CISC/CMPE 422, CISC 835: Formal Methods in Software Engineering

Juergen Dingel Fall 2019

- Computation Tree Logic (CTL)
 - Syntax, semantics (Chapter 13.1)
- The CTL model checking algorithm (Chapter 13.2)

CISC/CMPE 422/835

CTL Semantics

$\mathbf{AX} \varphi$	"Along all paths, in the next state, φ holds"
EX \varphi	"Along at least one path, in the next state, φ holds"
AG \varphi	"Along all paths, in all future states, φ holds"
	"Along all paths, φ holds globally"
$EG \varphi$	"Along at least one path, in all future states, φ holds"
	"Along at least one path, φ holds globally"
$AF \varphi$	"Along all paths, in some future state, φ holds", or
	"Along all paths, φ holds eventually"
$\mathbf{EF} \varphi$	"Along at least one path, in some future state, φ holds", or
	"Along at least one path, φ holds eventually"
$\varphi_1 \mathbf{U} \varphi_2$	"Along all paths, φ_1 holds at least until φ_2 does"
$\varphi_1 \mathbf{U} \varphi_2$ $\varphi_1 \mathbf{U} \varphi_2$	"Along at least one path, φ_1 holds at least until φ_2 does"

CISC/CMPE 422/835

CTL Syntax

CTL formulas are defined by the following BNF

$$\begin{array}{rclcrcl} \varphi & \coloneqq & \textit{ff} & \mid tt \mid p \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid \\ & & \mathbf{AX} \ \varphi \mid \ \mathbf{EX} \ \varphi \mid \mathbf{AG} \ \varphi \mid \ \mathbf{EG} \ \varphi \mid \ \mathbf{AF} \ \varphi \mid \ \mathbf{EF} \ \varphi \mid \\ & & & \mathbf{A}[\varphi_1 \ \mathbf{U} \ \varphi_2] \mid \ \mathbf{E}[\varphi_1 \ \mathbf{U} \ \varphi_2] \end{array}$$

where p is an atomic proposition, that is, $p \in AP$.

CISC/CMPE 422/835

CTL Semantics (Cont'd)

Formulas are interpreted over Kripke structures. Given a Kripke structure M, a state s, and a CTL formula φ , the satisfaction relation $(M,s) \models \varphi$ is defined as follows:

```
\begin{array}{lll} (M,s) & \models & tt \\ (M,s) & \models & p \text{ if } p \in L(s) \\ (M,s) & \models & \neg \varphi_1 \text{ if not } (M,s) \models \varphi_1 \\ (M,s) & \models & \varphi_1 \land \varphi_2 \text{ if } (M,s) \models \varphi_1 \text{ and } (M,s) \models \varphi_2 \\ (M,s) & \models & \varphi_1 \land \varphi_2 \text{ if } (M,s) \models \varphi_1 \text{ or } (M,s) \models \varphi_2 \\ (M,s) & \models & \varphi_1 \lor \varphi_2 \text{ if not } (M,s) \models \varphi_1 \text{ or } (M,s) \models \varphi_2 \\ (M,s) & \models & \varphi_1 \to \varphi_2 \text{ if not } (M,s) \models \varphi_1 \text{ or } (M,s) \models \varphi_2 \\ (M,s) & \models & AX \varphi \text{ if for all } s' \text{ such that } H(s,s') \text{ we have } (M,s') \models \varphi \\ (M,s) & \models & AG \varphi \text{ if for all paths } s_1s_2s_2\ldots \text{ in } M \text{ such that } s = s_1 \text{ we have } \\ (M,s) & \models & (M,s) \models \varphi \text{ for all paths } s_1s_2s_2\ldots \text{ in } M \text{ such that } s = s_1 \text{ we have } \\ (M,s) & \models & (M,s) \models \varphi \text{ for all paths } s_1s_2s_2\ldots \text{ in } M \text{ such that } s = s_1 \text{ we have } \\ (M,s) & \models & (M,s) \models \varphi \text{ for all } p \geq 1 \end{array}
```

