
CISC 371 Class 30

SVM – Soft Margins

Texts: [1] pp. 432–434

Main Concepts:

• Mis-classified data vectors: false positives and false negatives

• Slack variables for inequality constraints

• Dual formulation of slack variables

Sample Problem, Machine Inference: What is the optimal hyperplane for data that

are not linearly separable data?

One common problem in data analysis is that data may be not be linearly separable. The

simplest possible data are a list of real numbers, or 1D data. Suppose that we draw 10 numbers

from a first Gaussian distribution and another 10 numbers from a second distribution, with the first

set having Label -1 and the second set having Label +1. An example, in which the numbers are

linearly separable, is shown in Figure 30.1(A). We can then add two more xj values, labelled in a

way that makes the data not linearly separable; this example is shown in Figure 30.1(B).
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Figure 30.1: 1D data for linear separability, with Label -1 data shown as red circles and Label +1

data shown as blue crosses. (A) The data are linearly separable by a threshold of θ ≈ 4. (B)

Additional data, which using a simple threshold would be classified as a false negative and a false

positive, are not linearly separable.
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We can use the data in Figure 30.1(A) to compute an SVM. This gives us a weight “vector”,

which is a scalar weight w, and a bias value b. For each input xj , we can compute the score as

zj = xjw + b (30.1)

We can then transform the inputs to scores. Applying Equation 30.1 to the 1D data, we find

the scores of the linearly separable data as shown in Figure 30.2(A) and all of the data as shown

in Figure 30.2(B). The data with scores less than 0 are mapped to Class -1 and the data with non-

negative scores are mapped to Class +1. It is plain, from Figure 30.2(A) figure, that the support

data are: the xi value with the smallest positive score, which is the left-most blue circle; and xi

value with the largest negative score, which is the right-most red cross.
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Figure 30.2: 1D data, written as xj , are mapped to scores zj = xjw + b for classification. Data

with Label -1 data shown as red circles and Label +1 data shown as blue crosses. (A) The scores

are linearly separable by a threshold of θ = 0. (B) Additional data, which using a simple threshold

would be classified as a false negative and a false positive, are not linearly separable.

Let us explore the false negative value in Figure 30.2(B) because it is a potential support vector

for the SVM. Although this value has a Label +1, it has a score uj < 0 that implies it should placed

in Class -1. One way we can manage this false-negative score is to modify the equality constraint

on a support vector. Recall that, if the natural number s indexes a support vector, the optimization

requires that each support vector satisfies the equality constraint

∀i ∈ Ns : yi(~x
T
i ~w + b) = 1 (30.2)

One way that we could modify this condition, to address the difficulty of the single false-

negative value in our 1D data, is to add some slack to the left-hand side of Equation 30.2. Because
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the score of this false-negative value is some zj < 0, we could allow the score to increase by

some positive number until the equality constraint of Equation 30.2 was met. It is common, in the

literature describing an SVM, to use the Greek symbol ξ as the slack term. Our modified constraint

on a support vector would be

∀i ∈ Ns : yi(~x
T
i ~w + b) + ξi = 1 (30.3)

Adding this slack term raises other concerns, such as:
• how large ξs can be

• how many support vectors can have slack

• whether there is a limit on the total slack that is possible

30.1 Slack Variables: Primal Formulation

Let us recall how inequalities are defined in mathematics. In many constructions of the natural

numbers and the real numbers from predicate logic, the inequality relation is defined in terms

of equality. For example, for real numbers a ∈ R and b ∈ R, we might say that a ≥ b. The

underlying definition is that there is some non-negative real number ξ such that a + ξ = b. The

logical statement for this assertion is

(a ≤ b) → (∃ξ∈R+
(a+ ξ = b))

The name for ξ is a slack variable. We can use this concept to improve the inequality constraints

in an SVM by introducing one slack variable for each inequality constraint and gathering these

variables into a vector ~ξ. In an SVM, we need to write a slack variable ξj with the constraint

ξj ≥ 0.

We arrived at the use of a slack variable by considering a specific instance of a potential support

vector in a simple data set. We can generalize this idea so that it applies to every data vector ~xj .

when we formulated the SVM problem, we extended the equality constraint of Equation 30.2 to

be the inequality constraint

yj(~x
T
j ~w + b) ≥ 1 (30.4)

The addition of a slack variable ξj to Equation 30.4 would be

yj(~x
T
j ~w + b) + ξj ≥ 1 with ξj ≥ 0 (30.5)

We prefer to write an inequality constraint as a level set, especially with respect to the level 0.

