
CISC 371 Class 20

Lagrange Multipliers for 2D Functional Convex Problems

Texts: [1] pp. 285–296; [2] pp. 195–203; [3] p. 215; [4] pp. 374–391; [5] pp. 304–315

Main Concepts:

• A minimizer is in a level curve of an objective

• A minimizer is in a level curve of a property

• A minimizer is in the intersection of level curves

• At the intersection point, example level curves have parallel gradients

Sample Problem, Machine Inference: What is the minimum-length vector on a line

in 2D?

In a computational setting, the constraints on an optimization problem are usually given as

functions. We will call each constraint function a property, writing these as:

Equality Property: p(~w) = 0
Inequality Property: p(~w) ≤ 0

(20.1)

We can see that a property is closely related to a previous concept: an equality property is a

level curve and an inequality property is a level set. A functional constrained optimization problem

has a minimizer – if one exists – that is in a level curve or a level set.

How can we minimize an objective, subject to constraints? We can begin by exploring the

geometry of some simple problems for size-2 vectors. We can start with the problem of finding a

vector with minimum squared length that satisfies a linear equality property.

Problem: squared length, linear equality

~w ∗ = argmin
~w∈R2

f1(~w)

p1(~w
∗) = 0

where:

f1(~w) = ~w T ~w
p1(~w) =

[

−1 1
]

~w + 3 = 0

(20.2)

Recall that the level curves of a function with a size-2 argument are curves in the plane, so they

can be superimposed as a contour plot. We can plot the property p1(~w) and the level curves of f1

to get a picture of Problem 20.2. This combined plot is shown in Figure 20.1.
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Figure 20.1: Plots of property p1, shown in black, and level curves of function f1, shown in blue.

The minimizer of f1 is on a level curve that intersects the curve of property p1.

The optimal vector ~w ∗ for Problem 20.2 must satisfy property p1, so it must be on the level

curve p1(~w) = 0; we can write this as

~w ∗ ∈ SC(p1, 0)

When we evaluate f1 using the optimal vector, we get some scalar value c1 = f1(~w
∗). This has

a useful implication:

~w ∗ is on the level curve of f1 for value c1, or ~w ∗ ∈ SC(f1, c1)

The optimal vector ~w ∗ for Problem 20.2 must be on the level curve of p1 at value 0, and on

the level curve of f1 at value c1. This intersection is illustrated in Figure 20.2(A). We can see, in

Figure 20.2 (A), that the level curves “touch”: they are not crossing. If we plot the transpose of the

gradients at the optimal point, that is if we plot [∇f1(~w
∗]T and [∇p1(~w

∗]T , we can see that the

transposed gradients are parallel and are in opposite directions. This is illustrated in Figure 20.2(B).

We can compute the gradients of f1 and p1 as

∇f1(~w) =
[

2w1 2w2

]

∇p1(~w) =
[

−1 1
]

(20.3)

The optimal point is

~w ∗

1
=

[

1.5
−1.5

]

(20.4)

At the optimal point ~w ∗, the gradients are a scalar multiple µ1 = 3 of each other, so

∇f1(~w
∗

1
) = µ1∇p1(~w

∗

1
) (20.5)
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Figure 20.2: Plots of property p1, shown in black, and the optimal level curve of function f1,

shown in green. (A) The minimizer ~w ∗ is on a level curve of objective f1 that intersects the level

curve of property p1. (B) The respective transposed gradient, shown as arrows, are parallel and

opposite in direction.

Problem: weighted squared length, quadratic equality

~w ∗ = argmin
~w∈R2

f2(~w)

p2(~w
∗) = 0

using: R =

[

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]

K = R

[

1/(32) 0
0 1/(22)

]

R T

where:

f2(~w) =
1

2
~w TK~w

p2(~w) = (w1 − 3)2 + 1− w2 = 0

(20.6)

This problem is to minimize a weighted norm, subject to a quadratic equality constraint. As

before, we can plot the level curve of property p2 at value 0, which is SC(p2, 0). We can also plot

the contours of f2, which are level curves at various values. This is illustrated in Figure 20.3.

As with Problem 20.2, the optimal point ~w ∗ to Problem 20.6 must be in the level curve of

property p2 at value 0, so ~w ∗ ∈ SC(p2, 0). The optimal point must be in a level curve of f2 at some

value c2, so ~w ∗ ∈ SC(f2, c2). This geometry is illustrated in Figure 20.4(A) where, once again,

the level curves “touch”. The transposed gradients are parallel and are in opposite directions, as

illustrated in Figure 20.4(B).
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Figure 20.3: Plots of property p2, shown in black, and level curves of function f2, shown in blue.

The minimizer of f2 is on a level curve that intersects the curve of property p2.
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Figure 20.4: Plots of property p2, shown in black, and the optimal level curve of function f2,

shown in green. (A) The minimizer ~w ∗ is on a level curve of objective f2 that intersects the level

curve of property p2. (B) The respective transposed gradients, shown as arrows, are parallel and

opposite in direction.

We can compute the gradients of f2 and p2 as

∇f2(~w) = [~w]TK

∇p2(~w) =
[

2w1 − 6 −1
]

(20.7)

The optimal point is

~w ∗

2
≈

[

2.155
1.714

]

(20.8)
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At the optimal point ~w ∗

2
, the gradients are a scalar multiple µ2 ≈ − 6.257 of each other, so

∇f2(~w
∗

2
) = µ2∇p2(~w

∗

2
) (20.9)

Problem: affine objective, quadratic constraint

~w ∗ = argmin
~w∈R2

f3(~w)

p3(~w
∗) = 0

where:

f3(~w) =
[

1 1
]

~w
p3(~w) = (w1 − 1)2 + 1− w2 = 0

(20.10)

This problem is to minimize an affine form, subject to a quadratic equality constraint. As

before, we can plot the level curve of property p3 at value 0, which is SC(p3, 0). We can also plot

the contours of f3, which are level curves at various values. This is illustrated in Figure 20.5.
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Figure 20.5: Plots of property p3 are shown in black; level curves of function f3, which are lines,

are shown in blue. The minimizer of f3 is on a level curve that intersects the curve of property p3.

