# CISC 371 Class 15

# **Back-Propagating Scale Factors of Gradient Components**

Article: Rumelhart et al, Learning internal representations by back-propagating errors [1]

Main Concepts:

- Forward evaluation: compute objective value
- Back-propagate: scale factors
- Back-propagation: compute gradient components

**Sample Problem, Machine Learning:** How can we efficiently compute descent for a neural network?

The fundamental algorithm for neural networks is called *back propagation*, which is widely attributed to Rumelhart *et al*. [1] but which has much earlier sources.

In this course, we have posed the problem of training a neural network as a problem in unconstrained optimization. For a weight vector  $\vec{w}$  that gathers the weights of individual neurons, and an objective function  $f(\vec{w})$  that is to be minimized, our solution was to use steepest descent with a fixed stepsize. Using a "learning rate" of  $\eta$ , an iterative solution is

$$\vec{w}_{k+1} = \vec{w}_k - \eta \left[ \underline{\nabla} f(\vec{w}_k) \right]^T$$

In Class 14, we derived an objective function for a simple multi-layer neural network that used a squared-error objective. The large matrices in our linear-algebra formulation were avoided by back-propagating scale factors and finding the descent vectors from the inputs to the neurons.

We will work through this faster process of back-propagation by using a simple example. In Section 14.4, we proposed a neural network that had two layers of neurons: a single output neuron and two "hidden" neurons. The inputs to this network were size-2 observations that represented points in a plane. The data were arranged in an "exclusive-or" pattern, with observations in the odd quadrants labeled as +1 and in the even quadrants as 0. A two-layer network with two inputs and a single output is shown in Figure 15.1. The output, which is Layer 3, has the weights vector  ${}_3\vec{w}$  of Equation 14.2. The "hidden" neurons, which are in Layer 2, have weights  ${}_2\vec{w}_1$  and  ${}_2\vec{w}_2$  that we gathered in the matrix  ${}_2W$  of Equation 14.3.



**Figure 15.1:** A neural net with a single hidden layer. (A) A simplified network with size-2 inputs and two neurons in the hidden layer; the neuron labels are their respective weight vectors. (B) In back-propagation, the neuron labels are the scale factors for the gradient components and connector labels are scale factors for the neurons.

For the purposes of creating a scalar objective function that has a single vector argument, we gathered these terms as

$${}_{2}W \stackrel{\text{def}}{=} \begin{bmatrix} {}_{2}\vec{w}_{1} & {}_{1}\vec{w}_{2} \end{bmatrix}$$
$${}_{2}\vec{w} \stackrel{\text{def}}{=} \begin{bmatrix} {}_{2}\vec{w}_{1} \\ {}_{2}\vec{w}_{2} \end{bmatrix}$$
$$\vec{w} \stackrel{\text{def}}{=} \begin{bmatrix} {}_{2}\vec{w} \\ {}_{3}\vec{w} \end{bmatrix}$$
(15.1)

The objective function for the weight vector of Equation 15.1 depends on an observation  $\underline{x}$ . The linear terms for Layer 2 are the product of the observation  $\underline{x}$  and the weights  $_2W$ ; these are the arguments to a generally nonlinear activation function  $_2\phi$ . These outputs are augmented with a constant +1 and then are the inputs to the neuron of Layer 3, which performs the same kind of computation with a possibly different activation function  $_3\phi$ . The "feed-forward" computations are

$$\begin{array}{rcl}
\underline{2u} &=& [\underline{x}]_{2}W\\ 
\underline{2\phi} &=& \begin{bmatrix} 2\phi(2u_{1})\\ \underline{2\phi(2u_{2})} \end{bmatrix}\\ 
\underline{3x} &=& \begin{bmatrix} 2\phi^{T} & 1 \end{bmatrix}\\ 
\underline{3u} &=& [\underline{3x}]_{3}\vec{w}\\ 
z(\vec{w}) &=& \underline{3\phi(3u)} \end{array}$$
(15.2)

The output  $z(\vec{w})$  of Equation 15.2, and a label y of the observation  $\underline{x}$ , are used to create an objective function. For a squared-error objective, the residual r and the objective function for this 3-layer network are

$$r = y - z(\vec{w})$$
  

$$f_3(\vec{w}) = r^2$$
(15.3)

The gradient, which we found by applying the Chain Rule to Equation 15.3, is presented in Equation 14.12.

### **15.1 Back-Propagation of Scale Factors**

The descent vector of our simplified neural network is found by applying the Chain Rule to the objective function of Equation 15.3. In practice, we use the back-propagation algorithm described in Section 14.2 of Class 14.

The computation of the descent vector can be conceptually represented as a sequence. Using lb to represent the back-propagated scale factor at Level l, the computations for our simple network can be written as:

1. Compute the scale factor of the objective as

$${}_{3}b = \frac{\partial f_{3}}{\partial r} \frac{\partial r}{\partial {}_{3}\phi} = -r(\vec{w})$$

2. Compute the Layer 3 gradient component, and the descent vector for the objective, as

$${}_3\vec{s} = {}_3\vec{x} {}_3\psi {}_3b$$
  
 ${}_3\vec{d} = {}_3\vec{s}$   
 $\vec{d} \leftarrow {}_3\vec{d}$ 

3. Compute the scale factor for Layer 2 as

$$_{2}\vec{b} = _{3}\vec{w}_{1\dots 2}(_{3}\psi_{3}b)$$

4. Compute the Layer 2 gradient components as

$${}_{2}S = {}_{2}\vec{x}[{}_{2}\vec{\psi} \odot {}_{2}\vec{b}]^{T}$$
$${}_{2}\vec{s} = \operatorname{vec}\left({}_{2}S\right)$$
$${}_{2}\vec{d} = -{}_{2}\vec{s}$$

#### 5. Compute the descent vector as

$$\vec{d} \leftarrow \begin{bmatrix} \vec{d} \\ 2\vec{d} \end{bmatrix}$$

Observe that, in Step 3, we have *back-propagated* the scale factor from the objective. We are "sending", to Layer 2, the objective scale factor times the local derivative; the latter is the input to Layer 3, which is  $_3\vec{x}$ .

