
CISC 371 Class 17

Nonlinear Least Squares and the Levenberg-Marquardt Algorithm

Texts: [1] pp. 254–262; [2] pp. 67–72

Main Concepts:

• Nonlinear least squares

• Linear approximation

• Gauss-Newton method is altered descent

• Levenberg-Marquardt algorithm is altered descent

Sample Problem, Geographic Location: How can we solve the GPS localization

equations for an ideal receiving station?

Some problems that require optimization involve multiple independent data, or “readings”,

where there is a nonlinear model function for each reading. An example, which we will examine

more closely in the class, is GPS localization. Each “reading” is the time delay between a receiver

and each satellite in the constellation for which a broadcast message has been acquired. The

nonlinear function is the distance between the receiver and the satellite that broadcast the acquired

message.

In general, such problems can be managed by using a nonlinear least squares (NLS) formula-

tion. We will write the ith reading as yi and the corresponding function as gi(~w). For m readings,

the presumption is that an optimal point ~w ∗ will be evaluated to a scalar that is approximately the

corresponding reading. This is equivalent to the presumption that the residual error between the

that is, for the ith reading is zero, so

gi(~w
∗) ≈ yi

≡ gi(~w
∗)− yi ≈ 0

≡ ri(~w
∗) ≈ 0

(17.1)

Gathering the m readings and the m functions of Equation 17.1 into vectors, the basic pre-

sumption is that the residual vector is approximately the zero vector, so

~r(~w ∗) ≈ ~0 (17.2)

Equation 17.2 can be posed as a NLS problem by forming an objective function that is the sum

of the squares of the residual errors. We can define such a function as

F (~w)
def
=

1

2
‖~r(~w)‖2 (17.3)

115



The optimization problem for Equation 17.3 is to find

~w ∗ = argmin
~w∈Rn

F (~w) (17.4)

A solution to Equation 17.4 is a least-squares solution to the original nonlinear problem. One

way that we can compute a minimizer is to use the method of steepest descent. The gradient ∇F

and the descent direction ~d are

∇F (~w) = [~r(~w))]TJ~g(~w)

~d(~w) = −[∇F (~w)]T

= −[J~g(~w)]
T~r(~w) (17.5)

A derivation of Equation 17.5 is provided in the extra notes for this class.

Instead of using Equation 17.5, a more common way to solve Equation 17.3 is to locally ap-

proximate each nonlinear function gi(~w) with a linear model, and then to find the direction of

steepest descent for the locally linear model.

17.1 Gauss-Newton Iteration

The insight into the most commonly used solution of a NLS problem is that any function can

be approximated using a Taylor series. Expanding around some point ~w0, the first-order approxi-

mation to each function gi(~w) in Equation 17.1 is

gi(~w) ≈ gi(~w0) +∇gi(~w0)[~w − ~w0] (17.6)

The approximated residual error for each reading yi, using the linear approximation of gi(~w)

in Equation 17.6, is

qi(~w)
def
= gi(~w0) +∇gi(~w0)[~w − ~w0]− yi (17.7)

Gathering the residual errors ri(~w) in Equation 17.7 into a vector, the objective function that

minimizes the sum of the squares of the residual errors is

f(~w)
def
= ‖~q(~w)‖2 (17.8)

The Gauss-Newton iteration, which solves Equation 17.8 by steepest descent with a unit step-

size s = 1, is

~wk+1 = ~wk +
[

[J~g(~wk)]
T [J~g(~wk)]

]

−1
[J~g(~wk)]

T~r (~wk) (17.9)

116



The extra notes for this class provide a derivation of Equation 17.9. We can temporarily abbre-

viate

Jk
def
= J~g(~wk)

~rk
def
= ~r(~wk)

and dropping the argument ~wk, an equivalent way of writing Equation 17.9 is

~wk+1 = ~wk + [J T
k Jk]

−1J T
k ~r(~wk)

= ~wk + [J T
k Jk]

−1J T
k ~rk (17.10)

Equation 17.10 clarifies the Gauss-Newton iteration as a scaled version of steepest descent,

where the symmetric positive [semi-]definite matrix [J T
k Jk]

−1 is used in iteration k to scale the

direction of steepest descent for the objective function F (~w) in Equation 17.3.

