
Query Evaluation and Optimization

An Overview

CISC 432/832 2

Index Files

Data Files
System Catalog

Operator Evaluator

Plan Executor Parser

Optimizer

File/Access Methods

Buffer Manager

Disk Space Manager

Recovery
Manager

Transaction
Manager

Lock
Manager

Query
Evaluation
Engine

Concurrency
Control

Web Forms Application FEs SQL Interface

CISC 432/832 3

Steps in Query Processing

Query Parser

Query Plan Evaluator

Plan
Generator

Plan Cost
Estimator

Catalog
Manager

Query Optimizer

Query

Parsed query

Evaluation plan

CISC 432/832 4

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page,

1000 pages.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page,

500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Query Evaluation

CISC 432/832 6

Overview
• Evaluation Plan: Tree of R.A. ops, with alg for each op.

– Each operator typically implemented using a `pull’ interface:
when an operator is `pulled’ for the next output tuples, it `pulls’
on its inputs and computes them.

• Two main issues in query optimization:
– For a given query, what plans are considered?

• Need to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

• Ideally: Want to find best plan. Practically: Avoid worst
plans!

• System R approach discussed in text.

CISC 432/832 7

Example

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND R.bid = 100 AND S.rating > 5

What is an equivalent relational algebra
query?

CISC 432/832 8

Example (cont.)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Query Tree
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

Evaluation Plan

(Scan)(Scan)

CISC 432/832 9

Pipelined Evaluation

• Result of one operator
pipelined to another
without creating
temporary table

• Lower overhead than
materialization

• Unary operator is on-
the-fly if input
pipelined.

BA

C

D

CISC 432/832 10

Some Common Techniques
• Algorithms for evaluating relational operators use

some simple ideas extensively:
– Indexing: Can use WHERE conditions to retrieve small

set of tuples (selections, joins)

– Iteration: Sometimes, faster to scan all tupleseven if
there is an index. (And sometimes, we can scan the data
entries in an index instead of the table itself.)

– Partitioning: By using sorting or hashing, we can
partition the input tuplesand replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

CISC 432/832 11

Statistics and Catalogs
• Need information about the relations and indexes

involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each tree

index.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values
in some field) are sometimes stored.

CISC 432/832 12

Access Paths
• An access path is a method of retrieving tuples:

– File scan, or index that matches a selection (in the
query)

• Selection conditions are first converted to
conjunctive normal form (CNF):

(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

CISC 432/832 13

Access Paths (Cont.)

• A tree index matches (a conjunction of) terms that involve
only attributes in a prefix of the search key.

� E.g., Tree index on <a, b, c> matches the selection a=5 AND b=3,
and a=5 AND b>6, but not b=3.

• A hash index matches (a conjunction of) terms that has a
term attribute = value for every attribute in the search key
of the index.

� E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND c=5;
but it does not match b=3, or a=5 AND b=3, or a>5 AND b=3
AND c=5.

CISC 432/832 14

One Approach to Selections

• Find the most selective access path, retrieve tuples using it,
and apply any remaining terms that don’t match the index:
– Most selective access path: An index or f ile scan that we estimate

will require the fewest page I/Os.

– Terms that match an index reduce the number of tuples retrieved;
other terms are used to discard some retrieved tuples, but do not
affect number of tuples/pages fetched.

– Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index
on day can be used; then, bid=5 and sid=3 must be checked for
each retrieved tuple. Similarly, a hash index on <bid, sid> could
be used; day<8/9/94 must then be checked.

CISC 432/832 15

Using an Index for Selections

• Cost depends on #qualifying tuples, and clustering.
– Cost of finding qualifying data entries (typically small) plus

cost of retrieving records (could be large w/o clustering).

– In example, assuming uniform distribution of names, about
10% of tuplesqualify (100 pages, 10000 tuples). With a
clustered index, cost is little more than 100 I/Os; if
unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

CISC 432/832 16

Projection
• The expensive part is removing duplicates.

– SQL systems don’t remove duplicates unless the keyword DISTINCT is
specified in a query.

• Sorting Approach: Sort on <sid, bid> and remove duplicates. (Can
optimize this by dropping unwanted information while sorting.)

• Hashing Approach: Hash on <sid, bid> to create partitions. Load
partitions into memory one at a time, build in-memory hash
structure, and eliminate duplicates.

• If there is an index with both R.sid and R.bid in the search key, may
be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

CISC 432/832 17

Join: Nested Loops

• Blocked Nested Loops: Read a block of outer
relation and match inner relation against its tuples
– Cost: BR + (BR*BS)

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

CISC 432/832 18

Join: Nested Loops (cont.)

• Indexed Nested Loops: If there is an index on the
join column of one relation (say S), can make it
the inner and exploit the index.
– Cost: BR + ((BR*bfrR) * cost of finding matching S

tuples)

• For each R tuple, cost of probing S index is about
1.2 for hash index, 2-4 for B+ tree. Cost of then
finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.
– Clustered index: 1 I/O (typical), unclustered: upto 1

I/O per matching S tuple.

Query Optimization

CISC 432/832 20

Highlights of System R Optimizer

• Impact:
– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate cost of

operations and result sizes.
– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into the next
operator without storing it in a temporary relation.

– Cartesian products avoided.

CISC 432/832 21

Cost Estimation
• For each plan considered, must estimate cost:

– Must estimate cost of each operation in plan tree.
• Depends on input cardinalities.

• We’ ve already discussed how to estimate the cost of
operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each operation in
tree!

• Use information about the input relations.

• For selections and joins, assume independence of predicates.

CISC 432/832 22

Size Estimation and Reduction Factors
• Consider a query block:

• Maximum # tuples in result is the product of the cardinalities of
relations in the FROM clause.

• Reduction factor (RF) associated with each term ref lects the impact
of the term in reducing result size. Result cardinality = Max # tuples
* product of all RF’s.

– Implicit assumption that terms are independent!
– Term col=value has RF 1/NKeys(I), given index I on col
– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

CISC 432/832 23

Motivating Example

• Cost: 500+500*1000 I/Os

• By no means the worst plan!

• Misses several opportunities:
selections could have been `pushed’
earlier, no use is made of any
available indexes, etc.

• Goal of optimization: To find more
eff icient plans that compute the same
answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

snameRA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Blocked Nested Loops)

(On-the-fly)

(On-the-fly)Plan:

CISC 432/832 24

Alternative Plan 1
(Push Selects)

• Cost of plan:
– Scan Reserves (1000) - produces 10 pages, if we have 100 boats,

uniform distribution.

– Scan Sailors (500) + write temp T1 (250 pages, if we have 10
ratings).

– BNL: 10 * 250 = 2500

– Total: 1000 + 500 + 250 + 2500 = 4250 page I/Os.

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan) (Scan, write

to Temp 1)

(Blocked Nested Loops,
with pipelining)

CISC 432/832 25

Alternative Plan 2
(With Indexes)

• With clustered index on bid of
Reserves, we get 100,000/100 = 1000
tupleson 1000/100 = 10 pages.

• INL with pipelining (outer is not
materialized).

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

v Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’ t help.
Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

(Hash index
on sid)

CISC 432/832 26

Summary
• There are several alternative evaluation algorithms for each

relational operator.
• A query is evaluated by converting it to a tree of operators

and evaluating the operators in the tree.
• Must understand query optimization in order to fully

understand the performance impact of a given database
design (relations, indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

