
External Sorting

CISC 432/836 2

Why Sort?

• A classic problem in computer science!

• Data requested in sorted order
– e.g., find students in increasing average order

• Sorting is first step in bulk loading B+ tree index.

• Sorting useful for eliminating duplicate copies in a
collection of records (Why?)

• Sort-merge join algorithm involves sorting.

• Problem: sort 1Gb of data with 1Mb of RAM.
– why not virtual memory?

CISC 432/836 3

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
– only one buffer page is used

• Pass 2, 3, …, etc.:
– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

CISC 432/836 4

Two-Way External Merge Sort

• Each pass we read + write
each page in file.

• N pages in the f ile => the
number of passes

• So total cost is:

• Idea: Divide and conquer:
sort subfilesand merge

� �
= +log2 1N

� �()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3

4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4

4,5
6,6
7,8

CISC 432/836 5

General External Merge Sort

• To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce sorted runs

of B pages each.

– Pass 2, …, etc.: merge B-1 runs.

���
N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

* More than 3 buffer pages. How can we utilize them?

CISC 432/836 6

Cost of External Merge Sort

• Number of passes:

• Cost = 2N * (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
– Pass 0: = 22 sorted runs of 5 pages each (last

run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages each (last
run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

� �	

1 1+ −log /B N B

� �
108 5/

 �
22 4/

CISC 432/836 7

Number of Passes of External
Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

CISC 432/836 8

Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.

– Always produces � N/B � runs of B pages

• Replacement sort creates runs of 2B pages
on average
– For buffer of B pages use 1 page for input, 1

page for output and B-2 pages for current set

CISC 432/836 9

Replacement Sort
• Fill current set and input buffer with tuples of R

• Find tuple in current set with smallest k such that k >= largest k in
output buffer

• If exists then move to output buffer and get new tuple from input
buffer

else flush output buffer and start a new run

12

4
10

8

2

5

3

INPUT CURRENT SET
OUTPUT

CISC 432/836 10

I/O Cost – Blocked I/O

• Minimize number of I/O’s => maximize
fan-in of merge => 1 buffer page per run =>
do I/O a page at a time

• Can reduce I/O cost if we read a block of
pages sequentially – blocked I/O
– But this will reduce fan-out during merge

passes!

– In practice, most files still sorted in 2-3 passes.

CISC 432/836 11

Number of Passes of Optimized
Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

* Block size = 32, initial pass produces runs of size 2B.

CISC 432/836 12

CPU Cost - Double Buffering
• To reduce wait time for I/O request to

complete, can prefetch into `shadow block’ .
– Potentially, more passes; in practice, most files

still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

CISC 432/836 13

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing
leaf pages.

• Is this a good idea?

• Cases to consider:
– B+ tree is clustered Good idea!

– B+ tree is not clustered Could be a very bad idea!

CISC 432/836 14

Clustered B+ Tree Used for
Sorting

• Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

• If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched just
once.

* Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CISC 432/836 15

Summary

• External sorting is important; DBMS may
dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer

pages). Later passes: merge runs.
– # of runs merged at a time depends on B, and block

size.
– Larger block size means less I/O cost per page.
– Larger block size means smaller # runs merged.
– In practice, # of runs rarely more than 2 or 3.

CISC 432/836 16

Summary (Cont.)

• Choice of internal sort algorithm may
matter:
– Quicksort: Quick!

– Heap/tournament sort: slower (2x), longer runs

• Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

