Evauation of Relational
Operations

Joins

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

* Reserves:
- Each tupleis 40 bytes long, 100 tuples per
page, 1000 pages.
e Salors:
- Each tupleis 50 bytes long, 80 tuples per
page, 500 pages.

CISC 432/832 2

Equality Joins With One Join
Column

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

Remember R>< S=6 (R X S) but thisis
inefficient!

Assume: M pagesin R, py tuples per page, N
pagesin S, ps tuples per page.

Cost metric: # of 1/0s. Wewill ignore output
costs.

CISC 432/832 3




Simple Nested Loops Join

foreach tuple r in R do
foreach tuple s in S do
if r.sid == s.sid then add <r, s> to result
« For each tuplein the outer relation R, we scan the entire

inner relation S,

- Cost: M+ pz*M* N = 1000 + 100*1000*500 I/Os.
Page-Oriented Nested Loopsjoin: For each page of R,
get each page of S, and write out matching pairs of tuples
<r, s>, wherer isin R-page and sisin S-page.

- Cogt: M + M*N = 1000 + 1000*500
— If smaller relation (S) is outer, cost = 500 + 500* 1000

CISC 432/832

Index Nested Loops Join

« |f thereis an index on the join column of onerelation (say
S), can make it theinner and exploit the index.
- Cost: M + ((M*pg) * cost of finding matching S tuples)
 For each R tuple, cost of probing Sindex is about 1.2 for
hash index, 2-4 for B+ tree. Cost of then finding S tuples
(assuming Alt. (2) or (3) for data entries) depends on
clustering.

— Clustered index: 1 1/0O (typical), unclustered: up to 1 1/O per
matching S tuple.

CISC 432/832

Examples of Index Nested Loops

» Hash-index (Alt. 2) on sid of Sailors (as inner):
- Scan Reserves: 1000 page 1/Os, 100* 1000 tuples.

— For each Reservestuple: 1.2 1/Osto get data entry in index, plus
11/0 to get (the exactly one) matching Sailorstuple. Total:
220,000 I/Os.

» Hash-index (Alt. 2) on sid of Reserves (asinner):

— Scan Sailors: 500 page 1/0s, 80* 500 tuples.

— For each Sailorstuple: 1.2 1/0Osto find index page with data
entries, plus cost of retrieving matching Reserves tuples.
Assuming uniform distribution, 2.5 reservations per sailor
(100,000 / 40,000). Cost of retrieving them is1or 2.51/0s
depending on whether the index is clustered or not.

CISC 432/832




Block Nested Loops Join

» Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ““block’” of outer R.

- For each matching tupler in R-block, sin S-page, add
<r, s> to result. Then read next R-block, scan S, etc.

R&S Join Result
P — Hash table for block of R

(k < B-1 pages)
. Input buffer for S Output buffer

CISC 432/832

Examples of Block Nested Loops

e Cost: Scan of outer + #outer blocks * scan of inner

- #outer blocks= ['# of pagesof outer / blocksize]

With Reserves (R) as outer, and block size of 100:

- Cogt of scanning R is 1000 1/Os; atotal of 10 blocks.

— Per block of R, we scan Sailors (S); 10*500 1/Os.

— If space for just 90 pages of R, we would scan S 12 times.

» With 100-page block of Sailors as outer:
- Cogt of scanning Sis 500 I/Os; atotal of 5 blocks.
— Per block of S, we scan Reserves; 5*1000 1/Os.

» With blocked 1/0 may be best to divide buffers evenly
between Rand S.

CISC 432/832

Sort-Merge Join (R>< §)
i=j

» Sort R and Son the join column, then scan themto do a
“merge’’ (on join coal.), and output result tuples.

— If current R-tuple > current S tuple, then advance scan of S
else advance scan of R; do thisuntil current R tuple = current
Stuple.

— At thispoint, al R tuples with same value in Ri (current R
group) and all S tuples with same valuein § (current S group)
match; output <r, s> for al pairs of such tuples.

