
External Sorting
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Why Sort?

• A classic problem in computer science!

• Data requested in sorted order 
– e.g., find students in increasing average order

• Sorting is first step in bulk loading B+ tree index.

• Sorting useful for eliminating duplicate copies in a 
collection of records (Why?)

• Sort-merge join algorithm involves sorting.

• Problem: sort 1Gb of data with 1Mb of RAM.
– why not virtual memory?
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2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
– only one buffer page is used

• Pass 2, 3, …, etc.:
– three buffer pages used.
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Two-Way External Merge Sort

• Each pass we read + write 
each page in file.

• N pages in the f ile => the 
number of passes

• So total cost is:

• Idea: Divide and conquer: 
sort subfilesand merge
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General External Merge Sort

• To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce              sorted runs 

of B pages each.

– Pass 2, …,  etc.: merge B-1 runs. 
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* More than 3 buffer pages.  How can we utilize them?
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Cost of External Merge Sort

• Number of passes:

• Cost = 2N * (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
– Pass 0:                   = 22 sorted runs of 5 pages each (last

run is only 3 pages) 

– Pass 1:                 = 6 sorted runs of 20 pages each (last 
run is only 8 pages)

– Pass 2:  2 sorted runs, 80 pages and 28 pages

– Pass 3:  Sorted file of 108 pages
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Number of Passes of External 
Sort

          N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4
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Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.

– Always produces � N/B � runs of B pages

• Replacement sort creates runs of 2B pages 
on average
– For buffer of B pages use 1 page for input, 1 

page for output and B-2 pages for current set
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Replacement Sort
• Fill current set and input buffer with tuples of R

• Find tuple in current set with smallest k such that k >= largest k in 
output buffer

• If exists then move to output buffer and get new tuple from input 
buffer

else flush output buffer and start a new run
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I/O Cost – Blocked I/O

• Minimize number of I/O’s => maximize 
fan-in of merge => 1 buffer page per run =>  
do I/O a page at a time

• Can reduce I/O cost if we read a block of 
pages sequentially – blocked I/O
– But this will reduce fan-out during merge 

passes!

– In practice, most files still sorted in 2-3 passes.
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Number of Passes of Optimized 
Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

* Block size = 32,  initial pass produces runs of size 2B. 
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CPU Cost - Double Buffering
• To reduce wait time for I/O request to 

complete, can prefetch into `shadow block’ . 
– Potentially, more passes; in practice, most files 

still sorted in 2-3 passes.
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Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on 
sorting column(s).

• Idea: Can retrieve records in order by traversing 
leaf pages.

• Is this a good idea?

• Cases to consider:
– B+ tree is clustered Good idea!

– B+ tree is not clustered Could be a very bad idea!
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Clustered B+ Tree Used for 
Sorting

• Cost: root to the left-most 
leaf, then retrieve all leaf 
pages (Alternative 1)

• If Alternative 2 is used?  
Additional cost of 
retrieving data records:  
each page fetched just 
once.

* Always better than external sorting!

(Directs search)
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Summary

• External sorting is important; DBMS may 
dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer 

pages). Later passes: merge runs.
– # of runs merged at a time depends on B, and block 

size.
– Larger block size means less I/O cost per page.
– Larger block size means smaller # runs merged.
– In practice, # of runs rarely more than 2 or 3.
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Summary (Cont.)

• Choice of internal sort algorithm may 
matter:
– Quicksort: Quick!

– Heap/tournament sort: slower (2x), longer runs

• Clustered B+ tree is good for sorting; 
unclustered tree is usually very bad.