17.2 Levenberg-Marquardt Algorithm

The Gauss-Newton iteration of Equation 17.9 may fail to converge if the initial estimate ~w1

is “far” from a local minimizer ~w ∗, or if the Jacobian matrix J~g(~wk) is rank-deficient. These

problems were observed in 1944 by Kenneth Levenberg [3] and were solved, using a matrix-vector

formulation, in 1963 by Donald Marquardt [4]. Their proposed modification was to “damp” the

Gauss-Newton solution by using a non-negative scalar value, usually written as λ ≥ 0. This

iteration is

~wk+1 = ~wk +
[

[J~g(~wk)]
T [J~g(~wk)] + λI

]

−1
J T~r(~wk) (17.11)

= ~wk + [J TJ + λI]−1J T~rk

17.3 Example – GPS Localization

The Global Positioning System (GPS) works by having satellites that transmit highly accurate

timing information [5]. A receiver can sense these transmissions and estimate its 3D location as

an optimization problem. To avoid a detail that is related to clock bias, we will assume that the

receiver also has a highly accurate timer such as an atomic clock; examples of such a receiver are

a ground station or a military craft.

At any instant, the receiver can find the current receiver time from the onboard clock; the

receiver can also find the time that a satellite broadcasted a message. The difference between these

117



times, multiplied by the speed of light c, is a calculation of the pseudorange from the receiver to

the satellite. The satellite’s message includes the 3D location of the satellite at the instant of the

broadcast. As the receiver processes the information for the ith satellite, the relevant values are:

si: time that the ith satellite sent this message

ti: time that the receiver acquired the ith satellite’s message

yi: pseudorange for the ith satellite, the time difference multiplied by speed of light

c, so yi = (ti − si)c

~xi: 3D location of the ith satellite at time si
gi(~w): actual distance from the ith satellite to the receiver, so gi(~w) = ‖~w − ~xi‖

Illustrations in Figure 17.1 show a 2D version of the 3D GPS geometry and the receiver’s point

of view. The receiver knows only that satellites are at an approximate altitude above the surface

and at approximately estimated distances.

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

A B

Figure 17.1: A 2D version of the GPS problem, with the receiver shown as a black asterisk and

three visible satellites shown as blue asterisks. Iterative descent of the function f3 using a damped

Newton’s Method with backtracking. (A) The receiver is on the Earth’s surface, approximated as a

circle with a radius of 6,361 km; three satellites have orbits that are approximated as a circle with a

radius of 20,200 km. (B) To the receiver, the satellites are known to be at distances that are shown

as arcs in green; the receiver knows only the approximate altitude of the satellites.

118



The functions gi(~w) and the values yi can be used to formulate a NLS problem. We can write

each distance from the receiver to a satellite as

gi(~w) = ‖~w − ~xi‖

=
(

‖~w − ~xi‖
2
)1/2

=
(

[~w − ~xi]
T [~w − ~xi]

)1/2

=
(

[~w T − ~xT
i ][~w − ~xi]

)1/2

=
(

~w T ~w − 2~xT
i ~w + ~xT

i ~xi

)1/2
(17.12)

From Equation 17.12, the gradient of each function gi(~w) can be found using the Chain Rule

as

∇gi(~w) = 1/2
(

‖~w − ~xi‖
2
)

−1/2
∇

(

~w T ~w − 2~xT
i ~w + ~xT

i ~xi

)

= 1/2∇
(

~w T ~w − 2~xT
i ~w + ~xT

i ~xi

) (

‖~w − ~xi‖
2
)

−1/2

= 1/2
[

2~w T − 2~xT
i

] (

‖~w − ~xi‖
2
)

−1/2

= [~w − ~xi]
T/‖~w − ~xi‖ (17.13)

For m satellites, the Jacobian matrix for our GPS problem is

J~g(~w) =























[~w − ~x1]
T /‖~w − ~x1‖

[~w − ~x2]
T /‖~w − ~x2‖

[~w − ~x3]
T /‖~w − ~x3‖

...

