
CISC 371 Class 14

Neural Networks – Multiple Layers

Article: Rumelhart et al, Learning internal representations by back-propagating errors [1]

Main Concepts:

• A layer is a linear computation within an activation computation

• The linear computation is a matrix-vector product

• Steepest descent uses Hadamard products

• Back-propagation uses scale factors for descent vectors

Sample Problem, Machine Learning: How can we write a descent method for a

multi-layer neural network?

We will extend the methods and results of Class 12 to an arbitrary number p of layers. We will

assume that the activation function for each neuron in a layer is the same, i.e., for each neuron in

layer l the activation function is lφ(·).

We will think of a layer of artificial neurons as an ordered list of individual neurons. Each

neuron in a layer has a common input and a shared activation function φ(·). Figure 14.1 shows a

neural network that has a single hidden layer.

We will use the neural-network convention that the data x are provided to Layer 2. This con-

vention implies that we will need to rewrite the mathematical terms of the previous class to have a

subscript, e.g., the weight vector of the output neuron is now 3 ~w in place of ~w. In this convention,

layers are added to the “output side” of the network.

In this course, we know how to differentiate a vector function of a vector to find a Jacobian

matrix. A neural network uses data that are observations, i.e. 1-forms, and weights that are vectors.

Because in the intermediate layers, data are dependent on weights of previous layers, we will need

to transpose terms in ways that keep data observations distinct from vectors.

We will add, to the single output neuron described in Class 12, a layer of m2 artificial neurons.

These will feed forward to the output neuron, so the number of inputs to the output neuron will

be n3 = m2. The input to Layer 2 will be a data observation 2x that has n2 entries, so 2x ∈ R
n2 .

A consequence of adding a layer is that the number of entries in the weight vector for Layer 3 is

n3 = m2.

For Layer 2, we will have to use a bias scalar to find the linear term for the neuron; to do this,

we will augment the data parameter with the value 1. This implies that the data 1-form that is the

input parameter to this layer of neuron is [2x 1].

93



(A) (B)

Figure 14.1: A neural net with a single hidden layer. The input layer, Layer 1, has no computation.

The output vector of the hidden layer, Layer 2, is augmented as 3x and provided to the output

neuron, which is Layer 3. The input vector ~x is augmented as [~xT 1] and provided to Layer 2.

The outputs of the Layer 2 are augmented and sent to layer 3. (A) The general structure of such a

network. (B) A simplified network with size-2 inputs and two neurons in the hidden layer, Layer 2.

The linear term for Layer 2 hasm2 entries, one for each neuron in Layer 2; this is in accordance

with Layer 3, where the linear term has one entry because Layer 3 has one neuron. We will write

the linear term for Layer 2 u ∈ R
m2 . This term is a function of the weights for the layer and has a

data parameter that is the input to the layer.

14.1 ANN – Layer 2

Each neuron in Layer 2 has a weight vector with n2 + 1 entries, one each for the entries of the

input 2x and one for the bias scalar. For the jth neuron, we will write the weight vector as

2 ~wj ∈ R
n2+1

2 ~wj,1..n3

def
=











2wj,1

2wj,2
...

2wj,n2











2 ~wj =

[

2 ~wj,1..n2

2wj,n2+1

]

(14.1)

We will gather these weight vectors in two ways: as a single weight vector for Layer 2, which

94



is 2 ~w, and as a weight matrix for Layer 2, which is 2W . The weights Layer 2 are

2 ~w
def
=











2 ~w3

2 ~w2
...

2 ~wm2











∈ R
(n2+1)×m2 (14.2)

2W
def
=

[

2 ~w3 2 ~w2 · · · 2 ~wm2

]

(14.3)

The linear term for Layer 2, which is the observation 2u, will be written as

2u
def
= [2x 1]2W (14.4)

= 2x[2Wn2
] + 1[2Wn2+1]

2~u
def
= 2u

T (14.5)

= [2W ]T
[

2~x

1

]

Details of how we can use the Kronecker product to manage the linear term are provided in the

extra notes for this class.

