RAID - Redundant Arrays of Inexpensive Disks

RAID: High-Performance, Reliable Secondary Storage by P. Chen, E. Lee, G. Gibson, R. Katz and D. Patterson in *ACM Computing Surveys* 26(2), June 1994, pp. 145 - 185

Outline of Lecture

- Motivation
- Disk Arrays
- Data Striping
- Redundancy
- · Basic Organizations

CISC 432/832

Motivation

- Driving force behind interest in RAID is the sustained exponential improvements in semiconductor technology
 - processor performance improving $\geq 50\%$ / year
 - $-\mbox{ disk performance improving} < 10\%$ / year
- Amdahl's Law predicts only marginal overall improvements

CISC 432/832

3

2

Motivation (cont.)

- Faster CPUs make possible new applications and expand range of existing ones
 - new problems typically require fast access to larger data sets
 - trend towards large, shared, high-performance, network-based storage systems
- Disks are potential bottlenecks for system performance!

CISC 432/832

Disk Arrays

• Organize multiple independent disks into a single large high-performance *logical* disk

6

- How does this increase performance?
- Large disk arrays highly vulnerable to failure
 - How do we increase reliability?

```
CISC 432/832
```

Data Striping

- Distributes data transparently over multiple disks
- Disks are accessed in parallel
- Array of disks appears a single large fast disk

CISC 432/832

Data Striping (cont.)

- Data segmented into equal-sized partitions distributed over multiple disks
 - Size of partition called the striping unit
 - Striping unit characterizes how disks are utilized
 - Units usually assigned in a round robin fashion
- Improves aggregate I/O performance by allowing multiple I/Os to be serviced in parallel

CISC 432/832

Redundancy

• Reliability of disk array decreases as number of disks increases

$$MTTF_{Array of Disks} = \frac{MTTF_{SingleDisk}}{Number of Disks}$$

• Redundancy necessary to tolerate disk failures and allow continuous operation without data loss

9

CISC 432/832

Redundancy (cont.)

• Introduces 2 problems:

- Method for distributing redundant info across the disks?
 - Concentrate redundant info on a small number of check disks
 - Spread redundant info uniformly across all disks
 - Advantages? Disadvantages?
- Method for computing the redundant info?
 - Most disk arrays store parity info

CISC 432/832

10

11

Redundancy (Cont.)

- In RAID disk array partitioned into reliability groups
 - Reliability group consists of a set of data disks and a set of check disks
 - Common redundancy scheme applied to each group

CISC 432/832

Basic RAID Organizations (Cont.)
Bit Interleaved Parity (RAID 3)	
Block Interleaved Parity (RAID 4)	
Block Interleaved Distributed Parity (RAID 5)	
CISC 432/832	13

Basic RAID Organizations (cont.)	
P + Q Redundancy (RAID 6)	
CISC 432/832 14	