CISC/CMPE422, CISC835:

Formal Methods in Software Engineering

Juergen Dingel
Fall 2019

Lecture 1: Admin, Motivation & Overview

CISC/CMPE 422/835, Fall 2019, Intro

Admin (Cont’d)

= JD will be away
= Week 2/3 (Sept 16 - Sept 19)

CISC/CMPE 422/835, Fall 2019, Intro

CISC/CMPE 422/835, Fall 2019, Intro

Admin

Marking scheme for CISC/CMPE422

= Final exam: 50% of mark

= 1 midterm: 20% of mark

= Assignments (4, individual, weighted equally): 30% of mark
Marking scheme for CISC835

= Final: 40%, midterm: 15%, assignments: 25%, project: 20%
Exams (closed book, 1 8.5”x11” datasheet):

=  Midterm: Week 10 (Thurs, Nov 14), in class

= Final: tha

= Accommodations? Contact exams office or me
Course web page: www.cs.queensu.ca/~cisc422

= Syllabus, assignments, etc
Course material:

= Courseware available in bookstore
TAs:

= Anika Anwar, Karim Jahed, Lama Moukahal, Liam Walsh

CISC/CMPE 422/835, Fall 2019, Intro 2

About Me

Small town Germany:
Born, raised, etc

Berlin: UG

Pittsburgh: PhD

Kingston: since 2000,
Formal methods,
Model-Driven Engineering,
SW Eng



A Definition

Formal methods

= Notations, techniques and tools to

= capture relevant aspects of software unambiguously and
precisely and

= allow analysis

= Another title: “Formal Modeling and Analysis”

CISC/CMPE 422/835, Fall 2019, Intro 5

What Formal Methods Are For

Statement 1:
“Sometimes, it is very important that certain[software failures]don’t
occur and that there is acceptable supporting evidence for this”

CISC/CMPE 422/835, Fall 2019, Intro 7

Overview of this Lecture

What formal
methods are for

Why formal methods are
nothing special

Overview of <:D

CISC422/835

CISC/CMPE 422/835, Fall 2019, Intro

Statement 1: Examples

= ‘Safety-’ or ‘mission-critical’ software

= Military, nuclear, medical, automotive, avionics, aerospace

= |nfrastructure
= Energy, telecom, avionics
= Economy

= Financial

CISC/CMPE 422/835, Fall 2019, Intro



* Example of how not to do reuse: E onc (rane )

Example 1: Therac-25 (1985-87)

= Radiotherapy machine with SW controller
= SW failed to maintain essential invariants:

= use high-power beam w/ intervening

= To generate X-rays:
= either use low-power electron beam, or T } !l ‘T }
[ ]

‘beam spreader plate’

= Several deaths (> 6) due to burning

CISC/CMPE 422/835, Fall 2019, Intro

Example 2: ESA Ariane 5 (June 1996) (Cont’d)

Parts of FCS from Ariane 4
v, much greater for Ariane 5 E OBC (Arfane 5)
Conversion operation in FCS fails

OBC interprets error code as flight data

Launcher self-destructs

= Example of how not to achieve fault-tolerance:
= FCS and backup FCS identical, thus backup also failed

= Example of how not to code:

= When code caused exception, it wasn’t even needed anymore

R

eferences:

[Gle96] and www.ima.umn.edu/~arnold/disasters/ariane.html

CISC/CMPE 422/835, Fall 2019, Intro

Example 2: ESA Ariane 5 (June 1996)

= OnJune 4, 1996, unmanned Ariane 5 launched by ESA

explodes 40 seconds after lift-off

= One decade of development costing S7billion lost

= What went wrong?

CISC/CMPE 422/835, Fall 2019, Intro

= Bad reuse of code from Ariane 4
= Bad fault-tolerance mechanism

= Bad coding practices

Example 3: The Blackout Bug
Aug 13, 2003: >50 Million people w/o electricity for hours, days

Cause: Race condition in alarm system (1076 Loc of C)

Worst black out in North American history

Cost: USS 6 billion %r

Tracking the blackout bug
Kevin Poulsen, SecurityFocus 2004-04-07
<snip>

languages. Eventually they were able to reproduce the Ohio alarm crash in GE Energy s
Florida laboratary, says Unum. "It took us a considerable amount of time to go in and
reconstruct the events.” In the end, they had to slow down the system, injecting
deliberate delays in the code while feedmg alalm inputs to the program. About eight
weeks after the blackout, the bug was articularly subtle incarnation of

a commaon programming error called . "Itriggered on August 14th by a
perfect storm of events and alarm condtons o = equipment being monitored. The