— Then resume scanning R and S.

* Risscanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an Sgroup are
likely to find needed pages in buffer => S scanned once)

CISC 432/832 9




Example of Sort-Merge Join

sid bid day rname
sid sname rating age 28 |103 |12/4/96  guppy
22 |dustin | 7 450 |28 103 |11/3/9  yuppy
28 yuppy | 9 350 |31 101 10/10/9%  dustin
31 lubber 8 555 |31 102 |10/12/96 lubber
44 |guppy 5 350 |31 |101 (10/11/96 lubber
58 |rusty 10 |35.0 ||58 103 |11/12/96 dustin

* Cost: 2M logM + 2N log N + (M+N)
* With at least 35 buffer pages, both Reserves and Sailors can be sorted
in 2 passes
» Cost: 2* 2*1000 + 2 * 2* 500 + 1000 + 500 = 7500
CISC 432/832 10

Refinement of Sort-Merge Join

* We can combine the merging phases in the sorting of R and
Swith the merging required for the join.
- With B > /L, where L isthe size of the larger relation, using the
sorting refinement that produces runs of length 2B in Pass 0, #runs
of each relation is< B/2.
— Allocate 1 page per run of each relation, and “merge’ while
checking the join condition.
- Cost: read+write each relation in Pass O + read each relation in
(only) merging pass (+ writing of result tuples).
- In example, cost goes down from 7500 to 4500 I/Os.
In practice, cost of sort-merge join, like the cost of external
sorting, is linear.

CISC 432/832 1
. Original
- Relation OUTPUT Partitions
Hash-Join :
« Partition both O lz:lffﬂm 1
relations using hash fn NPT 4
h: R tuples in D I e DED i
partition i will only | L 110 B-1
match S tuplesin -
partition i Disk B main memory buffers Disk
Partitions .
ofR& S Join Result

. see Hash table for partition
Read in a partition hash Ri (k < B-1 pages)

of R, hash it using fn (]
h2 (<> hY). Scan 08 | OO -0 5]

. " oo
matching partition . h2
of S, search for 00 Inputbuffer  Output ]
matches. ) L forS buife |
Disk B main memory buffers Disk

CISC 432/832 12




Observations on Hash-Join

* #partitions k < B-1 (why?), and B-2 > size of largest
partition to be held in memory. Assuming uniformly sized
partitions, and maximizing k, we get:

- k=B-1, andM/(B-1) <B-2, i.e, Bmustbe> M

« If we build an in-memory hash table to speed up the

matching of tuples, a little more memory is needed.

« |f the hash function does not partition uniformly, one or
more R partitions may not fit in memory. Can apply hash-
join technique recursively to do the join of this R-partition
with corresponding S-partition.

CISC 432/832 13

Cost of Hash-Join

« In partitioning phase, read+write both relns;
2(M+N). In matching phase, read both relns; M+N
1/Os.

* Inour running example, thisis atotal of 4500 I/Os.

 Sort-Merge Join vs. Hash Join:

- Given aminimum amount of memory (what isthis, for
each?) both have a cost of 3(M+N) I/Os. Hash Join
superior on this count if relation sizes differ greatly.
Also, Hash Join shown to be highly parallelizable.

- Sort-Merge less sensitive to data skew; result is sorted.

CISC 432/832 14

Genera Join Conditions
» Equalities over several attributes (e.g., Rsid=S.sd AND
R rname=Ssname):

- For Index NL, build index on <sid, sname> (if Sisinner); or use
existing indexes on sid or sname.

- For Sort-Merge and Hash Join, sort/partition on combination of
the two join columns.

* Inequality conditions (e.g., Rrname < Ssname):
— For Index NL, need (clustered!) B+ tree index.
* Range probeson inner; # matches likely to be much higher than for equality
joins.
- Hash Join, Sort Merge Join not applicable.
— Block NL quite likely to be the best join method here.

CISC 432/832 15