Observe that, in Step 4, we have used this back-propagated scale factor. The "local" descent vector,  $_2\vec{d}$ , depends on: the inputs to Layer 2, which are  $_2\vec{x}$ ; the "local" derivatives of the activation functions, which are  $_2\vec{\phi}$ ; and the back-propagated scale factor, which are  $_2\vec{b}$ .

For our simple network, we can write the back-propagation terms in Step 3 individually as

Likewise, we can write the steepest-vector-propagation terms in Step 4 individually as

The combination of Equation 15.4 and Equation 15.5 have the same effects as the vector computations presented above.

### **15.2 Example: Forward Evaluation**

Consider a specific example of our simplified neural network. Suppose that the weight vector, separated into the components for the neurons in the layers, is

$${}_{3}\vec{w} = \begin{bmatrix} 0.5\\ -0.5\\ 0.0 \end{bmatrix} \qquad {}_{2}W = \begin{bmatrix} 2\vec{w}_{1} & 2\vec{w}_{2} \end{bmatrix} = \begin{bmatrix} 0.5 & 1.0\\ 0.5 & 1.0\\ 0.0 & 1.0 \end{bmatrix}$$
(15.6)

Suppose further that the observation  $\underline{x}$  and its label y are

$$\underline{x} = \begin{bmatrix} 0.5 & 1.0 & 1 \end{bmatrix} \qquad y = 1 \tag{15.7}$$

For simplicity, we will use the logistic activation function for all three neurons in the network. The activation function and its derivative are

$$\phi(t) \stackrel{\text{def}}{=} \frac{1}{1+e^{-t}}$$
  

$$\psi(t) = \phi'(t)$$
  

$$= \phi(t)(1-\phi(t))$$
(15.8)

We will first perform computations on the network of Figure 15.1, using the values in Equation 15.6 and Equation 15.7, by a forward evaluation. The values, corresponding to Equation 15.2 plus the derivatives and objective function, are

$$\begin{array}{rcl} \underline{2u} &= & \begin{bmatrix} 0.75 & 2.5 \end{bmatrix} \\ \underline{2\phi} &= & \begin{bmatrix} 0.67918 & 0.92414 \end{bmatrix} \\ \underline{2\psi} &= & \begin{bmatrix} 0.21789 & 0.070104 \end{bmatrix} \\ \underline{3x} &= & \begin{bmatrix} 0.67918 & 0.92414 & 1 \end{bmatrix} \\ \underline{3u} &= & -0.12248 \\ \underline{3\phi} &= & 0.46942 \\ \underline{3\psi} &= & 0.24906 \\ r &= & 0.53058 \\ f(\vec{w}) &= & 0.14076 \end{array}$$
(15.9)

In the calculations of Equation 15.9, some observations include:

- Linear terms  $_{2\underline{u}}$  in Layer 2 are of the magnitude of unity, or  $\pm 1$
- Activation terms  $_2\phi$  in Layer 2 are of the magnitude of unity
- Derivative terms  $_2\psi$  in Layer 2 are an order of magnitude less than the activation terms
- Activation term  $_{3}\phi$  in Layer 3 is of the magnitude of unity
- Residual term r is of the magnitude of unity

In this example, for weights that are of the order of magnitude of unity, to neural network preserves to order of magnitude as the input  $\underline{x}$  is used to compute the residual term. The objective function will be bounded between 0 and 1 because is is the square of the residual term.

# **15.3 Example: Back-Propagation**

Using the values in Equation 15.6, Equation 15.7, and Equation 15.9, we can perform the back-propagation computations. The scale factors and gradient 1-forms that we find using back-propagation are:

| Step | Name              | Symbol        | Value                                                                                                              |
|------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------|
| 1.0  | Objective scale:  | $_{3}b$       | -0.53058                                                                                                           |
| 2.0  | Layer 3 descent:  | $_{3}\vec{d}$ | $\begin{bmatrix} -0.089753\\ -0.12212\\ -0.13215 \end{bmatrix}$                                                    |
| 3.0  | Layer 2 scale:    | $_{2}\vec{b}$ | $\begin{bmatrix} -0.066075\\ 0.066075 \end{bmatrix}$                                                               |
| 4.1  | Layer 2 steepest: | $_2S$         | $\begin{bmatrix} -0.0071987 & +0.0023160 \\ -0.0143973 & +0.0046321 \\ -0.0143973 & +0.0046321 \end{bmatrix}$      |
| 4.3  | Layer 2 descent:  | $_{2}\vec{d}$ | $ \begin{bmatrix} +0.0071987 \\ +0.0143973 \\ +0.0143973 \\ -0.0023160 \\ -0.0046321 \\ -0.0046321 \end{bmatrix} $ |

In these calculations of back-propagation of scale factors, some observations include:

- The output scale factor  $_{3}b$  is an order of magnitude less than unity
- The output descent vector  $_{3}\vec{d}$  is an order of magnitude less than unity
- The hidden-layer scale factors  $_{2}\vec{b}$  are two orders of magnitude less than unity
- The hidden-layer descent vectors  $_2\vec{d_j}$  are three orders of magnitude less than unity

We can see that the derivative terms  $\psi(t) = \phi'(t)$  have tended to be numerically small. The effect, in this example, is that different layers train at different rates.

#### References

 Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. *Nature* 323(6088):533–536, 1986