
CISC 371 Class 21

The Lagrange Equation with Linear Equality Constraints

Texts: [1] pp. 285–296; [2] pp. 195–203; [3] p. 215; [4] pp. 374–391; [5] pp. 448–459

Main Concepts:

• Lagrange multipliers add variables to a problem

• Lagrange function includes equality constraints

• Lagrange equation imposes gradient constraints

• Linear equality constraints produce a linear equation

Sample Problem, Machine Inference: What is the force balance in a two-spring

mechanical system?

The gradient of an objective function at a minimizer, and the gradient of a property function at

that minimizer, are related by Theorem 20.14. In this equation, the value µ is easily computed at a

point ~w0 that is known to be a local minimizer. This leads us to a simple and powerful question.

Can we use this theorem at a stationary point? That is, can Theorem 20.14 be used to find a

point ~w ∗ that is a local minimizer? To do this, we would need to treat ~w ∗ as an unknown vector,

the entries of which are to be computed. The value µ would also be unknown, and would also need

to be computed.

One way of using the Lagrange multiplier is to subtract −µ∇p from both sides and set the result

to zero. This equation has two arguments : the unknown vector ~w, and the unknown multiplier µ.

This function is named after its discoverer, Joseph-Louis Lagrange.

Definition: Lagrange function

For any convex continuous differentiable functions f :Rn → R and p :Rn → R, for

any local minimizer ~w0 of f for which p(~w0) = 0, the Lagrange function is defined as

L(~w, µ) = f(~w) + µp(~w) (21.1)

Recall that a necessary condition for ~w ∗ to be a local minimizer is that ~w ∗ is a stationary point.

Specifically, for Theorem 20.14 to apply, the augmented vector
[

~w ∗

µ∗

]
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must be a stationary point of Equation 21.1. This implies that the derivative of Equation 21.1

must be a 1-form that has each entry equal to zero. This would be two linear equations

∂L

∂ ~w
= 0

∂L

∂µ
= 0 (21.2)

We prefer to solve for vector values rather than for 1-form values, so we will take the transposes

of Equation 21.2. We also prefer to solve a single linear equation whenever possible. Doing this

gives us an equation that is also named after its discoverer.

Definition: Lagrange equation

For any convex continuous differentiable functions f :Rn → R and p :Rn → R, for

any local minimizer ~w0 of f subject to the condition that p(~w0) = 0, the Lagrange

equation is defined from the Lagrange function L(~w, ~µ) as













[

∂L

∂ ~w

] T

[

∂L

∂µ

] T













(~w ∗, µ∗) = ~0 (21.3)

We can use Equation 21.3 to solve the first problem from the previous class. We will re-state

the functions of the problem for clarity.

Problem: squared length, linear equality

f1(~w) = ~w T I ~w

p1(~w) =
[

−1 1
]

~w + 3
(21.4)

The Lagrange function for Problem 21.4 is

L1(~w, µ) = f1(~w)− µp1(~w) (21.5)

= ~w T I ~w + µ(
[

−1 1
]

~w + 3)
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The derivatives of Equation 21.5 are

∂L1

∂ ~w
= 2~w T I +

[

−1 1
]

µ (21.6)

∂L1

∂µ
=

[

−1 1
]

~w T + 3 (21.7)

Collecting the terms ~w and µ into an augmented vector of unknowns, and setting the transposes

of the derivatives to zero, gives





2I

[

−1
1

]

[

−1 1
]

0





[

~w ∗

µ∗

]

=





0
0

−3



 (21.8)

A numerical solution to Equation 21.8 gives the minimizer ~w ∗ and the Lagrange multiplier as

~w ∗ =

[

1.5
−1.5

]

(21.9)

µ∗ = 3

The values of Equation 21.9 are the same as those in Problem 20.4.

Problem: Hooke springs, external force

Suppose that two springs are modeled using Hooke’s Law, and that the springs are connected

to ground via a single mass. Further suppose that the springs are compressed by independent

forces, and that there is also a known external force. We study the case where the springs are in

equilibrium, which implies that the mass is not moving. This is illustrated in Figure 21.1.

m
a
s
s

Figure 21.1: A two-spring mechanical system. Spring 1 has stiffness coefficient k1 and Spring 2

has coefficient k2. The springs are displaced by w1 and w2 from their reference points. An external

load ce is applied to the system, which is assumed to be in equilibrium.
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The Hooke model of a spring gives each force ci, and each potential energy zi, as functions of

the spring stiffness ki and the displacement xi. These forces and energies are

ci = kiwi (21.10)

zi =
1

2
kiw

2

i

⇒ z1 + z2 =
1

2
~w TK ~w

where K =

[

k1 0
0 k2

]

The springs are in equilibrium so, taking into account the direction of the application of force,

the forces are in balance when

c2 − c1 = ce

≡ −k1x1 + k2x2 = ce (21.11)

≡
[

−k1 k2
]

~w = ce

We can formulate this as an optimization problem that has a quadratic objective function:

f2(~w) =
1

2
~w TK ~w

p2(~w) = m~w − ce
where

K =

[

k1 0
0 k2

]

m =
[

−k1 k2
]

(21.12)

The Lagrange function for Problem 21.12 is

L2(~w, µ) = f2(~w)− µp2(~w) (21.13)

=
1

2
~w TK~w + µ(m~w − ce)

The derivatives of Equation 21.5 are

∂L2

∂ ~w
= ~w TK +mµ (21.14)

∂L2

∂µ
= m~w − ce (21.15)
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Collecting the terms ~w and µ into an augmented vector of unknowns, and setting the transposes

of the derivatives to zero, gives

[

K mT

m 0

] [

~w ∗

µ∗

]

=





0
0
ce



 (21.16)

Observation: by construction, if K is symmetric and positive definite, and ~m 6= ~0, then the matrix

in Equation 21.16 is symmetric and indefinite. Two eigenvalues are positive and one eigenvalue is

negative. A derivation of this observation is in the extra notes for this class.

