the structures of

the weight vector ~w and the linear term u. We will re-write the weight vector as

~w ∈ R
n1+1

~w1..n1

def
=











w1

w2

...

wn1











~w =

[

~w1..n1

wn1+1

]

(12.24)

The linear term for the output layer, which is u, will be written as

u(~w, ~x; x)
def
= [~xT 1][~w]

= [~w]T
[

~x

1

]

def
= [~w1..n1

]T~x+ ~wn1+1 (12.25)

We can differentiate Equation 12.25 with respect to the weight vector ~w and with respect to the data

vector ~x. For a single neuron, we have set the input to be the data observation x so that ~x = xT . If

~x is an argument for the linear term, the two derivatives of Equation 12.25 are

∂ u

∂ ~w
= [~xT 1] (12.26)

∂ u

∂ ~x
= ~w T

1..n1
(12.27)

The gradient of the objective function f(·) in Equation 12.14, with respect to ~x, is

∂f

∂g

∂g

∂r

∂r

∂φ

∂φ

∂u

∂u

∂~x

= (1)(r)(−1)(1)~w T
1..n1

= ~w T
1..n1

b (12.28)

End of Extra Notes

90



References

[1] Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors.

Nature 323(6088):533–536, 1986

[2] Fisher RA: The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–

188, 1936

91