Layer 2 will have some uniform activation function 2φ(u); in practice, this activation function

might be the logistic function or the Rectified Linear Unit (ReLU) function. The derivative of the

activation function will be the function 2ψ(u).

The output of Layer 2 will be m2 scalar values, each being 2φ(2uj). For the purpose of differ-

entiation, we will gather these scalar values into a vector 2
~φ that is a function of the linear vector

2~u, which we will write as

2
~φ

def
=











2φ(2u3)

2φ(2u2)
...

2φ(2um2
)











= 2
~φ(2~u) (14.6)

To feed these values forward to the output neuron, we will re-define the data parameter of the

output neuron. Equation 12.15 will now become

3x(2 ~w; x)
def
= [2~φ(2~u; x)]

T (14.7)

95



An important consequence of Equation 14.7 is that the data term 3x is changed from being a

data parameter to being a function that has argument 2 ~w and a data parameter x.

In Equation 12.14, the objective function f3(~w; x) had a vector argument ~w = 3 ~w and a data

parameter x. When we add a layer, we will need a different objective function that has a different

vector argument.

For the vector argument, we will partition the weight vector into the weights for Layer 3, which

is 3 ~w, and the weights for Layer 2, which is 2 ~w. The combined weight vector is

~w
def
=

[

3 ~w

2 ~w

]

(14.8)

where 3 ~w ∈ R
m2+1

2 ~w ∈ R
(n2+1)m2

We will write the 3-layer objective function as f3(~w; x). Our objective function, for a two-layer

neural network, begins with terms from Equation 12.14 and continues with substitution of the new

term for 3x of Equation 14.7.

Using terms from Equation 12.14, Equation 14.7, Equation 12.25, and Equation 12.24, the

objective function for our 3-layer ANN is

f3(r; y, x)
def
= g(r; y, x) (14.9)

g(r; y, x)
def
=

1

2
rT r

r(3φ; y, x)
def
= y − 3φ(u; x)

3φ(3u; x)
def
= 3u(~w; x)

3u(~w; x)
def
=

[

3~x
T 1

]

[3 ~w ] = [3 ~w1..m3−1]
T
3~x+ 3 ~wm3

3~x(2 ~w; x)
def
= 2

~φ(2 ~w; x) (14.10)

2
~φ(2~u; x)

def
=







2φ(2u3; x)
...

2φ(2um2
; x)







2~u(2 ~w; x)
def
= [

[

2~x
T 1

]

2W ]T

2~x(; x)
def
= xT (14.11)

Consider the gradient of the objective function f3(~w) in Equation 14.9. When we expand the

gradient, we find that the first m3 terms are with respect to the weight vector 3 ~w of Layer 3 and

96



that the next m2 terms are with respect to the weight vector 2 ~w of Layer 2. We will take the liberty

of writing this gradient as

∇f3(~w; x)
def
=

[

∂f3
∂w3

∂f3
∂w2

· · ·
∂f3

∂wm3

∂f3
∂wm3+1

· · ·
∂f3

∂wm3+m2

]

=
[

∇f3(3 ~w) ∇f3(2 ~w)
]

(14.12)

We can now differentiate the activation for the second layer of this simple neural network. The

three keys to understanding the differentiation, which will produce Equation 14.12, are:

1. The first m3 terms of∇f3(~w) have only 3 ~w as a vector argument

2. The next m2 terms of∇f3(~w) have only 2 ~w as a vector argument

3. These latter m2 terms can be computed separately from the first m3 terms

When we differentiate Equation 14.9, we will need to understand two terms in detail. The term

2
~φ(2~u; x) is a vector function with a vector argument, so its derivative is a Jacobian matrix. The

ith entry of 2
~φ(2~u) depends on variable 2ui and not on any other entry of the linear term 2~u; this

implies that

∂ 2
~φi

∂2uj 6=i

= 0 (14.13)

From Equation 14.13, the Jacobian matrix 2J must be a diagonal matrix. We can write the

diagonal entries as a vector and concisely represent the Jacobian matrix as

2
~ψ

def
=

∂ 2
~φi

∂2ui
(14.14)

2J
def
= diag(2 ~ψ) (14.15)

= 2J
T (14.16)