[~w − ~xm]
T /‖~w − ~xm‖























(17.14)

The residual vector for our GPS problem is

~r(~w) = ~g(~w)− ~y =















g1(~w)− y1
g2(~w)− y2
g3(~w)− y3

...

gm(~w)− ym















(17.15)

119



-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

Figure 17.2: A 2D version of the GPS problem, with three visible satellites shown as blue aster-

isks. The receiver is at a known approximate distance from each satellite, so the receiver must be

close to some point on each blue circle. A point that is close to the intersection of the three circles

will minimize the residual error of the NLS problem.

Equation 17.15 has a simple geometrical interpretation. As illustrated in Figure 17.2, the re-

ceiver is at a point that is close to the intersection of circles, each centered at ~xi with an approximate

radius of yi.

The Jacobian matrix of Equation 17.14, plus the residual vector of Equation 17.15, can be

used to solve our GPS problem by using the Gauss-Newton iteration or by using the Levenberg-

Marquardt Algorithm. The choice of the algorithm, and the selection of a value of λ, may depend

on the accuracy and speed requirements of a particular implementation, among many other factors.

17.4 Example: Fermat-Weber Problem

The introductory class for this course used one of Fermat’s problems as a motivating exam-

ple. The problem, stated as a NLS problem, is similar to the GPS problem of Section 17.3. The

“anchor” points of Fermat’s problem are the points ~xi. The ith distance function, to any point ~w,

is Equation 17.12. The only difference between Fermat’s problem and the GPS problem is that,

in Fermat’s problem, there is no “reading” so yi = 0 for all 1 ≤ i ≤ m. The objective function

simplifies to

gi(~w) = ‖~w − ~xi‖

so FF (~w) = ‖~g(~w)‖2 (17.16)

The Fermat-Weber problem is closely related to Fermat’s problem. From our point of view, the

120



difference is that in Weber’s problem there is a positive “weight” bi > 0 for each reading. We can

create a diagonal weighting matrix B, which is

B =















b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bm















(17.17)

The objective for the Fermat-Weber problem is a substitution of B in Equation 17.17 into the

Fermat objective function of Equation 17.16, which is

FW (~w) = ‖B~g(~w)‖2 (17.18)

The Fermat-Weber problem can also be solved using either the Gauss-Newton iteration or the

Levenberg-Marquardt Algorithm.

Gauss-Newton and Levenberg-Marquardt: Comments

We can observe that, for a full-rank Jacobian matrix, both the matrix in Equation 17.9 and the

matrix in Equation 17.11 are symmetric and positive definite. For λ > 0, the matrix in Equa-

tion 17.11 is always symmetric and positive definite, regardless of the rank of the Jacobian matrix.

We also observe that both methods are scaled versions of steepest descent. The scaling matrix

in the Gauss-Newton iteration is sometimes – incorrectly – called a “Hessian” at the point ~wk.

Although it may be an approximation to the Hessian matrix, in general J TJ 6= ∇2F .

The argument λ has a critical role in the Levenberg-Marquardt Algorithm. Let us consider the

limiting cases. If λ = 0 then the Levenberg-Marquardt scaling matrix is equal to the Gauss-Netwon

scaling matrix. As λ → ∞, the Levenberg-Marquardt scaling matrix approaches λI , so the inverse

approaches 1/λI; for a large value of λ, the Levenberg-Marquardt Algorithm is equivalent to the

method of steepest descent with a stepsize of s = 1/λ.

