
Query Optimization 

The System R Optimizer
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Highlights of System R Optimizer

• Impact:
– Most widely used currently; works well for < 10 joins.

• Cost estimation:  Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate cost of 

operations and result sizes.
– Considers combination of CPU and I/O costs.

• Plan Space:  Too large, must be pruned.
– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelinedinto the next 
operator without storing it in a temporary relation.

– Cartesian products avoided.
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Overview of Query Optimization
• Plan: Tree of R.A. ops, with choice of alg for each op.

– Each operator typically implemented using a `pull’ interface: 
when an operator is `pulled’ for the next output tuples, it `pulls’ 
on its inputs and computes them.

• Two main issues:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

• Ideally: Want to find best plan.  Practically: Avoid worst 
plans!

• We will study the System R approach.
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Schema for Examples

• Reserves:
– Each tuple is 40 bytes long,  100 tuples per page, 1000 

pages.

• Sailors:
– Each tuple is 50 bytes long,  80 tuples per page, 500 

pages. 

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
Boats (bid: integer, bname: string, colour: string)
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Query Blocks: Units of Optimization

• An SQL query is parsed into a 
collection of query blocks, and these are 
optimized one block at a time.

• Query block is an SQL query with no 
nesting, one SELECT, one FROM and 
at most one WHERE, HAVING, 
GROUP BY

• Nested blocks are usually treated as 
calls to a subroutine, made once per 
outer tuple.  (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT  MAX (S2.age)
FROM Sailors S2
GROUP BY  S2.rating)

Nested blockOuter block
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Query Blocks
For each sailor with the highest rating (over all 

salilors) and at least 2 reservations for red boats, 
find the sailor id and the earliest date on which the 
sailor has a reservation for a red boat.

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.colour = ‘red’ 

AND S.rating = (SELECT MAX S2.rating
FROM Sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1
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Query Blocks (cont.)

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.colour = ‘red’ 

AND S.rating = 

GROUP BY S.sid
HAVING COUNT(*) > 1

Outer block

(SELECT MAX S2.rating
FROM Sailors S2) Inner block

Reference to nested block
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Translating Query Blocks

�
S.sid,MIN(R.day)(

HAVING COUNT(*) > 2 (
GROUP BY S.sid(
�

S.sid=R.sid ∩R.bid=B.Bid ∩B.colour=‘red’∩S.rating=value_from_nested_block(
S × R × B ))))

A query is essentially treated as a 
� � × expression!

(remaining ops applied to results of expression)
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Relational Algebra Equivalences
• Allow us to choose different join orders and to 

`push’ selections and projections ahead of joins.

• Selections:                                                            
(Cascade)

( ) ( )( )σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

( )( ) ( )( )σ σ σ σc c c cR R1 2 2 1≡ (Commute)

�
Projections: ( ) ( )( )( )π π πa a anR R1 1≡ . . . (Cascade)

�
Joins: � �R      (S     T)      (R     S)      T

� � �� 	 
≡ (Associative)

� �
(R     S)      (S     R) 

� � ≡ (Commute)
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More Equivalences
• A projection commutes with a selection that only uses 

attributes retained by the projection.

• Selection between attributes of the two arguments of a 
cross-product converts cross-product to a join.

• A selection on just attributes of R commutes with          
R       S.   (i.e.,     (R      S)          (R)      S )

• Similarly, if a projection follows a join R      S, we can 
`push’ it by retaining only attributes of R (and S) that are 
needed for the join or are kept by the projection.

� � σ � �
� �σ≡

� �
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Enumeration of Alternative Plans
• There are two main cases:

– Single-relation plans

– Multiple-relation plans

• For queries over a single relation, queries consist of a 
combination of selects, projects, and aggregate ops:
– Each available access path (file scan / index) is considered, and 

the one with the least estimated cost is chosen.

– The different operations are essentially carried out together (e.g., 
if an index is used for a selection, projection is done for each
retrieved tuple, and the resulting tuples are pipelinedinto the 
aggregate computation). 
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Cost Estimation
• For each plan considered, must estimate cost:

– Must estimate costof each operation in plan tree.
• Depends on input cardinalities.