97



We can differentiate Equation 14.9, using terms from Equation 14.15 and Equation 14.34, as

∂f3

∂g
= 1

∂g

∂r
= r

∂r

∂ 3φ
= −1

∂ 3φ

∂ 3u
= 3ψ = 1

∂ 3u

∂ 3 ~w
=

[

3~x
T 1

]

∂ 3u

∂ 3~x
= 3 ~w

T
1..n3 3b

∂ 3~x

∂ 2
~φ

= I

∂ 2
~φ

∂ 2~u
= 2J (14.17)

∂ 2~u

∂ 2 ~w
=

[

I ⊗ [2~x
T 1]

]

We can write the gradient ∇f3(~w; x) by using the block partitioning of Equation 14.12. The

first 5 terms of Equation 14.17 are gathered into ∇f3(3 ~w) and the last 4 terms of Equation 14.17

are gathered into∇f3(2 ~w). For Layer 3, the gradient term and the direction of steepest descent are

much as they were for the objective function f3(g), being

∇f3(3 ~w; x) =
∂f3

∂g

∂g

∂r

∂r

∂ 3φ

∂ 3φ

∂ 3u

∂ 3u

∂ 3 ~w

= (1)(r)(−1)(1)[3~x
T 1]

3
~d = −

[

∂ 3u

∂ 3 ~w

]T [

∂ 3φ

∂ 3u

]T [

∂ r

∂ 3φ

]T [

∂g

∂r

]T [

∂f3

∂g

]T

= −

[[

3~x

1

]

(1)

]

((−1)(r)(1))

= −[3~s ]3b (14.18)

For Layer 2, using the substitution of Equation 14.34 and the identity 2J
T = 2J , the gradient

98



term and the direction of steepest descent are

∇f3(2 ~w; x) =
∂ 3u

∂ 3~x

∂ 2
~φ

∂ 2~u

∂ 2~u

∂ 2 ~w
(14.19)

= 3 ~w
T
1..n3

I[2J ]
[

I ⊗ [2~x
T 1]

]

= 3 ~w
T
1..n3

[2J ]
[

I ⊗ [2~x
T 1]

]

2
~d = −[∇f3(2 ~w; x)]

T

= −

[

I ⊗

[

2~x

1

]]

[2J ]3 ~w1..n3 3b (14.20)

The term 3 ~w1..n3
in Equation 14.20 is the updated term from Layer 3 of our neural network.

This new term is the back-propagation term for Layer 2; we will abbreviate this term as 2
~b and

write the descent vector for Layer 2 as

2
~b

def
= 3 ~w1..n3 3b (14.21)

2
~d = −

[

I ⊗

[

2~x

1

]]

[2J ]2~b (14.22)

The expression for 2
~d in Equation 14.22 involves sparse matrices. The computation of the

descent vector can be simplified using the Hadamard product; derivation of a simpler computation

is provided in the extra notes for this class. When we use the simplifications of Equation 14.38 in

the extra notes, we find that we can write the vector of steepest descent as

2S
def
=

[

2~x

1

]

[

2
~ψ(2~u)⊙ 2

~b
]T

(14.23)

2
~d = −vec(2S) (14.24)

For the objective function f3(g) that describes the output of the 3-layer neural network, where

all of the neuron weights are gathered into a single argument vector ~w, the direction of steepest

descent ~d is

~d
def
=

[

3
~d

2
~d

]

(14.25)

99



14.2 ANN Layer 3 – Summary and Computations

We can rephrase the previous observations on the relationships of outputs and inputs to weight

vectors, in mathematical notation, as:

Input Output(s) No. of Neurons

Layer 1 1x = x ~x n + 1
Layer 2 2x = [1x 1] 2φj(2 ~w) m2

Layer 3 3x(2 ~w; x) 3φ(3 ~w, 2 ~w) 1

For a single data observation x, our 3-layer neural network would be processed in a two-pass

algorithm:

Pass 1: Forward Evaluation of φ Terms

Layer 1:

Set 2x = [1x 1]
Layer 2:

Compute 2
~φ using 2 ~w and 2x

Compute 2
~ψ

Compute 3x

Layer 3:

Compute 3φ using 3 ~w and 3x

Compute 3ψ

Output:

Compute r using 3φ and y

Compute f3(g(r))

Pass 2: Back Propagation of ~d Terms

Initialize:

Compute b3
Layer 3:

Compute 3~s and 3
~d

Set 2
~b← [3 ~w1..n3

] 3ψ3b

Set ~d← 3
~d

Layer 2:

Compute 2
~d and 1

~b

Set 2S ← 2x
[

2
~ψ(2~u)⊙ 2

~b
]T

Set 2
~d← −vec(2S)

Set ~d←

[

~d

2
~d

]

Set 1
~b← vec

(

2W ⊙
[

2
~ψ ⊙ 2

~b
]T

)

100



14.3 ANN – Layer 4 and Beyond

The methods of Section 14.1 can be extended to any number p ≥ 4 layers. The feed-forward

computations of Section 14.2 will have, for each additional layer #l, a weight matrix lW and an

activation function lφ(u). The back-propagation computations will use the same process as for

Layer 3, back-propagating scale factors and using the input of the layer as the unscaled gradi-

ent. Back-propagation must be done with special attention because layers become function with

vectorial inputs and results.

Handling multiple data vectors ~xj , each providing a descent vector ~d, can be implemented

in many ways. Two common ways are to perform the computations for each data vector, or to

parallelize the computations to allow for a design matrix X . Such extensions are beyond the scope

of this course.

14.4 Example: The 2D “Exclusive-Or” Problem

A frequently used example in neural networks is often called the exclusive-or problem. A

neuron that uses a hyperplane decision process cannot solve certain simple problems. Suppose

that a 2D vector ~v ∈ R
2. We can define an exclusive-or function on ~v that is 1 if ~v is in Quadrant 1

or Quadrant 3 of the plane, and is 0 otherwise, as

g(~v)
def
=

{

1 if sign(v1)sign(v2) > 0
0 otherwise

(14.26)

Example data that are labeled according to Equation 14.26, and a simple neural network that

has m = 2 neurons in the hidden layer, are shown in Figure 14.2.

We can construct a single layer of m = 2 neurons for this problem, using the computations in

Section 14.2. Suppose that we use the method of steepest descent. Using a stepsize s = 0.001, the

101



-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 14.2: Data for a 2D “exclusive or” problem. Vectors in Quadrant 1 and Quadrant 3, given

as Label 1, are shown as blue “plus” signs; vectors in Quadrant 2 and Quadrant 4, given as Label 0,

are shown as red circles.

initial weight vector ~w0 and the estimated minimizer after 980 iterations are

~w0 =





























1
1
0
0
1
0
1
1
1





























~w ∗
≈





























0.4705
−0.3254
0.0100
0.4662
0.5786
−0.2181
0.9626
1.0986
1.0711





























(14.27)

Ordinarily, a weight vector such as ~w∗ in Equation 14.27 is difficult for a human to interpret.

In this case, we know that 3 ~w3 is the decision hyperplane for the first neuron in the hidden layer,

and that 3 ~w2 is the decision hyperplane for the second neuron in the hidden layer. These weight

vectors are

2 ~w
∗
3 ≈





0.4662
0.5786
−0.2181





2 ~w
∗
2 ≈





0.9626
1.0986
1.0711



 (14.28)

We can plot these hyperplanes along with the data, using the weight vector of Equation 14.27

to classify the data. As shown in Figure 14.3, the classifications are correct and the f3(~w) = 0

contours approximately divide the positive and negative labels. The weight vector for the output

neuron performs the final classification, using the sigmoid outputs of the hidden neurons in a linear

decision process.

102



-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 14.3: Vectors in 2D that are classified using a simple 3-layer neural network. Vectors with

Label 1 are shown as blue “plus” signs. Vectors with Label 0 are shown as red circles. The black

lines are the f(~w) = 0 contours of the outputs of the two neurons in the hidden layer; each contour

is a level curve of a sigmoid activation function.

Because each weight vector has 3 entries, we can plot the weight vectors to visualize the method

of steepest descent. Using the above arguments, Figure 14.4 shows the “tracks” of the weight

vector as the iteration proceeds.