121



Extra Notes

17.5 Extra Notes on Nonlinear Least Squares

These extra notes include derivations of Equation 17.5 and Equation 17.9. As a preliminary

matter, we can derive the gradient of the squared norm of the difference between a vector ~u and

any vector ~v as

‖~u− ~v‖2 = [~u− ~v]T [~u− ~v]

= [~u T − ~v T ][~u− ~v]

= ~u T~u− 2~v T~u+ ~v T~v

so
∂

∂~u
‖~u− ~v‖2 =

∂

∂~u

(

~u T~u− 2~v T~u+ ~v T~v
)

= 2~u T − 2~v T

= 2[~u− ~v]T (17.19)

17.5.1 Gradient of the NLS Objective Function

The gradient of F (~w) in Equation 17.3 can be written, using the Chain Rule and a substitution

into Equation 17.19, as

∇F (~w) =
1

2

[

∂F

∂~r

] [

∂~r

∂~g

] [

∂~g

∂ ~w

]

=
1

2
2[~r]T IJ~g(~w)

= [~r]TJ~g(~w) (17.20)

Equation 17.20 is a derivation of Equation 17.5 above.

122



17.5.2 The Gauss-Newton Iteration

Using a local linear approximation of the given function gi(~w), the approximated residual error

of each term is given in Equation 17.7, which can also be written as

qi(~w) = gi(~w0) +∇gi(~w0)[~w − ~w0]− yi

= gi(~w0) +∇gi(~w0)~w −∇gi(~w0)~w0 − yi

= ∇gi(~w0)~w −∇gi(~w0)~w0 + gi(~w0)− yi

= ∇gi(~w0)~w − (∇gi(~w0)~w0 − (gi(~w0)− yi))

= ∇gi(~w0)~w − (∇gi(~w0)~w0 − (ri(~w0)))

so ~q(~w) = J~g(~w0)~w − [J~g(~w0)~w0 − ~r(~w0)] (17.21)

The objective function f(~w) of Equation 17.8 can be solved explicitly. We can begin by sub-

stituting Equation 17.21 for the term ~q(~w), which is

~w ∗ = argmin
~w∈Rn

f(~w)

= argmin
~w∈Rn

‖~q(~w)‖2

= argmin
~w∈Rn

‖J~g(~w0)~w − [J~g(~w0)~w0 − ~r(~w0)]‖
2 (17.22)

The problem stated in Equation 17.22 is the overdetermined linear equation

J~g(~w0)~w
∗ ≈ [J~g(~w0)~w0 + ~r(~w0)] (17.23)

Equation 17.23 has the normal equation as its solution, which can be written as

[

[J~g]
T [J~g(~w0)]

]

~w ∗ = [J~g]
T [J~g(~w0)~w0 + ~r(~w0)]

= [J~g]
T [J~g(~w0)]~w0 + [J~g]

T~r(~w0)

so ~w ∗ =
[

[J~g]
T [J~g(~w0)]

]

−1
[J~g]

T [J~g(~w0)]~w0

[

[J~g]
T [J~g(~w0)]

]

−1
[J~g]

T~r(~w0)

= ~w0 +
[

[J~g]
T [J~g(~w0)]

]

−1
[J~g]

T~r(~w0) (17.24)

Converting Equation 17.24 into an iteration, by substituting ~w0 with ~wk and ~w ∗ with ~wk+1,

produces the Gauss-Newton iteration of Equation 17.9.

End of Extra Notes

123



References

[1] Antoniou A, Lu WS: Practical Optimization: Algorithms and Engineering Applications.

Springer Science & Business Media, 2007

[2] Beck A: Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with

MATLAB. Siam Press, 2014

[3] Levenberg K: A method for the solution of certain non-linear problems in least squares. Q

Appl Math 2(2):164–168, 1944

[4] Marquardt DW: An algorithm for least-squares estimation of nonlinear parameters. SIAM J

Appl Math 11(2):431–441, 1963

[5] Tsui JBY: Fundamentals of Global Positioning System Receivers: A Software Approach, vol-

ume 173. John Wiley & Sons, 2005

124