CISC/CMPE 422/835

CTL Semantics (Cont'd)

- $(M,s) \models \mathbf{AF} \varphi$ if for all paths $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ there exists $i \geq 1$ such that $(M,s_i) \models \varphi$
- (M, s) |= EF φ if for some path s₁ s₂ s₃ . . . in M such that s = s₁ there exists i ≥ 1 such that (M, s_i) |= φ
- $(M, s) \models A[\varphi_1 \cup \varphi_2]$ if for all paths $s_1s_2s_3...$ in M such that $s = s_1$ there exists some $i \ge 1$ such that $(M, s_i) \models \varphi_2$, and for all $1 \le j < i$, we have $(M, s_i) \models \varphi_1$
- (M, s) ⊨ E[φ₁ U φ₂] if for some path s₁s₂s₃... in M such that s = s₁ there exists some i ≥ 1 such that (M, s_i) ⊨ φ₂, and for all 1 ≤ i ≤ i, we have (M, s_i) ⊨ φ₁

CISC/OMPE 422/835

Adequacy (Chapter 13.1)

Theorem: The following set of connectives and operators is adequate for CTL:

$$\{\neg, \land, EX, AF, EU\}$$

Proof:

$$\begin{array}{cccc} \varphi_1 \vee \varphi_2 & \leftrightarrow & \neg (\neg \varphi_1 \wedge \neg \varphi_2) \\ \varphi_1 \rightarrow \varphi_2 & \leftrightarrow & \neg \varphi_1 \vee \varphi_2) \\ EG \ \varphi & \leftrightarrow & \neg AF \neg \varphi \\ AX \ \varphi & \leftrightarrow & \neg EX \neg \varphi \\ EF \ \varphi & \leftrightarrow & E[tt \ U \ \varphi] \\ AG \ \varphi & \leftrightarrow & \neg EF \neg \varphi \\ A[\varphi_1 \ U \ \varphi_2] & \leftrightarrow & (AF \ \varphi_2) \wedge \neg E[\neg \varphi_2 \ U \ \neg \varphi_1 \wedge \varphi_2] \end{array}$$

 $(M,s) \models tt$ $(M,s) \models p \text{ if } p \in L(s)$ $(M, s) \models \neg \varphi_1 \text{ if not } (M, s) \models \varphi_1$ $(M,s) \models \varphi_1 \land \varphi_2 \text{ if } (M,s) \models \varphi_1 \text{ and } (M,s) \models \varphi_2$ $(M,s) \models \varphi_1 \vee \varphi_2 \text{ if } (M,s) \models \varphi_1 \text{ or } (M,s) \models \varphi_2$ $(M,s) \models \varphi_1 \rightarrow \varphi_2 \text{ if not } (M,s) \models \varphi_1 \text{ or } (M,s) \models \varphi_2$ $(M,s) \models \mathbf{AX} \varphi$ if for all s' such that R(s,s') we have $(M,s') \models \varphi$ $(M,s) \models \mathbf{EX} \varphi$ if for some s' such that R(s,s') we have $(M,s') \models \varphi$ $(M,s) \models \mathbf{AG} \varphi$ if for all paths $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ we have $(M, s_i) \models \varphi \text{ for all } i \geq 1$ $(M,s) \models \mathbf{EG} \varphi$ if for some path $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ we have $(M, s_i) \models \varphi \text{ for all } i \geq 1$ $(M, s) \models \mathbf{AF} \varphi$ if for all paths $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ there exists $i \ge 1$ such that $(M, s_i) \models \varphi$ $(M,s) \models \mathbf{EF} \varphi$ if for some path $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ there exists $i \ge 1$ such that $(M, s_i) \models \varphi$ $(M,s) \models \mathbf{A}[\varphi_1 \mathbf{U} \varphi_2]$ if for all paths $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ there exists some $i \geq 1$ such that $(M, s_i) \models \varphi_2$, and for all $1 \le j < i$, we have $(M, s_i) \models \varphi_1$ $(M,s) \models \mathbf{E}[\varphi_1 \mathbf{U} \varphi_2]$ if for some path $s_1 s_2 s_3 \dots$ in M such that $s = s_1$ there exists some $i \ge 1$ such that $(M, s_i) \models \varphi_2$, and for all $1 \le j < i$, we have $(M, s_i) \models \varphi_1$