<SPS
CISC/CMPE 422/835, Fall 2019, Intro

ug had a window of apportunity measured in milliseconds, "There was a couple of
processes that were in contention for 2 comman data structure, and through a
software coding error in one of the application processes, they were both able to get
write access to a data structure at the same time," says Unum. "And that corruption
led to the alarm event application getting into an infinite loop and spinning.” Testin

12



Example 4: 2010 Toyota Prius

= Three systems
= Hybrid brake system

= Normal

= Regenerative
= Anti-lock brake system (ABS)
= Unintended interaction
= Braking force reduced after ABS actuation
= Increased stopping distance
= 62 crashes, 12 injuries

US NHTSA,
https://www.nhtsa.gov/vehicle/2010/TOYOTA/PRIUS/4%252520DR#investigations

CISC/CMPE 422/835, Fall 2019, Intro

Example 6: Deep Neural Nets for
Autonomous Driving

Should we worry about safety?

Example 5: Boeing 737 Max

maneuvering characteri

stics augmentation

system (MCAS)  [twos

« MCAS evolved during development
* MCAS interacts with other features

E problems:

MCAS rotates the
horizontal tail to
push the tail up
and nose down

(mage darked fmmnorsh b sam lenpstes)

Activates under strict conditions
+ High G-force (upward acceleration)
+ Angle of attack is high
+ Autopilot is off
* Flaps are up

[Slide from Jo Atlee,

CISC/CMPE 422/835, Fall 2019, Intro

Living with Feature Interactions, FSE'19 ]

14

What Formal Methods Are For

(c)

Red light classified as green with (a) 68%, (b) 95%, (c) 78% confidence after one
pixel change.
— TACAS 2018, https://arxiv.org/abs/1710.07859

Can we verify that such behaviour cannot occur?

Statement 1:

“Sometimes, it is very important that certain software failures don’t
occur and that there is acceptable|supporting evidence [for this”

[Marta Kwiatkowska, Safety and Robustness for Deep Learning with Provable Guarantees, FSE’19]

CISC/CMPE 422/835, Fall 2019, Intro

CISC/CMPE 422/835, Fall 2019, Intro




Certification of Software in Medical Devices

[..]

The FDA's analysis of 3140 medical device recalls conducted between 1992
and 1998 reveals that 242 of them (7.7%) are attributable to software failures

[...] any medical device software product developed after June 1, 1997 [...]
is subject to applicable design control provisions. (See of 21 CFR §820.30.)

Other design controls, such as planning, input, verification, and reviews,
are required for medical device software. (See 21 CFR §820.30.)

The corresponding documented results from these activities can provide
additional support for a conclusion that medical device software is validated.

[FDA] U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological
Health, Center for Biologics Evaluation and Research. General Principles of Software Validation; Final Guidance for Industry

and FDA Staff. Jan 2002]

CISC/CMPE 422/835, Fall 2019, Intro 17

ISO Standard for Automotive Software

Goals of ISO 26262

Covers functional safety aspects of the entire development process

Provides an automotive-specific risk-based approach for determining risk
classes (Automotive Safety Integrity Levels, ASILs)

Uses ASILs for specifying the item’s necessary safety requirements for
achieving an acceptable residual risk

Provides requirements for validation and confirmation measures to
ensure a sufficient and acceptable level of safety is being achieved

[International Standards Organization (ISO). “Road vehicles — Functional safety (1SO 26262)”. 2011]

CISC/CMPE 422/835, Fall 2019, Intro 19

Certification of Avionics Software
DO-178C

“is an acceptable means, but not the only means, for showing compliance
with the applicable airworthiness regulations for the software aspects of
airborne systems and equipment certification”
Software levels

= From E (failure has no effect) to A (failure has catastrophic effect)
Certification objectives

= the higher the level, the more objectives

Examples of activities necessary to satisfy objectives

= Review of requirements, design, and code; testing; configuration management

[Radio Technical Commission for Aeronautics (RTCA). DO-178C: Software Considerations in Airborne Systems and
Equipment Certification. Jan 2012]

CISC/CMPE 422/835, Fall 2019, Intro 18

What Formal Methods Are For

Statement 1:
“Sometimes, it is very important that certain software failures don’t
occur and that there is acceptable supporting evidence for this”