As with Problem 20.2, the optimal point ~w ∗ to Problem 20.10 must be in the level curve of

property p3 at value 0, so ~w ∗ ∈ SC(p3, 0). The optimal point must be in a level curve of f3 at some

value c3, so ~w ∗ ∈ SC(f3, c3). This geometry is illustrated in Figure 20.6(A) where, once again, the

level curves “touch”; the transposed gradients are parallel and are in opposite directions. This is

illustrated in Figure 20.6(B).
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Figure 20.6: Plots of property p3, shown in black, and the optimal level curve of function f3,

shown in green. (A) The minimizer ~w ∗ is on a level curve of objective f3 that intersects the level

curve of property p3. (B) The respective transposed gradients, shown as arrows, are parallel and

opposite in direction.

We can compute the gradients of f3 and p3 as

∇f3(~w
∗

3
) =

[

1 1
]

∇p3(~w
∗

3
) =

[

2w1 − 2 −1
]

(20.11)

The optimal point is

~w ∗

3
=

[

0.5
1.25

]

(20.12)

At the optimal point ~w ∗, the gradients are a scalar multiple µ3 = − 1 of each other, so

∇f3(~w
∗

3
) = µ3∇p3(~w

∗

3
) (20.13)
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20.1 Lagrange Multipliers

In exploring these examples, we have observed that:

• The minimizer ~w ∗ was in a level curve of the objective f

• The minimizer ~w ∗ was in a level curve of the property p

• The gradients of f and p at ~w ∗ were related:

∇f(~w ∗) = −µ∇p(~w ∗)

These results extend from size-2 vectors, which are in the Euclidean space R2, to size-n vectors,

which are in the Euclidean space Rn. For reasons having to do with the existence of the directional

derivative at interior points, the observations regarding level curves are extended to level sets.

The scalar µ ∈ R is called the Lagrange multiplier. We only need a version of the multiplier

theorem that applies to any vector ~w ∈ R
n; there are versions that apply to subsets of vector spaces,

and to non-Euclidean spaces such as manifolds.

Theorem: Lagrange multiplier µ

For any continuous differentiable f : Rn → R, and any continuous differentiable

p :Rn → R, and any ~w0 ∈ R
n, where the level set of p at ~w0 is SS(p, p(~w0)),

If ~w0 is a local minimizer or a local maximizer of f on the domain SS(p, p(~w0)),

then there is a scalar µ ∈ R such that

∇f(~w0) = −µ∇p(~w0) (20.14)

Proof: Most textbooks on vector calculus

Observation: The proof of Theorem 20.14 typically involves the definition of the tangent space of

a level set, and the Implicit Function Theorem in a vector space.

Extra Notes

Extra Notes on 2D Convex Problems

Earlier in the course, we observed that a 2D function can be usefully visualized using contour

plots and a surface plot. For example, Figure 20.1 provides contour plots of the objective function
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f1 in blue and the curve of the property function p1 in blue. What would this look like as a surface

rendering? Plotting the objective function is straightforward; it may not be immediately clear how

to plot a 2D constraint curve in 3D.

We stated the constraint as property p1(~w) that evaluates to zero. This is very close to what we

mean a level curve curve to be: a point ~w is in the level curve if and only if the property function

evaluates to zero. Because the 2D property does or does not hold, independent of the value of

f1(~w), we can render the level curve by “extending” the level curve to every value in R that the

objective function could possibly map to. Because p1(~w) = 0 is a line, the infinite extension of the

line is a vertical plane. This is shown in Figure 20.7.
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Figure 20.7: Plots of an objective function f1, shown in blue, and a constraint property function

p1, shown in black. The minimizer of f1 is on a level curve that intersects the curve of property p1.

(A) Contour plots, which are level curves of the objective function in blue and the level curve of

the property function at zero. (B) Surface plots of the objective function in blue and the infinitely

extended constraint property.

We can use the same concept to visualize a quadratic objective f2 function and a parabolic

constraint function p2. The constraint function will now be rendered as a vertical parabolic sheet,

shown in Figure 20.8.

When we visualize an affine objective f3 function and a parabolic constraint function p3, we

can see how a constrained optimization problem can have a solution even when the unconstrained

objective function tends to −∞. The constraint function will be rendered as a vertical parabolic

sheet and the objective function will be rendered as a “tilted” plane, shown in Figure 20.9. Al-

though the plane tends to −∞, the points in the plane that satisfy the parabolic constraint have a

unique solution.
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Figure 20.8: Plots of an objective function f2, shown in blue, and a constraint property function

p2, shown in black. The minimizer of f2 is on a level curve that intersects the curve of property p2.

(A) Contour plots, which are level curves of the objective function in blue and the level curve of

the property function at zero. (B) Surface plots of the objective function in blue and the infinitely

extended constraint property.
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Figure 20.9: Plots of an objective function f2, shown in blue, and a constraint property function

p2, shown in black. The minimizer of f2 is on a level curve that intersects the curve of property p2.

(A) Contour plots, which are level curves of the objective function in blue and the level curve of

the property function at zero. (B) Surface plots of the objective function in blue and the infinitely

extended constraint property.
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