CISC 432/832

Assignment 3

Query Optimization

Solutions

Page size = 4000bytes, buffer size = 10pages

Student (stdNo: integer, sName: char(15); averageGrade: integer, yearofStudy: integer,

age: integer, deptNo: integer)

Tuple length = 40 bytes

Ntuples(S) = 50,000

Npages(S) = 50000*40/4000 = 500

Indexes I1: clustered B+ tree index on stdNo

Department (deptNo: integer, noFaculty: integer, deptName: char(15), deptLocation:

char(10))

Tuple length: 35bytes

Ntuples(D): 50

Npages(D) = 50 * 35 / 4000 = 1

Indexes I2: clustered B+ tree index on deptNo

I3: unclustered hash index on deptName

I4: unclustered B+tree index on noFaculty

Course (courseNo: integer, deptNo: integer, courseTitle: char(20), slotNo: integer,

room: char(15))

Tuple length: 50bytes

Ntuples(C): 50 * 30 = 1500

Npages(C) = 1500 * 50 / 4000 = 19

Enrolled (stdNo: integer, courseNo: integer, deptNo: integer)

Tuple length: 15bytes

Ntuples(E): 50 * 1000 * 5 = 250,000

Npages(E) = 250,000 * 15 / 4000 = 938

Indexes I5: clustered hash index on stdNo

1.

(1) Produce algebra expression

 $\pi_{S.yearofStudy, COUNT(*)}$

GROUP BY_{S.yearofStudy}(

 $\pi_{S.yearofStudy}($

 $\sigma_{D.deptNo=S.deptNo\Lambda S.averageGrade > 80\Lambda D.deptName="Computing"}(D \times S))))$

(2) Use equivalences to push down $\sigma\pi$

 $\pi_{S.yearofStudy, COUNT(*)}$

GROUP BY_{S.yearofStudy}(

 $\pi_{S.yearofStudy}($

 $\sigma_{D.deptNo} = S.deptNo(\pi_{D.deptNo}(\sigma_{D.deptName} = "Computing"D) \times \pi_{S.yearofStudy, S.deptNo}(\sigma_{S.averageGrade} > 80S))))$

(3) Determine plan

1) Pass1

Relation	Interesting Order	Plan Description	Cost	Result
D	D.deptNo	*Access through clustered B+ tree index I2 on D.deptNo		
		*Access through hush index I3 on deptName finding matching tuples with projection performed	2	1
		*Sequential scan D finding matching tuples on deptName with projection performed	<u>1</u>	1
S		*Sequential scan S finding matching tuples on avergeGrad with projection performed Result=500*(10/40)*((100-80) /(100-50)) =50	<u>500</u>	50

2) Pass2

Join Method	Outer /Inner	Plan Description	Cost	Result
Nested loops	D/S	*For each D tuple obtained through the sequential scan matching on deptName scan S tuples obtained through the sequential scan matching on averageGrade to find tuples matching on deptNo. Cost=1+500+50+50, result=50/50=1	601	1
	S/D	*For each S tuple obtained through the sequential scan matching on deptName scan D tuples obtained through the sequential scan matching on deptName to find tuples matching on deptNo. Cost=500+1+1+1, result=50/50=1	503	1
		*For each S tuple obtained through the sequential scan matching on deptName find matching tuples of D through clustered B+ tree index on D.deptNo with selection and projection on-the- fly. Cost=500+1+1, result=50/50=1	<u>502</u>	1
Sort merge		*D already sorted using clustered B+ tree on D.deptNo *Sort S tuples resulting from sequential scan on deptNo into L1 *merge D and L1 with selection and projection on-the-fly. Cost=500+50+(2*2*50)+(50+1)=801, result=50/50=1	801	1
		*Sort S tuples resulting from sequential scan on deptNo into L2 * Sort D tuples resulting from sequential scan on deptNo into L1 *merge L1 and L2 Cost=500+50+(2*2*50)+(50+1)=801, result=50/50=1	801	1
Hash		*Partition D tuples resulting from sequential scan on deptNo into L1 *Partition S tuples resulting from sequential scan on deptNo into L2 *For each L1 tuple probe corresponding partition of L2 finding match tuples Cost=(500+1)+(50+1)++3*(50+1)=705, result=50/50=1	705	1

Because the size of join result only one page, the "Group by" can be performed in memory and projection can be performed on-the-fly. The optimal plan is sequential scan S on deptName with projection performed on-the-fly, for each tuple resulting from the previous step find matching tuples of D through clustered B+ tree index on D.deptNo with selection and projection performed on-the-fly. The total cost is 502.

