
CISC 371 Class 15

Back-Propagating Scale Factors of Gradient Components

Article: Rumelhart et al, Learning internal representations by back-propagating errors [1]

Main Concepts:

• Forward evaluation: compute objective value

• Back-propagate: scale factors

• Back-propagation: compute gradient components

Sample Problem, Machine Learning: How can we efficiently compute descent for a

neural network?

The fundamental algorithm for neural networks is called back propagation, which is widely

attributed to Rumelhart et al . [1] but which has much earlier sources.

In this course, we have posed the problem of training a neural network as a problem in uncon-

strained optimization. For a weight vector ~w that gathers the weights of individual neurons, and

an objective function f(~w) that is to be minimized, our solution was to use steepest descent with a

fixed stepsize. Using a “learning rate” of η, an iterative solution is

~wk+1 = ~wk − η [∇f(~wk)]
T

In Class 14, we derived an objective function for a simple multi-layer neural network that used

a squared-error objective. The large matrices in our linear-algebra formulation were avoided by

back-propagating scale factors and finding the descent vectors from the inputs to the neurons.

We will work through this faster process of back-propagation by using a simple example. In

Section 14.4, we proposed a neural network that had two layers of neurons: a single output neuron

and two “hidden” neurons. The inputs to this network were size-2 observations that represented

points in a plane. The data were arranged in an “exclusive-or” pattern, with observations in the

odd quadrants labeled as +1 and in the even quadrants as 0. A two-layer network with two inputs

and a single output is shown in Figure 15.1. The output, which is Layer 3, has the weights vector

3 ~w of Equation 14.2. The “hidden” neurons, which are in Layer 2, have weights 2 ~w1 and 2 ~w2 that

we gathered in the matrix 2W of Equation 14.3.

107



Figure 15.1: A neural net with a single hidden layer. (A) A simplified network with size-2 inputs

and two neurons in the hidden layer; the neuron labels are their respective weight vectors. (B) In

back-propagation, the neuron labels are the scale factors for the gradient components and connector

labels are scale factors for the neurons.

For the purposes of creating a scalar objective function that has a single vector argument, we

gathered these terms as

2W
def
=

[

2 ~w1 1 ~w2

]

2 ~w
def
=

[

2 ~w1

2 ~w2

]

~w
def
=

[

2 ~w

3 ~w

]

(15.1)

The objective function for the weight vector of Equation 15.1 depends on an observation x.

The linear terms for Layer 2 are the product of the observation x and the weights 2W ; these are

the arguments to a generally nonlinear activation function 2φ. These outputs are augmented with

a constant +1 and then are the inputs to the neuron of Layer 3, which performs the same kind of

computation with a possibly different activation function 3φ. The “feed-forward” computations are

2u = [x] 2W

2
~φ =

[

2φ(2u1)

2φ(2u2)

]

3x =
[

2
~φ T 1

]

3u = [3x] 3 ~w

z(~w) = 3φ(3u) (15.2)

108



The output z(~w) of Equation 15.2, and a label y of the observation x, are used to create an

objective function. For a squared-error objective, the residual r and the objective function for this

3-layer network are

r = y − z(~w)

f3(~w) = r2 (15.3)

The gradient, which we found by applying the Chain Rule to Equation 15.3, is presented in

Equation 14.12.

15.1 Back-Propagation of Scale Factors

The descent vector of our simplified neural network is found by applying the Chain Rule to the

objective function of Equation 15.3. In practice, we use the back-propagation algorithm described

in Section 14.2 of Class 14.

The computation of the descent vector can be conceptually represented as a sequence. Using lb to

represent the back-propagated scale factor at Level l, the computations for our simple network can

be written as:

1. Compute the scale factor of the objective as

3b =
∂f3

∂r

∂ r

∂ 3φ
= −r(~w)

2. Compute the Layer 3 gradient component, and the descent vector for the objective, as

3~s = 3~x 3ψ 3b

3
~d = −3~s

~d ← 3
~d

3. Compute the scale factor for Layer 2 as

2
~b = 3 ~w1...2(3ψ3b)

4. Compute the Layer 2 gradient components as

2S = 2~x[2 ~ψ ⊙ 2
~b]T

2~s = vec (2S)

2
~d = −2~s

109



5. Compute the descent vector as

~d←

[

~d

2
~d

]

Observe that, in Step 3, we have back-propagated the scale factor from the objective. We are

“sending”, to Layer 2, the objective scale factor times the local derivative; the latter is the input to

Layer 3, which is 3~x.