CISC/CMPE 422/805

Unwindings (Chapter 13.1)

The model checking algorithm will use the following equivalences:

CISC/CMPE 422/835 CISC/CMPE 422/835

CTL Model Checking Algorithm (Chapter 13.2)

Input: Kripke structure $M = (S, S_0, R, L)$ and CTL formula φ

Output: "Yes", if $(M, s_0) \models \varphi$ for all initial states $s_0 \in S_0$. "No", otherwise.

Step 1: Preprocessing

Translate φ into an equivalent formula φ' that contains only the adequate connectives.

Step 2: Labeling

Label all states s in M with the subformulas φ'' of φ' (including φ') s.t. $(M,s) \models \varphi''$.

Step 3: Check that initial states are labeled with φ'

If all initial states of M are labeled with φ' , then output "Yes". Otherwise, output "No".

CISC/CMPE 422/835

State Space Explosion Problem

- Factors influencing state space size
 - Number of variables
 - Number of different values variables can take on
 - Number of processes

```
-- Program P4.n: n processes counting up
MODULE main
VAR

p1 : process P(1000);
...
pn : process P(1000);

MODULE P(TO)
VAR

x : 1..TO;
ASSIGN

init(x) := 1;
next(x) := case
x<TO: x+1;
TRUE: x;
esac;
```

Program	P4.1	P4.2	P4.3	P4.4	P4.5	P4.6
Number of reachable states	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}
Time taken to compute (in secs)	5	8	22	63	281	13,115

We use the recursive procedure $SAT(\varphi)$ to implement Step 2.

Input: Kripke structure $M = (S, S_0, R, L)$ and CTL formula φ'

Output: For every state s in M and every subformula φ'' of φ' , s is labeled with φ'' if and only if $(M,s) \models \varphi''$.

 $SAT(\varphi')$ is defined as follows:

case φ' of

- p:
 if p ∈ L(s), then label s with p
- ¬ψ₁: SAT(ψ₁);

if s not labeled with ψ_1 , then label s with $\neg \psi_1$

ψ₁ ∧ ψ₂:
 SAT(ψ₁);
 SAT(ψ₂):

 $SAT(\psi_2)$; if s labeled with ψ_1 and psi_2 , then label s with $\psi_1 \wedge \psi_2$

 EX ψ₁: SAT(ψ₁);

if s has at least on successor labeled with ψ_1 , then label s with EX ψ_1

- AF ψ₁: SAT(ψ₁);
 - (a) If state s is labeled with ψ_1 , then label s with AF ψ_1
 - (b) If all successors of s are labeled with AF $\psi_1,$ then label s with AF ψ_1
 - (c) If step (b) changed the labeling, then go back to (b). Otherwise, stop CISC/CMPE 422/835

• $E[\psi_1 \ U \ \psi_2]$: $SAT(\psi_1)$; $SAT(\psi_2)$;

- (a) If state s is labeled with $\psi_2,$ then label s with $\mathbf{E}[\psi_1\ \mathbf{U}\ \psi_2]$
- (b) If state s is labeled with ψ_1 and has at least one successor labeled $E[\psi_1 \cup \psi_2]$, then label s with $E[\psi_1 \cup \psi_2]$,
- (c) If step (b) changed the labeling, then go back to (b). Otherwise, stop.

O(n * |S| *(|S|+|R|) where n is #connectives in ϕ With optimizations: O(n * (|S| + |R|)

Wrapping up

- Course summary
- Final exam

CISC/CMPE 422/835 CISC/CMPE 422/835

Queen's is Full of Surprises

Queen's is Full of Surprises

You →

The End

CISC/CMPE

422/835

→ You'

CISC/CMPE 422/835

CISC/CMPE 422/835