Statement 2:

“Sometimes, relevant aspects of the software (e.g., requirements,
development context, operating conditions) are so complex that
Statement 1 is impossible to achieve with ‘standard” methods”

CISC/CMPE 422/835, Fall 2019, Intro 20




The Limits of Testing

“We test exhaustively, we test with third parties, and we had in excess of three
million online operational hours in which nothing had ever exercised that bug. [...]
I'm not sure that more testing would have revealed that.”
Manager at GE,
maker of Energy Management System responsible for Blackout Bug in 2003
in “Tracking the blackout bug’

“Typically, testing alone cannot fully verify that software is complete and correct. In
addition to testing, other verification techniques and a structured and documented
development process should be combined to ensure a comprehensive validation
approach”

In [FDA Guidelines]

“Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra

E.W.Dijkstra.
Turing Award 1972

CISC/CMPE 422/835, Fall 2019, Intro

It is Not Going to Get Easier

= More complexity -
= |Less mechanical, more electronic & computerized il
= More features & capabilities

= More integration

= More virtualization, distribution & concurrency

Challenge: Electronics, Controls and |oftware
Shifting the Basis of Competition in \_|hicles

CISC/CMPE 422/835, Fall 2019, Intro [from A. Sangiovanni-Vincent?éelli]

Software Complexity: In Lines of Code

=  Windows OSs » Average iPhone app: 40,000 LoC

= NT 3.141992)- 0 § millinn 1 aC » Paramaker: 100 000 LoC

- 95 | Software is one of the most Hpiltion Loc

=11

= complex man-made artifacts!

= 2000: Zzg o ToT

= XP (2001): 35 million LoC

o

h LoC
» Boeing 787: 14 million LoC

= Vista (2007): 50 million LoC » F-35 fighter jet: 24 million LoC

= Windows 7: 40 million LoC » Large Hadron Collider: 50 million LoC
= Windows » Facebook: 60 million LoC

= Office (2001): 25 million LoC » Car

» 1981:50,000 LoC
» 2005: 10 million LoC
» 2014: 100 million LoC

= Office (2013): 44 million LoC
= Visual Studio (2012): 50 million LoC

= Mac OS X “Tiger”: 85 million LoC

1M LoC = 18,000 pages of printed text [Charette. “Why Software Fails”. IEEE Spectrum, Sept 2005]
= stack 6 feet high [McCandless, www.informationisbeautiful.net/visualizations/million-lines-of-code]

CISC/CMPE 422/835, Fall 2019, Intro 22

What Formal Methods Are For

Statement 1:
“Sometimes, it is very important that certain software failures don’t
occur and that there is acceptable supporting evidence for this”

Statement 2:

“Sometimes, relevant aspects of the software (e.g., requirements,
development context, operating conditions) are so complex that
Claim 1 is impossible to achieve with ‘standard” methods”

Statement 3:

“In these cases, formal methods can help by allowing the
construction of unambiguous artifacts modeling relevant aspects of
the system such that it can be analyzed w.r.t. desirable properties”

CISC/CMPE 422/835, Fall 2019, Intro 24



Examples of Uses of Formal Methods

= DO-178C for avionics software allows formal methods to
complement testing
= Survey of 62 int’| FM projects

= Domains: Real-time, distributed & parallel, transaction processing,
high-data volume, control, services

Time Cost Quality

8%

D Improvement l:l Worsening - No effect/no data

[Radic Technical Cemmission for Aeronautics (RTCA). DO-333: Formal Methads Supplement to DO-178C and DO-278A.

[Woodcock et al. Formal Methods: Practice and Experience. ACM Computing Surveys 41(4). 2009]
CISC/CMPE 422/835, Fall 2019, Intro 25

What is Software Engineering?

engineering:

“The application of scientific and mathematical principles to
practical ends such as the design, manufacture, and operation
of efficient and economical structures, machines, processes,
and systems”

American Heritage Dictionary

he application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of >

software, that is, the application of engineering to software”
IEE rd 610.12

Yeah, right!
27

CISC/CMPE 422/835, Fall 2019, Intro

A Definition

Formal methods

= Notations, techniques and tools to
= capture aspects of software unambiguously and precisely and
= allow analysis

= make software engineering more rigorous

CISC/CMPE 422/835, Fall 2019, Intro 26

What is Software Engineering (Cont’d)

Software Engineering currently isn’t like engineering at all!