Observe that, in Step 4, we have used this back-propagated scale factor. The “local” descent

vector, 2
~d, depends on: the inputs to Layer 2, which are 2~x; the “local” derivatives of the activation

functions, which are 2
~φ; and the back-propagated scale factor, which are 2

~b.

For our simple network, we can write the back-propagation terms in Step 3 individually as

2b1 = 3x1 3ψ 3b

2b2 = 3x2 3ψ 3b
(15.4)

Likewise, we can write the steepest-vector-propagation terms in Step 4 individually as

2s1 = 2x1 2ψ1 2b1

2s2 = 2x2 2ψ2 2b2
(15.5)

The combination of Equation 15.4 and Equation 15.5 have the same effects as the vector com-

putations presented above.

15.2 Example: Forward Evaluation

Consider a specific example of our simplified neural network. Suppose that the weight vector,

separated into the components for the neurons in the layers, is

3 ~w =





0.5
−0.5
0.0





2W =
[

2 ~w1 2 ~w2

]

=





0.5 1.0
0.5 1.0
0.0 1.0



 (15.6)

Suppose further that the observation x and its label y are

x =
[

0.5 1.0 1
]

y = 1 (15.7)

110



For simplicity, we will use the logistic activation function for all three neurons in the network.

The activation function and its derivative are

φ(t)
def
=

1

1 + e−t

ψ(t) = φ′(t)

= φ(t)(1− φ(t)) (15.8)

We will first perform computations on the network of Figure 15.1, using the values in Equa-

tion 15.6 and Equation 15.7, by a forward evaluation. The values, corresponding to Equation 15.2

plus the derivatives and objective function, are

2u =
[

0.75 2.5
]

2φ =
[

0.67918 0.92414
]

2ψ =
[

0.21789 0.070104
]

3x =
[

0.67918 0.92414 1
]

3u = −0.12248

3φ = 0.46942

3ψ = 0.24906

r = 0.53058

f(~w) = 0.14076 (15.9)

In the calculations of Equation 15.9, some observations include:

• Linear terms 2u in Layer 2 are of the magnitude of unity, or ±1

• Activation terms 2φ in Layer 2 are of the magnitude of unity

• Derivative terms 2ψ in Layer 2 are an order of magnitude less than the activation terms

• Activation term 3φ in Layer 3 is of the magnitude of unity

• Residual term r is of the magnitude of unity

In this example, for weights that are of the order of magnitude of unity, to neural network

preserves to order of magnitude as the input x is used to compute the residual term. The objective

function will be bounded between 0 and 1 because is is the square of the residual term.

111



15.3 Example: Back-Propagation

Using the values in Equation 15.6, Equation 15.7, and Equation 15.9, we can perform the

back-propagation computations. The scale factors and gradient 1-forms that we find using back-

propagation are:

Step Name Symbol Value

1.0 Objective scale: 3b −0.53058

2.0 Layer 3 descent: 3
~d





−0.089753
−0.12212
−0.13215





3.0 Layer 2 scale: 2
~b

[

−0.066075
0.066075

]

4.1 Layer 2 steepest: 2S





−0.0071987 +0.0023160
−0.0143973 +0.0046321
−0.0143973 +0.0046321





4.3 Layer 2 descent: 2
~d

















+0.0071987
+0.0143973
+0.0143973
−0.0023160
−0.0046321
−0.0046321

















In these calculations of back-propagation of scale factors, some observations include:

• The output scale factor 3b is an order of magnitude less than unity

• The output descent vector 3
~d is an order of magnitude less than unity

• The hidden-layer scale factors 2
~b are two orders of magnitude less than unity

• The hidden-layer descent vectors 2
~dj are three orders of magnitude less than unity

We can see that the derivative terms ψ(t) = φ′(t) have tended to be numerically small. The

effect, in this example, is that different layers train at different rates.

References

[1] Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors.

Nature 323(6088):533–536, 1986

112