• We’ve already discussed how to estimate the cost of 
operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each operation in 
tree!

• Use information about the input relations.

• For selections and joins, assume independence of predicates.
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Cost Estimates for Single-Relation 
Plans

• Index I on primary key matching selection:
– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

• Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

• Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

• Sequential scan of file:
– NPages(R).

+ Note: Typically, no duplicate elimination on projections! 
(Exception:  Done if user says DISTINCT.)
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Example

• If we have an index on rating:
– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = 

(1/10) * (50+500) pages are retrieved. 
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = 

(1/10) * (50+40000) pages are retrieved.  

• If we have an index onsid:
– Would have to retrieve all tuples/pages.  With a clustered index, 

the cost is 50+500, with unclustered index, 50+40000.

• Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8
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Queries Over Multiple Relations

• Fundamental decision in System R:  only left-deep join 
treesare considered.
– As the number of joins increases, the number of alternative plans 

grows rapidly; we need to restrict the search space.

– Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.

• Not all left-deep trees are fully pipelined (e.g., SM join).

BA
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BA

C
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C DBA
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Enumeration of Left-Deep Plans
• Left-deep plans differ only in the order of relations, the 

access method for each relation, and the join method for 
each join.

• Enumerated using N passes (if N relations joined):
– Pass 1:  Find best 1-relation plan for each relation.
– Pass 2:  Find best way to join result of each 1-relation plan (as 

outer) to another relation.  (All 2-relation plans.)  
– Pass N:  Find best way to join result of a (N-1)-relation plan (as 

outer) to the N’th relation.  (All N-relation plans.)

• For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.
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Enumeration of Plans (Cont.)

• ORDER BY, GROUP BY, aggregates etc. handled 
as a final step, using either an `interestingly 
ordered’ plan or an addional sorting operator.

• An N-1 way plan is not combined with an 
additional relation unless there is a join condition 
between them, unless all predicates in WHERE 
have been used up.
– i.e., avoid Cartesian products if possible.

• In spite of pruning plan space, this approach is 
still exponential in the # of tables.
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Cost Estimation for Multirelation Plans

• Consider a query block:

• Maximum # tuples in result is the product of the 
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with eachtermreflects 
the impact of the term in reducing result size.  Result
cardinality = Max # tuples  *  product of all RF’s.

• Multirelation plans are built up by joining one new relation 
at a time.
– Cost of join method, plus estimation of join cardinality gives us 

both cost estimate and result size estimate

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk
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Example

• Pass1:

– Sailors:  B+ tree matches rating>5,  and is probably 
cheapest.  However, if this selection is expected to            
retrieve a lot of tuples, and index is unclustered, file scan 
may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).

– Reserves:  B+ tree on bid matches bid=500; cheapest. 

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

• Pass 2:

– We consider each plan retained from Pass 1 as the outer, 
and consider how to join it with the (only) other relation

– e.g., Reserves as outer:  Hash index can be used to get 
Sailors tuples that satisfy sid = outer tuple’ s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname
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Nested Queries

• Nested block is optimized 
independently, with the outer tuple
considered as providing a selection 
condition.

• Outer block is optimized with the 
cost of `calling’ nested block 
computation taken into account.

• Implicit ordering of these blocks 
means that some good strategies are 
not considered.  The non-nested 
version of the query is typically 
optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS 

(SELECT  *
FROM Reserves R
WHERE R.bid=103 
AND R.sid=S.sid)

Nested block to optimize:

SELECT  *
FROM Reserves R
WHERE R.bid=103 

AND S.sid= outer value

Equivalent non-nested query:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid 

AND R.bid=103
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Summary
• Query optimization is an important task in a relational 

DBMS.

• Must understand optimization in order to understand the 
performance impact of a given database design (relations, 
indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.



CISC 432/832 22

Summary (Cont.)
• Single-relation queries:

– All access paths considered, cheapest is chosen.
– Issues:  Selections that matchindex, whether index key has all 

needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another relation 
(as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of 
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for each 
interesting order of tuples is `retained’. 


