
CISC 371 Class 18

Convex Functions, Convex Sets, and Level Sets

Texts: [1] pp. 51–60; [2] pp. 117–132; [3] pp. 67–87

Main Concepts:

• Convex functions: affine and quadratic

• Convex functions: positive scaling and addition

• Convex function: above tangent plane

• Level set: SS(f, l)

• Convex set: contains linear interpolant

• Property: level set of a convex function is a convex set

Sample Problem, Optimization: What is the difference between a function that

steadily decreases towards a minimum, and a convex function?

Convexity is a property of many mathematical objects, including functions and sets. Entire

textbooks – such as one of the texts recommended as a reference in this course – are devoted to

optimization of convex functions. Some of the major current work in machine learning and data

analytics requires optimization where the search vector is constrained.

To understand how we can solve a constrained optimization problem, it will be helpful for us

to understand the concept of convexity in a deeper sense than we have so far in this course. Recall

that, in Definition 3.6, we defined a convex function. Replacing the inequality in the consequent

term of the implication in Definition 3.6 provides a definition of a strictly convex function.

A basic distinction we need to make is between a function that is monotonic and a function that

is convex. A simple example is the Gaussian function; we will negate it, or turn it “upside down”,

so that it fits our definition. The equation for the negation of the probability density function, with

zero mean and unit variance, is

f(t) =
−1√
2π

e−
1

2
t2 (18.1)

This inverted Gaussian is plotted in Figure 18.1. This function monotonically decreases from 0

to −1/
√
2π from t = −∞ or from t = +∞. The function is not convex because the line segment

from u = −0.5 to v = +3 intersects the graph of the function: this function is not always “below”

a chord that is drawn between two points.

A convex function that has a scalar argument can be defined as a function that is always “above”

a chord, which is a line segment that joins two points.
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Figure 18.1: An inverted Gaussian is a function that monotonically decreases towards a minimum

and that is not convex. (A) The function f(t) in Equation 18.1. (B) A chord between two points

that intersects the graph of the function.

Convexity is crucial to understanding many of the concepts in optimization, particularly opti-

mization that is mathematical constrained. For a function with a vector argument, the definition is

a direct extension of Definition 3.6.

Definition: convex function f(~w)

For any ~u ∈ Rn, any ~b ∈ Rn, any θ ∈ R+, and any f :Rn → R, that function f is a

convex function is defined as

(0 ≤ θ ≤ 1) →
(

f((1− θ)~u+ θ~b)
)

≤
(

(1− θ)f(~u) + θf(~b))
)

(18.2)

Observations: The line segment that “connects” the points ~u and~b is in the vector space Rn. The

result of evaluating the function at a point in its domain is a scalar, so the inequality constraint is a

scalar constraint.

The definition of a strictly convex function is also a straightforward extension of the scalar

definition. In this course, we will not often need the definition of strictly convex. Definition 18.14

is in the extra notes for this class as a matter of completeness.

A second definition that is in the extra notes is Definition 18.15, which defines convexity for a

vector function with a vector argument. In plain English, such a function is convex is defined as

having each “component” function being convex.
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18.1 Convexity of Affine and Quadratic Functions

Two kinds of functions will occur so often in this course that we will prove that they are convex.

The first kind is an affine function, which is the product of a matrix and a vector to which a second

vector is added. An affine function has the entire vector space R
n as its domain.

Theorem: An affine map, f(~w) = m~w + c, is convex.

Proof: See the extra notes for this class.

A straightforward extension of Theorem 18.16 is that a general linear map is convex; this is

stated and proved in the extra notes for this class.

The second kind of convex function that we will use is a quadratic form of a matrix. We can

assume, without loss of generalization, that such a real matrix K is a symmetric matrix.

Theorem: A quadratic form of a positive definite matrix, f(~w) = ~w TK ~w, is convex.

Proof: See the extra notes for this class.

We can visualize a convex function, that has a 2D vector argument, using ordinary plotting

software such as MATLAB. Two affine functions that we might consider are

f1(~w) = m1 ~w + c1 where m1 =
[

−1 1
]

and c1 = −2 (18.3)

f2(~w) = m2 ~w + c2 where m2 =
[

1 1
]

and c2 = +2 (18.4)

These functions are plotted in Figure 18.2.

A B

Figure 18.2: Affine functions, each with a 2D vector argument; these plot as planes in 3D. (A)

The function f1(~w) defined in Equation 18.3. (B) The function f2(~w) defined in Equation 18.3.
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We can also visualize a quadratic function that has a 2D vector argument. Two examples are

f3(~w) = ~w T ~w = ~w T I ~w (18.5)

f4(~w) = ~w TK~w where K =

[

1/4 0
0 1

]

(18.6)

These functions are plotted in Figure 18.3.