Figure 14.4: Three “tracks” of the weight vectors during iterations of steepest descent. The output

weights are shown in black. The weights of the hidden neurons are shown in blue and red. The

hidden weights do not exhibit substantial changes and the output weights display the effects of

using a Heaviside step function to classify the output of the neural network.

103



Extra Notes

14.5 Extra Notes on Layer 2 Derivations

There are many technical details to the derivation of the equations for Layer 2 of our neural

networks.

14.5.1 Weight Matrix – 2W

The weights Layer 2 are

2W
def
=

[

2 ~w3 2 ~w2 · · · 2 ~wm2

]

2Wn2

def
=

[

2 ~w1,1..n2 2 ~w2,1..n2
· · · 2 ~wm2,1..n2

]

∈ R
(n2)×m2 (14.29)

2Wn2+1
def
=

[

2 ~w1,n2+1 2 ~w2,n2+1 · · · 2 ~wm2,n2+1

]

∈ R
1×m2 (14.30)

2W =

[

2Wn2

2Wn2+1

]

(14.31)

In Equation 14.31, the last row of the matrix 2W are the values of the bias scalars for the neuron

in Layer 2.

14.5.2 Linear Term – 2u

The linear term for Layer 2, from Equation 14.4, can be written as

2u
def
= [2x 1]2W

= 2x[2Wn2
] + 1[2Wn2+1]

2~u
def
= 2u

T

= [2W ]T
[

2~x

1

]

= [2Wn2
]T 2~x+ [2Wn2+1]

104



We can also write the term 2~u of Equation 14.5 by applying the Kronecker-vectorization theo-

rem of Theorem 11.15 to Equation 14.4 to find that

2u = [2x 1]2W
≡ 2u = [2~x

T 1]2W
≡ vec(l u) =

[

I ⊗ [2~x
T 1]

]

vec(2W )
≡ 2~u =

[

I ⊗ [2~x
T 1]

]

2 ~w

(14.32)

The derivative of the term 2~u(2 ~w; x), using Equation 14.32, is

∂ 2~u

∂ 2 ~w

def
=

[

I ⊗ [2~x
T 1]

]

(14.33)

Using a property of the Kronecker product, we can write the transpose of Equation 14.33 as

[

I ⊗ [2~x
T 1]

]T
= IT ⊗ [2~x

T 1]T

= I ⊗

[

2~x

1

]

[

∂2 ~u

∂2 ~w

]T

= I ⊗

[

2~x

1

]

(14.34)

14.5.3 Steepest-Direction Vector – 2~s

When we expand the rightmost product in Equation 14.22, we see that

[2J ]2~b =











2ψ(2u3)

2ψ(2u2)
. . .

2ψ(2un3
)





















2b1

2b2
...

2bn3











= 2
~ψ(2~u)⊙ 3

~b

2
~d = −

[

I ⊗

[

2~x

1

]]

[

2
~ψ(2~u)⊙ 3

~b
]

(14.35)

105



We see that Equation 14.35 contains a mixed Kronecker matrix-vector product. The mixed

product in the right-hand term can be rewritten by using the substitution of Theorem 11.15 to be

2S
def
=

[

2~x

1

]

[

2
~ψ(2~u)⊙ 3

~b
]T

(14.36)

=
[

2~s3 2~s3 · · · 2~sn3

]

2~sj =

[

2~x

1

]

2ψ(2uj)b2,j (14.37)

2
~d = −

[

I ⊗

[

2~x

1

]]

[

2
~ψ(2~u)⊙ 3

~b
]

= −vec(2S) (14.38)

The matrix 2S of Equation 14.36 has columns that are the steepest vectors for the neurons in

Layer 2, i.e., 2~sj is the steepest vector for the jth neuron in Layer 2; Equation 14.37 explicitly

describes the jth such vector. Vectorizing th matrix 2Sproduces the vector of steepest descent 2
~d

for the entire layer. Computations might be performed using the matrix 2S or using the gathered

vector 2
~d, depending on the implementation.

End of Extra Notes

References

[1] Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors.

Nature 323(6088):533–536, 1986

106


