
CISC 371 Class 29

Support Vector Machine – Dual Formulation

Texts: [1] pp. 417–422; [2] pp. 150–153

Main Concepts:

• Lagrange multipliers add variables to a problem

• Lagrange function includes equality constraints

• Lagrange equation imposes gradient constraints

• Linear equality constraints produce a linear equation

Sample Problem, Machine Inference: How can we effectively compute an optimal

separating hyperplane?

Notation: We have previously used λ as the symbol for a Lagrange multiplier of an inequality

constraint. The SVM literature and code almost universally use the symbol α, so we will adopt the

current usage to make it easier to read articles and documentation.

Rewriting the primal formulation: To write the dual formulation succinctly, it is useful to gather

the various scalars and vectors into matrix-vector form. We will retain the notation for the weight

vector ~w and the bias scalar b because these are the optimization arguments.

The constraint on a data vector ~xj that is imposed by its label is: if the label yj = +1 then

the data vector should be on the positive “side” of the classification hyperplane; and if the label

yj = −1 then the data vector should be on the negative “side” of the classification hyperplane.

These can be combined into the single constraint on data vector ~xj that is

yj(~xj · ~w + b) ≥ 1
[

yj~x
T
j

]

~w + byj ≥ 1 (29.1)

Because we usually write the optimization argument as a vector, Equation 29.1 suggests that

the data vectors ~xi be gathered into a matrix. We will write the gathered data vectors as the design

matrix

Xm×n
def
=











~xT
1

~xT
2

...

~xT
m











(29.2)
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We will use two methods for gathering the yi labels. We will use a vector form and a matrix,

which are

~y
def
=











y1
y2
...

ym











Y
def
=











y1 0 · · · 0
0 y2 · · · 0
...

...
. . .

...

0 0 · · · ym











(29.3)

Using the design matrix of Equation 29.2, the matrix form for the labels of Equation 29.3, the

vector form of the labels in Equation 29.3, and the vector ~1 that has each entry equal to 1, the

inequality constraints of Equation 29.1 can be combined into a single inequality as

[Y X ]~w + b~y ≥ ~1 (29.4)

We can write Equation 29.4 as a level set for the value of zero, which is

~1− [Y X ]~w − b~y ≤ ~0 (29.5)

The objective function for the SVM is

f(~w) =
1

2
~w T ~w (29.6)

The primal Lagrange function, from Equation 29.6 and Equation 29.5, is

L(~w, b, ~α) =
1

2
~w T ~w + ~αT [~1− Y X ~w − b~y] (29.7)

Because the SVM is a constrained convex problem, the KKT conditions require that the mini-

mum occur at a stationary point. To find the stationary point, we need to differentiate Equation 29.7

with respect to ~w and with respect to b, then transpose the 1-forms into vectors. This gives us

[

∂L

∂ ~w

] T

= ~w −XY ~α (29.8)

[

dL

db

] T

= −~αT~y

Setting the derivatives in Equation 29.8 to zero, at the stationary point, gives us

~w = X TY ~α (29.9)

such that ~y T ~α = 0
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We can write ~w in terms of the data matrix X and the Lagrange multipliers ~α, subject to a

linear equality constraint. Using the expression for ~w in Equation 29.9, and using the constraint in

that equation to eliminate a term, gives us the Lagrange formula of the dual of the SVM problem

as

LD(~α, b) =
1

2
~αTY XX TY ~α + ~αT [~1− Y XX TY ~α− b~y]

= −
1

2
~αTY XX TY ~α + 1~α (29.10)

The dual of the SVM problem is to maximize the Lagrange formula of Equation 29.10 subject

to: (a) the equality constraint of ~y T ~α = 0 and (b) the KKT condition that ~α ≥ ~0.

Observations on the dual formulation:

• there is one Lagrange multiplier αi for each data vector ~xi

• primal formulation was less constrained: ~w was a general weight vector

• dual formulation is more constrained: αi ≥ 0 and the sum of all yiαi is zero

• support vector: data ~xi with αi > 0

• non-support vector: data ~xi with αi = 0, which can be removed from the computation

29.1 Sequential Minimal Optimization: Concept

Prior to 1998, SVM optimization was performed by using the dual Lagrange formula of Equa-

tion 29.10 as the objective. John Platt, working at Microsoft Research, developed an algorithm that

avoids matrix computation and is roughly linear in the number m of data vectors that are used to

training the SVM.

From an initial estimate of the Lagrange multipliers, we can find the corresponding weight

vector ~w by using Equation 29.9. Any correctly classified support vector ~xi can be used to calculate

the bias scalar b, using Equation 27.12.

The error for each data vector ~xk, for current estimates of ~w and b, is

Ek
def
= ~w T~xk + b− yk (29.11)
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The concept for sequential minimal optimization, or SMO, is to examine carefully the equality

constraint of ~y T ~α = 0. If this is expanded into a summation, it is

m
∑

i=1

yiαi = 0 (29.12)

A simplified version of the SMO algorithm begin by searching for a Lagrange multiplier αi

that does not satisfy the KKT conditions, usually to within some numerical tolerance. Another

multiplier, αj , is selected by a heuristic; we can think of this as a randomly selected multiplier.

The SMO algorithm works by updating the second multiplier using steepest descent. The

calculation is performed using the values Ei and Ej from Equation 29.11. The stepsize is calculated

as

sij =
1

~xi · ~xi + ~xj · ~xj − 2~xi · ~xj

=
1

‖~xj − ~xi‖2

The update of αj is similar to the Perceptron Algorithm with a variable stepsize:

αj ← αj + sij(Ej −Ei) (29.13)

By holding the other Lagrange multipliers as constant, the updated αj of Equation 29.13 and the

constraint equality of Equation 29.12 provide a unique update to the multiplier αi that previously

violated the KKT conditions.

From the new estimates of αi and αj , a new estimate of ~w can be computed directly. The new

estimate of b is technically complicated, but in most situations is the mean of the estimates from

the data vectors ~xi and ~xj that correspond to the updated Lagrange multipliers.

The actual SMO algorithm includes a number of other considerations, such as:

• handling cases where sij is very large

• satisfying an upper constraint on each multiplier, as αk ≤ C

• using an advanced way of finding the dot product of data vectors
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