CISC/CMPE422, CISC835: Formal Methods in Software Engineering

Juergen Dingel Fall 2019

Lecture: Predicate Logic

CISC/CMPE 422/835, Fall 2019, Pred Logic

Semantics of Predicate Logic: Examples (pages 41-44 in courseware)

Let

$$\mathcal{F} \stackrel{def}{=} \{zero, succ, add\}$$

where zero, succ, and add have arity 0, 1, and 2 respectively. Also, let

$$P \stackrel{def}{=} \{\leq, isZero\}$$

where \leq takes two arguments and is Zero takes one argument.

- Let the model M₂ be given by
 - D^{M2} = {0,1}*,
 - $\mathcal{F}^{\mathcal{M}_2} \stackrel{def}{=} \{zero^{\mathcal{M}_2}, succ^{\mathcal{M}_2}, add^{\mathcal{M}_2}\}$ where $zero^{\mathcal{M}_2}$ is the empty word ϵ , $succ^{\mathcal{M}_2}(w) = w1$ for all $w \in \{0,1\}^*$, and $add^{\mathcal{M}_1}(w_1, w_2) = w_1w_2$ for all $w_1, w_2 \in \{0,1\}^*$, and
 - • P^{M2} = {≤^{M2}, isZero^{M2}} where ≤^{M2} is the prefix relation on {0, 1}*, that is, w₁ ≤^{M2} w₂ if and only if w₁ is a prefix of w₂, and isZero^{M2} returns true if and only if the argument is ε.

Semantics of Predicate Logic: Examples (pages 41-44 in courseware)

Let

$$\mathcal{F} \stackrel{def}{=} \{zero, succ, add\}$$

where zero, succ, and add have arity 0, 1, and 2 respectively. Also, let

$$\mathcal{P} \stackrel{def}{=} \{\leq, isZero\}$$

where \leq takes two arguments and is Zero takes one argument.

- 1. Let the model M_1 be given by
 - DM₁ ^{def} N.
 - F^{M₁} = {zero^{M₁}, succ^{M₁}, add^{M₁}} where zero^{M₁} = 0 ∈ N, succ^{M₁} is the successor function on N and add^{M₁} is the addition function on N, and
 - • P^{M₁} def {≤^{M₁}, isZero^{M₁}} where ≤^{M₁} is "less than or equal" on N, and isZero^{M₁}(x) = true if and only if x = 0.

CISC/CMPE 422/835, Fall 2019, Pred Logic

Semantics of Predicate Logic: Examples (pages 41-44 in courseware)

- Let the model M₃ be given by
 - DM₃ ^{def} { off, on },
 - $\mathcal{F}^{\mathcal{M}_3} \stackrel{def}{=} \{zero^{\mathcal{M}_3}, succ^{\mathcal{M}_3}, add^{\mathcal{M}_3}\}$ where $zero^{\mathcal{M}_3} = off$ and

$$succ^{\mathcal{M}_3}(off) = on$$

 $succ^{\mathcal{M}_3}(on) = off,$

and add^{M3} is the function defined by

$$add^{M_3}(off, off) = off$$

 $add^{M_3}(off, on) = add^{M_3}(on, off) = on$
 $add^{M_3}(on, on) = off.$

and

P^{M3} ^{def} {≤^{M3}, isZero^{M3}} where

$$\leq^{\mathcal{M}_3} (x, y) = \begin{cases} false, & \text{if } x = on \text{ and } y = off \\ true, & \text{otherwise.} \end{cases}$$

and $isZero^{M3}(x) = true$ if and only if x = off.