A B

Figure 18.3: Quadratic functions, each with a 2D vector argument; these plot as paraboloids in

3D. (A) The function f3(~w) defined in Equation 18.5 is a surface of revolution. (B) The function

f4(~w) defined in Equation 18.6 is not symmetric about the vertical axis.

18.2 Operations That Preserve Convexity of Functions

Of the many operations that preserve the convexity of functions, we will mainly use three. The

first two are simple, have an intuitive appeal, and are easy to prove.

Recall, from basic mathematics, two properties of inequalities. The first is that an inequality is

unchanged when both sides are multiplied by the same nonnegative number. Suppose that l ∈ R+,

which is supposing that l is a real number and that 0 ≤ l. for any real numbers a and b, a basic

property is

(a ≤ b) → (la ≤ lb) (18.7)

Property 18.7 can be used to prove a basic convexity result.

Theorem: If f is a convex function, then for any nonnegative l ∈ R+, lf is a convex function.

Proof: See the extra notes for this class.

Next, recall that the sum of two inequalities preserves inequality. Suppose that for any real

numbers a, b, c, and d, we have a ≤ b and c ≤ d. Then it follows that (a + c) ≤ (b + d). More
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formally, the property is

((a ≤ b) ∧ (c ≤ d)) → ((a+ c) ≤ (b+ d)) (18.8)

Property 18.8 can be used to prove another basic convexity result.

Theorem: If f1 is a convex function and f2 is a convex function, then (f1+f2) is a convex function.

Proof: See the extra notes for this class.

Observation: These extend easily to nonnegative weighted sums of convex functions. Figure 18.4

shows the simple sum of the function f1(~w) and f2(~w) that we previously defined.

Figure 18.4: The sum of linear functions, f1(~w) and f2(~w), is a convex function. The plot of

(f1 + f2)(~w) is a 2D plane in 3D.

Multiplication by a nonnegative number has intuitive appeal. Summation is, to some students,

a less intuitive result.

Example: Because a quadratic form is convex, and an affine transformation is convex, the sum of

these is convex. For a symmetric matrix K ≻ 0 and a vector ~q, the function

f(~w) =
1

2
~w TK~w + ~q T ~w + c

is a convex function. Specifically, for a “center” vector ~w0, the quadratic form is a convex function:

f(~w) =
1

2
[~w − ~w0]

TK[~w − ~w0]

A more complicated result that we will use in this course is variously called convexity for an

affine map, or convexity for a change of variables. A linear map ~v = M~u can be thought of as a

change from the variables in the vector ~u to the variables in the vector ~v. In the context of linear

maps, we usually think of the matrix M as being square and full rank.
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Here, a matrix M can be any m× n real matrix. We can also have a vector ~c ∈ R
m. An affine

map, or change of variables, is the transformation

~v = M~u+ ~c (18.9)

Consider a convex function f :Rm → R, which produces a scalar value for a vector ~v ∈ Rm. If

we replace ~v by an affine map of ~u, the composed function is a convex function.

Theorem: If f is a convex function then, for the affine map M~u + ~c,

g(~u) = f(M~u+ ~c) is a convex function.

Proof: See the extra notes for this class.

Observation: Convexity for an affine change of variables, plus convexity of a norm, can be used

to prove convexity of a quadratic form of a symmetric positive definite matrix. The Cholesky

decomposition may be useful in such a proof.

We can use the Taylor series to write a function, then truncate the series after the first derivative.

Because the sum of the truncated terms is nonnegative, this gives us a way to find a lower bound

of a locally convex function. Consider a convex open set V ⊆ Rn, and a well behaved function

f : V → R that is convex for any vector ~w ∈ V. The first few terms of the Taylor series are

straightforward extensions of the case of a function with a scalar argument. From the assumption

that f is convex over the convex set V, the vector version of the Mean Value Theorem applies. For

some point ~ξ ∈ V, the value of the function f at the point ~w ∈ V can be expanded from a point

~w0 ∈ V as

f(~w) = f(~w0) +∇f(~w0)(~w − ~w0) +
1

2
[~w − ~w0]

T∇2f(~ξ)[~w − ~w0] (18.10)

Because we have assumed that f is convex over V, we know that the Hessian matrix is symmet-

ric and positive semidefinite when it is evaluated at any point inV. The third term in Equation 18.10

is, consequently, nonnegative; we can thus deduce the inequality

f(~w) ≥ f(~w0) +∇f(~w0)(~w − ~w0) (18.11)