2.

(1) Produce algebra expression

ORDER BY E. courseNo(

 $\pi_{.E.courseNo, S.stdNo, S.sName}$

 $\sigma_{D.deptName="Economics" \land S.yearofStudy=1 \land E.deptNo=D.deptNo \land S.stdNo=E.stdNo (E \times D \times S)))$

(2) Use equivalences to push down $\sigma\pi$

Equivalence 1

ORDER BY E. courseNo(

 $\pi_{.E.courseNo, S.stdNo, S.sName}$

 $\sigma_{E.deptNo=D.deptNo}$ (($\sigma_{S.stdNo=E.stdNo}$ (

 $E \times (\pi_{S.stdNo, S.sName} (\sigma_{S.yearofStudy=1} S)))) \times \pi_{D.deptNo} (\sigma_{D.deptName="Economics"} D)))))$

Equivalence 2

ORDER BY E. courseNo(

 $\pi_{.E.courseNo, S.stdNo, S.sName}$

 $\sigma_{S.stdNo=E.stdNo}(\sigma_{E.deptNo=D.deptNo}(E \times (\pi_{D.deptNo} (\sigma_{D.deptName="Economics"}D)))) \times$

 $(\pi_{S.stdNo, S.sName} (\sigma_{S.yearofStudy=1}S)))))$

(3) Determine plan

1) Pa	ss1			
Relation	Interesting Order	Plan Description	Cost	Result
D	-	Access through clustered B+ tree index I2 on D.deptNo		
		Access through hash index I3 on deptName finding matching tuples with projection performed	2	1
		Sequential scan D finding matching tuples on deptName with projection performed	<u>1</u>	1
S	S.sdtNo	Access through clustered B+ tree index I1 on S.stdNo		
		Sequential scan S finding matching tuples on yearofStudy with projection performed Result=500*(20/40)*(1/4)=63	500	63
Е	E.stdNo	Access through clustered hash index I5 on E.stdNo		
		Sequential scan E	<u>938</u>	938

2) Pass2 for equivalent 1

Join Method	Outer /Inner	Plan Description	Cost	Result
Block Nested Loops	E/S	*For each E tuple obtained through the sequential scan scan S tuples obtained through the sequential scan matching on yearofStudy to find tuples matching on stdNo. Cost=(938+500)+63+(938+63*938/(10-2))=9873 Result=250000*(1/4)*30/4000=469	9873	469
	S/E	*For each S tuple obtained through the sequential scan matching on yearofStudy scan E tuples obtained through the sequential to find tuples matching on stdNo. Cost=(500+938)+(63+938*63/(10-2))=9873 Result=250000*(1/4)*30/4000=469	9005	469
Index Nested Loops	E/S	*For each E tuple obtained through the sequential scan scan S tuples obtained through clustered B+ tree index I1 on S.stdNo to find tuples matching on stdNo. Assume 2 I/Os to access I1. Cost=938+250000*3=750938 Result=250000*(1/4)*30/4000=469	750938	469
	S/E	*For each S tuple obtained through the sequential scan scan E tuples obtained through clustered hash index I5 on E.stdNo to find tuples matching on stdNo. Assume 1.2 I/Os to access I5 Cost=500+63+12500*2.2=28063 Result=250000*(1/4)*30/4000=469	28063	469
Sort- merge		*E and S are already sorted on stdNo *merge E and S Cost=938+500=1438 Result=250000*(1/4)*30/4000=469	<u>1438</u>	469
Hash		*Partion E, S *join E and S Cost=500+63+(938*2*2+63*2+938+63)=5442 Result=250000*(1/4)*30/4000=469	5442	469