We can do this by writing Equation 30.5 as

1− yj(~x
T
j ~w + b)− ξj ≤ 0 with ξj ≥ 0 (30.6)
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The matrix-vector version of Equation 30.6 is a modification of Equation 29.5, in which we

replace the “where” condition with an inequality constraint. We can write one set of constraints

for the scores and another set for the non-negativity of the slack variables, so that the constraints

are

~1− Y X ~w − b~y − ~ξ ≤ ~0

−~ξ ≤ ~0
(30.7)

At this stage, there are two choices for how to incorporate the slack variables in the vector ~ξ. If

we include them as free variables, then there is a possibility that the optimization problem becomes

infeasible because there may not be a value ξj ≥ 0 for some slack variables.

The alternative is to use the slack variables as a regularization term. The common solution

is to use a regularization argument C > 0 that is provided by the user. In practice, rather than

regularizing the L2 norm, which is the sum of squares of the slack variables ξj , the L1 norm – sum

of the absolute values of the slack variables – is used.

In the SVM literature, a slightly different formula is common. Because

(ξj ≥ 0) → (|ξj| = ξj)

we can write the L1 norm of the slack variables as

‖~ξ‖1
def
=

m
∑

j=1

|ξj| =

m
∑

j=1

ξj (30.8)

The regularization term becomes the differentiable formula

C

m
∑

j=1

ξj (30.9)

We can differentiate Equation 30.9 with respect to the vector ~ξ by considering each entry. The

derivative of Equation 30.9 with respect to ξj is the constant C, because the contribution of every

other ξj is constant with respect to ξj . Gathering these terms as a vector, we have

∂

∂~ξ

[

C

m
∑

j=1

ξj

]

=











C

C
...

C











= C~1 (30.10)

The objective function for the SVM is

f(~w) =
1

2
~w T ~w (30.11)
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The primal Lagrange function uses Equation 30.11 and Equation 30.7. We need to add two

more terms: a Lagrange multiplier βj for each slack variable ξj , and the regularization term of

Equation 30.9. The slack version of the Lagrange function is

L(~w, b, ~ξ, ~α, ~β) =
1

2
~w T ~w + ~αT [~1− Y X ~w − b~y − ~ξ] + C

m
∑

i=1

ξj − ~β T ~ξ (30.12)

30.2 Slack Variables: Dual Formulation

The dual formulation of the slack primal function in Equation 30.12 is found by differentiating

the primal function with respect to the variables ~e, b, and ~ξ, and then setting the transposes equal

to zero for the KKT stationary point. The first two differentiations produce the same result as we

found for the ordinary dual formulation. The third term, from Equation 30.12 and Equation 30.10,

is

∂L

∂~ξ
= C1− ~αT − ~β T (30.13)

Transposing Equation 30.13, setting it equal to zero, re-arranging terms, and again imposing

the KKT conditions gives us

~α+ ~β = C~1 with ~β ≥ ~0 (30.14)

An important observation is that we can use the concept of a slack variable a second time. We

see that the Lagrange multipliers ~β in Equation 30.14 are acting as slack variables for the Lagrange

multipliers ~α. We can therefore re-write Equation 30.14 as

~α ≤ C~1 (30.15)

Equation 30.15 gives us a second constraint on the original Lagrange multipliers ~α. Originally,

the KKT conditions required that ~α ≥ ~0; Equation 30.15 now imposes ~α ≤ C~1. We can combine

these into a box constraint on the Lagrange multipliers, which is

~0 ≤ ~α ≤ C~1 (30.16)

The dual formulation of the SVM problem with slack variables is therefore a single additional

constraint on the Lagrange multipliers, so the formulation is

LD(~α, b) = −
1

2
~αTY XX TY ~α +~1T ~α (30.17)

with ~0 ≤ ~α ≤ C~1

~αT~y = 0
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Equation 30.17 can be solved using the SMO algorithm, imposing the restriction 0 ≤ αj ≤ C

at each step.

30.3 Example: Slack Variables for Simple 2D Data

A example of the use of slack variables is for simple 2D data, which are shown in Figure 30.3.

As above, data with Label -1 are shown as red circles and data with Label +1 are shown as blue

crosses. The ideal SVM hyperplane does not account for the possibility that some of the data may

be labeled incorrectly. An alternative hyperplane allows for labeling errors. A single regularization

term C changed the hyperplane in Figure 30.3(A) to the hyperplane in Figure 30.3(B). The slack

variables, when constrained by a single regularization term, are also called soft margins.
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Figure 30.3: 2D data for linear separability, with Class -1 data shown as red circles and Class +1

data shown as blue crosses. (A) Strict linear separability of the data in which the hyperplane is

shown as a black line. (B) Soft linear separability allows for incorrectly labeled data.
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