In Equation 18.11, the gradient acts the same way that a normal vector acts: the scalar ∇f(~w0)(~w−
~w0) is zero if and only if ~w is in a plane that contains ~w0. We can conclude that a convex function

is always “above” the tangent hyperplane that can be defined at any point in the domain set of the

function. For the quadratic function f3(~w) in Equation 18.11, this is illustrated in Figure 18.5
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Figure 18.5: Because of the gradient inequality, the convex function f3(~w) is always “above”

its tangent plane at any point. The function is shown in black and the tangent plane at the point

~w0 = (−1, 1) is shown in blue.

18.3 Level Sets

A concept that is closely associated to a level curve of a function is a level set. This is the set

of all vectors that evaluate to a scalar that is less than, or equal to, a specified level.

Definition: level set of f(~w) at l is SL(f, l)

For any ~u ∈ Rn, any l ∈ R, and any f :Rn → R, the level set of f at l is defined as

SL(f, l)
def
= {~u :f(~u) ≤ l} (18.12)

A level set “fills in” the region that is enclosed by a level curve. For examples of level sets,

Figure 18.6 shows the surfaces and level sets of a linear function and a quadratic function.
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Figure 18.6: Surface plots and level sets of convex functions that have a 2D vector argument. (A)

A surface plot of function f1(~w) defined in Equation 18.3. (B) The level set of f1(~w) ≤ 0, written

as SL(f1, 0), is shown as the shaded region; the blue arrow is the direction of the transpose of the

gradient of the function. (C) A surface plot of function f4(~w) defined in Equation 18.6. (D) The

level set of f4(~w) ≤ 2, written as SL(f2, 2), is shown as the shaded region.

18.4 Convex Sets

Later in this course, we will use convex sets to describe how an optimization problem is con-

strained. The formal definition is conceptually similar to how we defined a convex function.

Definition: convex set V

For any V ⊆ Rn, any ~u ∈ V, any ~v ∈ V, and any θ ∈ R+, that V is a convex set is

defined as

(0 ≤ θ ≤ 1) → (((1− θ)~u+ θ~v) ∈ V) (18.13)

In plain English, this means that a set V is convex implies that the line segment between any

two points in V lies entirely in V.
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In this course, we will mainly specify a convex set as either a level set of a convex function, or

as derived from an operation on convex sets. There are two properties of convex sets that we will

use in this course and that are proved in the extra notes for this class.

There are many other properties of convex sets that are needed for optimization of convex

functions subject to convex constraints. An interested student should feel encouraged to explore

the associated texts and other material on this extensive topic.

Theorem: the intersection of two convex sets is a convex set.

Proof: See the extra notes for this class.

Observations: This result is familiar from prerequisite material that includes Venn diagrams of

up to three sets, which are typically shown as a convex sets. A consequence of Theorem 18.23,

which we will use later in this course, is that the intersection of level sets of convex functions is a

convex set. An example is the intersection of the level sets f1(~w) ≤ 0 and f2(~w) ≤ 0, shown in

Figure 18.7.
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Figure 18.7: Level sets of convex functions that have a 2D vector argument, shown as shaded

regions. (A) The intersection of the level sets SL(f1, 0) and SL(f2, 0) is a convex set. (B) The

intersection of the level sets of SL(f1, 0) and SL(f4, 2) is a convex set.

Theorem: an affine transformation of a convex set is convex.

Proof: See the extra notes for this class.

Observations: This statement has a simple interpretation. Consider any convex set V. The state-

ment means that, if ~w ∈ V, then an affinely transformed ~wA = M ~w + ~c is in some convex set VA.

This implies that we can “add” a constant vector ~c to a convex set, which offsets each vector in

V to a new vector. We can also multiply a vector in V by any real number – including a negative

number – and the new set is also convex. Multiplication by the number −1 is the operation of

reflecting the set around the origin, which maintains the convexity of the set.
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Extra Notes

18.5 Extra Notes on Convex Functions and Convex Sets

These extra notes are in three sub-sections: definitions related to convex functions; proofs that

relevant functions are convex; and proofs related to convex sets.

18.5.1 Definitions for Convex Functions

Definition: strictly convex function f(~w)

For any ~u ∈ Rn, any ~v ∈ Rn, any θ ∈ R++, and any f :Rn → R, that function f is a

strictly convex function is defined as

((~u 6= ~v) ∧ (0 < θ < 1)) → (f((1− θ)~u+ θ~v)) < ((1− θ)f(~u) + θf(~v))) (18.14)

Observation: Strict convexity of a function with a vector argument is a simple extension of the

definition of a function with a scalar argument.