Pass2 for equivalent 2

Join Method	Outer /Inner	Plan Description	Cost	Result
Block Nested Loops	E/D	*For each E tuple obtained through the sequential scan scan D tuples obtained through the sequential scan matching on deptName to find tuples matching on deptNo. Cost=938+1+1+1=941 Result=250000*(1/50)*10/4000=13	941	13
	D/E	*For each D tuple obtained through the sequential scan matching on deptName scan E tuples obtained through the sequential scan to find tuples matching on deptNo. Cost=1+938=939 Result=250000*(1/50)*10/4000=13	<u>939</u>	13
Index Nested Loops	E/D	*For each E tuple obtained through the sequential scan scan D tuples obtained through clustered B+ tree index I2 on D.deptNo to find tuples matching on stdNo. Assume 2 I/Os to access I2 Cost=938+2=940 Result=250000*(1/50)*10/4000=13	940	13
Sort- merge		*D is already sorted on deptNo *Sort E on deptNo *merge E and D Cost=1+938*4*2+938=8443 Result=250000*(1/50)*10/4000=13	8443	13
Hash		*Partion E, D *join E and D Cost=1+1+(938*2*2+1*2+938+1)=5442 Result=250000*(1/50)*10/4000=13	4695	13

2) Pass3

Join Method	Outer /Inner	Plan Description	Cost	Result
Block Nested Loops	(E×S)/D	*For each (E×S) tuple obtained from pass2 scan D tuples obtained through the sequential scan matching on deptName to find tuples matching on deptNo. Cost=1438+3=1441 Result=250000*(1/4)*(1/50)*25/4000=8	1441	8
	(E×D)/S	* For each (E×D) tuple obtained from pass2 scan S tuples obtained through the sequential to find tuples matching on stdNo. Cost=939+500+63+63*13/(10-2)=1441 Result=250000*(1/4)*(1/50)*25/4000=8	1628	8
Index Nested Loops	(E×S)/D	* For each (E×S) tuple obtained from pass2 scan D tuples obtained through clustered B+ tree index I2 on D.deptNo to find tuples matching on deptNo. Cost=1438+2=1440 Result=250000*(1/4)*(1/50)*25/4000=8	<u>1440</u>	8
	(E×D)/S	* For each (E×D) tuple obtained from pass2 scan S tuples obtained through clustered B+ tree index I1 on D.stdNo to find tuples matching on stdNo. Assume 2 I/Os to access I1 Cost=939+(250000/50)*3=1441 Result=250000*(1/4)*(1/50)*25/4000=8	15939	8
Sort- merge				
Hash				

The result table size is 8 pages. We sort it on E.courseNo with additional cost 16. The optimal plan is as follows: first, perform sort-merge join on E and S by accessing E through clustered hash index on E.stdNo and accessing S through clustered B+ tree index on S.stdNo. The selection and projection are performed on-the-fly. Second, we perform index nested loops join on the result from first step as outer and D as inner. D tuples obtained through clustered B+ tree index on D.deptNo. Final, we perform in memory sort on E.course on the result from second step. The total cost is: Sort-merge join: Npages(E) + Npages(S) = 938 + 500 = 1438I/Os

Index nested loops join: the result from first step is pipelined into this step. Cost is access D. Because D can fit in one page, the cost is reading index 1 page plus reading data 1 page = 2I/Os.

Sort result: 16 I/Os.

Total cost is 1438 + 2 + 16 = 1456(I/Os).

3

First we evaluate the inner query:

 $\pi_{D.deptNo}(\sigma_{D.noFaculty>25}D)$

Sequential scan: the result is a table, say T. cost = 1, Npages(T) = 1, Ntuples(T) =

50*(30-25)/(30-20) =25

Then we evaluate the outer query, it performs a nested loops join

 $\pi_{C.courseNo, C.courseTitle, C.slotNo, C.room}(\sigma_{C.deptNo=T.deptNo}(C \times T))$

So the cost is: Npages(C) + Npages(T) = 19 + 1 = 20

Total cost is 1+1+20 = 22 I/Os