Engineering Software Engineering

1. build (mathematical) models 1. some (informal) modeling

2. analyze models rigorously 2. build artifact

3. refine models 3. some (informal) reuse

4. build artifact 4. lots of testing

5. little testing Characteristics

Characteristics » Mostly informal

e \ery rigorous * “back-loaded”

e “front-loaded” ¢ Main QA technique:

* Main QA technique: Testing (often >50% of
Modeling & analysis total development effort),




Overview of this Lecture ‘Formal Methods’ in Other Disciplines

Natural sciences
What formal » Understanding, predicting existing phenomena (c.f., “Backwards Engineering”)
methods are for

Q‘j \T 0
Why formal methods are é e
nothing special . .
Engineering
i » Building artifacts with certai ties (c.f., “Forwards Engineering”
Overview of <:D U|. |nga ‘| acts wi cetj ain properties (c ’*(’).l;viar s nglnrlng )
CISC422/835 w 2
Entertainment

» Doing what normally would be impossible

Modeling is central, except in SW Eng

CISC/CMPE 422/835, Fall 2019, Intro 29 CISC/CMPE 422/835, Fall 2019, Intro

Formal Modeling in Manufacturin
& & Formal Modeling in Manufacturing (Cont’d)

Mechanical design from 1800 to about 1980:

1. Draftsmen create 3-view drawings = Example: Concorde (1976 — 2003)
2. Machinists create parts from drawings = >100,000 drawings
= laborious, error-prone, inefficient = in 2 languages, using both metric and imperial systems

= = worked, but 7x over budget

s
LY

CISC/CMPE 422/835, Fall 2019, Intro 31 CISC/CMPE 422/835, Fall 20} 32



Formal Modeling in Manufacturing (Cont’d)

Mechanical design from about 1972: CAD/CAM
1. Create drawings w/ computer (CAD)

2. From drawing, computer automatically generates program to
drive milling and CNC machines (CAM)

5=
°°o% o~

= much better analysis capabilities and productivity
= CAD/CAM has revolutionized manufacturing

CISC/CMPE 422/835, Fall 2019, Intro

CISC422/835: Overview

= Will consider three different artifacts
= requirements
= designs (object models)
= finite state machines
= For each artifact we will look at
= aformal notation allowing the artifact to be modeled formally
= an technique that analyzes the model automatically
= atool that implements this analysis
= Things you are going to learn
= Details about notations, analysis techniques, and tools

= Formalization

CISC/CMPE 422/835, Fall 2019, Intro

35

Overview of this Lecture

What formal
methods are for

Why formal methods are
nothing special

Overview of <:D

CISC422/835

CISC/CMPE 422/835, Fall 2019, Intro 4

CISC422/835: Overview (Cont’d)

More precisely, the course will cover the following 3 main topics:

Formal modeling and analysis of requirements (~3 weeks)
= Logic review
= propositional logic
= predicate logic & theorem proving (briefly)
= Z
= Formal modeling and analysis of class models (~3 weeks)

= Alloy & constraint checking

Formal modeling and analysis of programs (~4 weeks)

= Finite state machines & model checking

CISC/CMPE 422/835, Fall 2019, Intro 36



Bugs Often Creep in Early in Development...

1. “70% of errors in embedded safety-critical software are
introduced in the requirements (35%) and architecture design
phases (35%)”

2. “80% of all errors are not discovered until system integration or
later

[Feiler, Goodenough, Gurfinkel, Weinstock, Wrage. Four Pillars for Improving the Quality of
Safety-Critical Software Reliant Systems. White Paper. SEI. 2013]

What'’s the relationship between time bug is discovered and costs?

CISC/CMPE 422/835, Fall 2019, Intro 37

Formal Modeling and Analysis of

Requirements
Bugs in requirements can be very costly

Informal English sometimes inappropriate:

= Verbose

= Ambiguous

= Not amenable to automatic analysis - -

. 1
Formal notations can help /|
/ |

We'll look at -
|

I

|

= propositional logic -
= predicate logic st | N
LA

Cost

Architecture |

impiementation

5 Aichiieciuie  lmplemeniation  Sysiemiest  Mainienance

CISC/CMPE 422/835, Fall 2019, Intro Phase in Which a Defect Is Detected

39

... at High Costs

What's the relationship between time bug is discovered and
costs? - B

AN
/1
/1
/1
/ 1
/ I
s/ I
= s =2 o o e !
ronasc i wnicn a re I 4
P - = - 1 1 /1
perect 1s introauced 71 1 /1
-~ 1 1 |
.« 1 1 7 1
1 \ \ —1 1 v I
\\ \ ___— 1 | v !
T
. iy \ \ \ \ > i Cost
Anaiysis v\ A A | i
1 \ \ Ao 1 1
! \ \ T 1 1 A
1 \ 4 N 7]
- \ \ \ \ 0 |
Arcniecture L \\ \\ AN N\ - :
1 \ \ \ T 1
i \ \ — N
. f 1 \ \ \ \ N\,
impiementation ___ \ - \ N\ N\
1 \ —1
1 \ \ \ N 1
1 \ \ \, R
o -._. | \ \ \ N\ N\
Sysicim iest \ AN \ \ N\
HPICIICTI@Giuon  Sysiciii iest  Mainienance

Phase in Which a Defect is Detecied

CISC/CMPE 422/835, Fall 2019, Intro Source: S. McConnell. Code Complete. 1993 38

Formal Modeling and Analysis of Class
Models
= “A picture says more than a 1000 words”
= UML de-facto standard, but
= is not completely language-independent

= does not have precise semantics

= not amenable for automatic analysis

= We’'ll look at an class-modeling language (Alloy), that is
= Reminiscent of UML
= Language-independent
= Easy/easier to use

= Has precise semantics

Comes with usable, powerful, automatic analysis tool
= “Brings specifications to life”

CISC/CMPE 422/835, Fall 2019, Intro 40



Formal Modeling and Analysis of Programs

= Even small pieces of code can be very intricate

= Example: Tie-breaker protocol for mutual exclusion

Pl = P2 =

while true do while true do
fl := true; f2 := true;
last := 1; last := 2;

await (!'fl or last!=2);

await (!f2 or last!=1l);
criticalSection2;

criticalSectionl;

£f1 := false f2 := false
end end
What if

fl:=true; last:=1
is replaced by

last:=1; fl:=true BTW, embedded code
. . "
in P1 and similarly for P27 very often is concurrent

CISC/CMPE 422/835, Fall 2019, Intro 41

Formal Modeling and Analysis of Programs
(Cont’d)

= Model checking
= Perfect for these kinds of problems
= Analysis technique for finite state machines and protocols based on

exhaustive state space exploration and temporal logic

= Temporal logic

= |ogic that allows specification of how computation unfolds

= 2 kinds of properties
= Something bad will never happen (safety property)
= “x will never be negative”
= “the system will never deadlock”
= Something good will eventually happen (liveness property)

= “every request will eventually be granted”

CISC/CMPE 422/835, Fall 2019, Intro 43

Formal Modeling and Analysis of Programs
(Cont’d)

= Resulting version of Tie-breaker protocol is incorrect

Pl = P2 =
while true do while true do
last := 1;_ last := 2;
fl := true; f2 := true;
await (!'f2 or last!=1l); await (!fl or last!=2);
criticalSectionl; criticalSection2;
fl := false f2 := false
od od

P2 Pl P2
fl=false — fl=false —— fl=true —— fl=true

f2=false f2=false f2=false f2=true
last=* last=2 last=1 last=1
/*P1inCS*/ /*P2inCS*/
CISC/CMPE 422/835, Fall 2019, Intro 42
Summary

= Software is becoming more pervasive & complex
= Formal modeling and analysis can help

= (CISC422/835 offers a comparative study of different formal
modeling notations and analysis techniques for different
artifacts:

= Requirements
= Propositional and Predicate logic & theorem proving
= Class models & constraint solving

= Finite state machines & model checking

CISC/CMPE 422/835, Fall 2019, Intro 44



Admin

=  Marking scheme for CISC/CMPE422

= Final exam: 50% of mark

= 1 midterm: 20% of mark

= Assignments (4, individual, weighted equally): 30% of mark
= Marking scheme for CISC835

= Final: 40%, midterm: 15%, assignments: 25%, project: 20%
= Exams (closed book, 1 8.5”x11” datasheet):

=  Midterm: Week 10 (Thurs, Nov 14), in class

= Final: tha

= Accommodations? Contact exams office or me
= Course web page: www.cs.queensu.ca/~cisc422

= Syllabus, assignments, etc
= Course material:

= Courseware available in bookstore
= TAs:

= Anika Anwar, Karim Jahed, Lama Moukahal, Liam Walsh
CISC/CMPE 422/835, Fall 2019, Intro

45