Definition: convex function ~f(~w)

For any f :Rn → Rm and any i ∈ N++, that function ~f is a convex function is defined

as

(i ≤ m) → (fi is convex) (18.15)

Observation: A vector function with a vector argument is convex if and only if each “component”

function fi is convex.

A convex function that we will occasionally encounter is a norm of a vector. Recall that one

property of a norm is the triangle inequality, which is

‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖
The triangle inequality holds for any norm, not only for the usual Euclidean norm.
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18.5.2 Theorems for Convex Functions

Theorem: An affine map to scalars is convex.

For any m ∈ Rn and any c ∈ R, the affine map

f(~w) = m~w + c (18.16)

is convex.

Proof: Let ~u ∈ Rn, ~v ∈ Rn, and θ ∈ R+ with 0 ≤ θ ≤ 1. Then

f((1− θ)~u+ θ~v) = m[(1− θ)~u+ θ~v] + c

= m(1− θ)~u+mθ~v + c

= m(1− θ)~u+mθ~v + (1− θ)c+ θc

= (1− θ)m~u+ (1− θ)c + θm~v + θc

= (1− θ)f(~u) + θf(~v)

so f is convex.

Observation: An affine map to a scalar value is convex and is not strictly convex. The latter prop-

erty can be deduced because the linear combination of arguments equals the linear combination of

the evaluations of the arguments.

Theorem: An affine map to a vector space is convex.

For any real m× n matrix M and any ~c ∈ Rm, the affine map

~f(~w) = M ~w + ~c (18.17)

is convex.

Proof: Each “component” function fi maps a vector ~w ∈ R
n using row #i of M , which is mi, and

entry ci of ~c to a scalar value. Each fi is convex by Theorem 18.17 so ~f is convex.

Observation: An affine map to a vector space is convex and is not strictly convex.
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Theorem: A vector norm is convex.

For any norm ‖ · ‖ over a vector space Rn, the function

fN(~w) = ‖~w‖ (18.18)

is convex.

Proof: Let ~u ∈ Rn, ~v ∈ Rn, and θ ∈ R+ with 0 ≤ θ ≤ 1. Then

fN ((1− θ)~u+ θ~v) = ‖(1− θ)~u+ θ~v‖
≤ ‖(1− θ)[~u]‖+ ‖θ~v‖
≤ (1− θ)‖[~u]‖+ θ‖~v‖
≤ (1− θ)fN(~u) + θfN(~v)

Observation: Convexity of a norm can be useful for demonstrating convexity of other functions.

A prominent convex function is a quadratic form of a matrix. We can assume, without loss of

generalization, that such a real matrix K is a symmetric matrix.

Theorem: A quadratic form of a positive definite matrix is convex.

For any n×n symmetric matrix K ∈ (Rn×R
n) for which K ≻ 0, the quadratic form

f(~w) = ~w TK ~w (18.19)

is convex.

Proof: Let ~u ∈ Rn, ~v ∈ Rn, and θ ∈ R+ with 0 ≤ θ ≤ 1. Observe that the inequality in the

definition of a convex function has an equivalent inequality that holds because the same expression

is added to each side of the inequality:

(1− θ)f(~u) + θf(~v)) ≥ f((1− θ)~u+ θ~v)

≡ (1− θ)f(~u) + θf(~v))− f((1− θ)~u+ θ~v) ≥ 0
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We can reason that

(1− θ)f(~u) + θf(~v))− f((1− θ)~u+ θ~v)

= (1− θ)(~u TK~u) + θ(~v TK~v)− [(1− θ)~u+ θ~v]TK[(1− θ)~u+ θ~v]

= (1− θ)(~u TK~u) + ~v TK~v − (1− θ)(~v TK~v)− [(1− θ)~u+ θ~v]TK[(1− θ)~u+ θ~v]

= (1− θ)(~u TK~u) + ~v TK~v − (1− θ)(~v TK~v)w

−(1 − θ)2(~u TK~u)− θ2(~v TK~v)− 2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u) + ~v TK~v − (1− θ)(~v TK~v)

−θ2(~v TK~v)− 2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u) + ~v TK~v − (1− θ)(~v TK~v)

−(1 − 2(1− θ) + (1− θ)2)(~v TK~v)− 2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u) + θ~v TK~v

−(1 − 2(1− θ) + (1− θ)2)(~v TK~v) + 2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u) + ((1− θ)− (1− θ)2)~v TK~v

−2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u) + (1− θ)θ~v TK~v − 2(1− θ)θ(~u TK~v)

= (1− θ)θ(~u TK~u− 2(~u TK~v) + ~v TK~v)

= (1− θ)θ[~u− ~v]TK[~u− ~v]

≥ (1− θ)θ 0

≥ 0

Observation: The above reasoning holds for K � 0, so the quadratic form of a symmetric positive

semidefinite matrix is also a convex function.