We can use specific values and solve a sample form of this problem. Suppose that the stiffnesses

and external load are

k1 = 1

k2 = 2 (21.17)

ce = 6

When we substitute the values of Equation 21.17 into Equation 21.14, we have





1 0 −1
0 2 2

−1 2 0





[

~w ∗

µ∗

]

=





0
0
6



 (21.18)

When we numerically solve Equation 21.18, using 2 decimal places of numerical precision for

display, we have

[

~w ∗

µ∗

]

=





−2
2

−2



 (21.19)

Equation 21.19 provides the same values as we get when we use the MATLAB Optimization

Toolbox to perform constrained optimization of Problem 21.12 with the values of Equation 21.18.

The signs of the eigenvalues of the matrix of Equation 21.18 are, as expected, a mixture of 2

positive eigenvalues and 1 negative eigenvalue.
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21.1 General Equality Constraints

For an objective function f(·) that is quadratic in ~w, having a symmetric positive definitive K

and a linear constraint matrix Ml×n that is full rank, optimization of a quadratic objective function

with linear equality constraints is

~w ∗ = argmin
~w∈Rn

f(~w)

and p(~w ∗) = 0

where:

f(~w) =
1

2
~w TK~w + ~q T ~w

p(~w ∗) = M ~w ∗ − ~c

(21.20)

There are l Lagrange multipliers µi in the Lagrange function of Problem 21.20. The objective

function maps to a scalar value and the Lagrange multipliers must also map to a scalar value for

the Lagrange function to be well formed.

The extra notes for this class have a derivation using linear algebra. The result is simple to

state.

Theorem: KKT matrix gives the minimizer of a quadratic objective with linear equality con-

straints

A solution to Problem 21.20 is given by the linear equation

[

K M T

M 0

] [

~w

~µ

]

=

[

−~q

~c

]

(21.21)

Proof: See the extra notes for this class.

Observation: Equation 21.16 is a special case of Theorem 21.21, where M = m and ~q = ~0. The

matrix in Theorem 21.21 is often named the KKT matrix because the solution is a KKT point,

which we will define and use in a subsequent class in this course.
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Extra Notes

21.2 Extra Notes on Linearly Constrained Quadratic Objectives

Derivation: solution to a quadratic objective with linear equality constraints

In solving Problem 21.20, there are two useful ways to represent the sum of the products of

each Lagrange multiplier with the ith constraint, which produces a scalar result. This is because the

sum of the products is effectively a dot product, which can be written in two ways as the product

of a transposed vector and a vector.

µi(~m
T

i ~w − ci) = (~w T ~m− ci)µi

⇒ g(~w, ~µ)
def
=

l
∑

i=1

µi(~m
T

i ~w − ci) (21.22)

= ~µ T [M ~w − ~c]

= [~w TM T − ~cT ]~µ

We know how to differentiate a linear equation of a vector with respect to a vector. We can use

the appropriate version of Equation 21.22 to differentiate the vector of interest:

∂g

∂ ~w
= ~µ TM

∂g

∂~µ
= ~w TM T − ~cT (21.23)

After these preliminaries, we form the Lagrange function of Problem 21.20 as

L(~w, ~µ)
def
= f(~w) + ~µ T [M ~w − ~c] (21.24)

Next, we differentiate Equation 21.24, using intermediate results of Equation 21.23, to get

∂L

∂ ~w
= ~w TK + ~q T + ~µ TM

∂L

∂~µ
= ~w TM T − ~cT (21.25)
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We can transpose Equations 21.25, which is in terms of 1-forms, to equations that are in terms

of vectors. We also impose the necessary condition for stationarity, which is equality to the zero

vector, to get

[

~w TK + ~q T + ~µ TM
] T

= ~0m×1

[

~w TM T − ~cT
]T

= ~0l×1 (21.26)

After we simplify by propagating the transposes, and use the symmetry property K = K T , we

have

[

K ~w + ~q +M T~µ
] T

= ~0

[M ~w − ~c] = ~0 (21.27)

We can collect the terms of Equation 21.27 into a single linear equation

[

K M T

M 0

] [

~w

~µ

]

=

[

−~q

~c

]

which is Theorem 21.21.

Temporarily abbreviating the matrix in Theorem 21.21 as

W =

[

K M T

M 0

]

(21.28)

we see that W is symmetric and partitioned into blocks.

The matrix K was assumed – in Problem 21.20 – to be symmetric and positive definite so K−1

exists. We can define the matrix that reduces the blocks of W in Equation 21.28, using Gaussian

elimination, as

EW

def
=

[

I 0
−MK−1 I

]

(21.29)

EW in Equation 21.29 is a unit lower triangular matrix, so it is non-singular and can be used in

a similarity transformation.

Pre-multiplying W by EW , and post-multiplying the result by E T
W

, shows that

EWWE T

W = C =

[

K 0
0 −MMT

]

(21.30)
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The matrix M was assumed – in Problem 21.20 – to be full rank, so [M T ] is symmetric and

positive definite. Therefore [−MM T ] is symmetric and negative definite, so the block-diagonal

matrix C in Equation 21.30 is indefinite: it has positive eigenvalues arising from the [K] block and

negative eigenvalues arising from the [−MM T ] block.

Specifically, every eigenvector of C that has a positive eigenvalue has the form
[

~w
~0

]

and every eigenvector of C that has a negative eigenvalue has the form
[

~0
~µ

]

which can be proved by expansion.

End of Extra Notes
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