Theorem: For any convex f :Rn → R, and any nonnegative l ∈ R+, the composition

(lf) :Rn → R (18.20)

is a convex function.

Proof: Assume that θ ∈ R+, that θ ≤ 1, and that l ∈ R+. Using Definition 18.2, and Property 18.7,

(f((1− θ)~u+ θ~v)) ≤ ((1− θ)f(~u) + θf(~v)))

→ (lf((1− θ)~u+ θ~v)) ≤ ((1− θ)lf(~u) + θlf(~v)))

so (lf) :Rn → R is a convex function.
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Theorem: For any fA :Rn → R that is a convex function, and any fB :Rn → R that is a convex

function, the composition

(fA + fB) :R
n → R (18.21)

is a convex function.

Proof: Assume that θ ∈ R+ and that θ ≤ 1. Using Definition 18.2, and Property 18.7. Then

((fA((1− θ)~u+ θ~v)) ≤ ((1− θ)fA(~u) + θfA(~v)))

and (fB((1− θ)~u+ θ~v)) ≤ ((1− θ)fB(~u) + θfB(~v))))

→ ((fA + fB)((1− θ)~u+ θ~v)) ≤ ((1− θ)(fA + fB)(~u) + θ(fA + fB)(~v)))

so (fA + fB) :R
n → R is a convex function.

Theorem: For any f :Rm → R that is a convex function, any matrix M ∈ R
m × R

n, any vector

~c ∈ R
m, and any vector ~w ∈ R

n, the composition

(g :Rn → R)
def
= f(M ~w + ~c) (18.22)

is a convex function.

Proof: Assume that θ ∈ R+ and that θ ≤ 1. From Definition 18.2,

f((1− θ)~u+ θ~v) ≤ ((1− θ)f(~u) + θf(~v))

Substituting M ~w + ~c for ~u and ~v in the definition is

f((1− θ)(M~u+ ~c) + θ(M~v + ~c)) ≤ ((1− θ)f(M~u+ ~c) + θf(M~v + ~c))

≡ g((1− θ)~u+ θ~v) ≤ ((1− θ)f(~u) + θf(~v))

so g(~w) is a convex function.

18.5.3 Theorems for Convex Sets

Theorem: the intersection of two convex sets is a convex set.

For any convex set VA ⊆ R
n and any convex set VB ⊆ R

n, the intersection

VA ∩ VB (18.23)

is a convex set.
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Proof: Consider any ~u : ((~u ∈ VA) ∧ (~u ∈ VB)), any ~v : ((~v ∈ VA) ∧ (~v ∈ VB)), and any θ ∈ R+

such that θ ≤ 1. Then

VA is convex → ((1− θ)~u+ θ~v) ∈ VA

VB is convex → ((1− θ)~u+ θ~v) ∈ VB

(VA is convex) ∧ (VB is convex) → (((1− θ)~u+ θ~v) ∈ VA) ∧ (((1− θ)~u+ θ~v) ∈ VB)

→ (((1− θ)~u+ θ~v) ∈ (VA ∩ VB)

so VA ∩ VB is convex.

Theorem: an affine transformation of a convex set is convex.

For any convex set V ⊆ Rn, any vector ~w ∈ V, any matrix M ∈ Rm × Rn, and any

vector ~c ∈ Rm, the set

VA

def
= {~u : ((~u ∈ R

m) ∧ (~u = M ~w + ~c))} is convex (18.24)

Proof: For any vector~a ∈ V, construct~aA = M~a+~c. For any vector~b ∈ V, construct~bA = M~b+~c.

Because V is a convex set, the vector (1− θ)~a+ θ~b is in the set V.

By construction, ~aA ∈ Rm and~bA ∈ Rm so ~u = (1− θ)~aA + θ~bA is in Rm. Then

M [(1− θ)~a+ θ~b] + ~c = (1− θ)[M~a + ~c] + θ[M~b + ~c]

= (1− θ)M~a + θM~b + ((1− θ) + θ)~c

= M [(1 − θ)~a+ θ~b] + ~c

= (1− θ)~aA + θ~bA

= ~u

so ~u ∈ VA.

End of Extra Notes
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