
Query Optimization

The System R Optimizer

CISC 432/832 2

Highlights of System R Optimizer

• Impact:
– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate cost of

operations and result sizes.
– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelinedinto the next
operator without storing it in a temporary relation.

– Cartesian products avoided.

CISC 432/832 3

Overview of Query Optimization
• Plan: Tree of R.A. ops, with choice of alg for each op.

– Each operator typically implemented using a `pull’ interface:
when an operator is `pulled’ for the next output tuples, it `pulls’
on its inputs and computes them.

• Two main issues:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

• Ideally: Want to find best plan. Practically: Avoid worst
plans!

• We will study the System R approach.

CISC 432/832 4

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500

pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
Boats (bid: integer, bname: string, colour: string)

CISC 432/832 5

Query Blocks: Units of Optimization

• An SQL query is parsed into a
collection of query blocks, and these are
optimized one block at a time.

• Query block is an SQL query with no
nesting, one SELECT, one FROM and
at most one WHERE, HAVING,
GROUP BY

• Nested blocks are usually treated as
calls to a subroutine, made once per
outer tuple. (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating)

Nested blockOuter block

CISC 432/832 6

Query Blocks
For each sailor with the highest rating (over all

salilors) and at least 2 reservations for red boats,
find the sailor id and the earliest date on which the
sailor has a reservation for a red boat.

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.colour = ‘red’

AND S.rating = (SELECT MAX S2.rating
FROM Sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1

CISC 432/832 7

Query Blocks (cont.)

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.colour = ‘red’

AND S.rating =

GROUP BY S.sid
HAVING COUNT(*) > 1

Outer block

(SELECT MAX S2.rating
FROM Sailors S2) Inner block

Reference to nested block

CISC 432/832 8

Translating Query Blocks

�
S.sid,MIN(R.day)(

HAVING COUNT(*) > 2 (
GROUP BY S.sid(
�

S.sid=R.sid ∩R.bid=B.Bid ∩B.colour=‘red’∩S.rating=value_from_nested_block(
S × R × B))))

A query is essentially treated as a
� � × expression!

(remaining ops applied to results of expression)

CISC 432/832 9

Relational Algebra Equivalences
• Allow us to choose different join orders and to

`push’ selections and projections ahead of joins.

• Selections:
(Cascade)

() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

()() ()()σ σ σ σc c c cR R1 2 2 1≡ (Commute)

�
Projections: () ()()()π π πa a anR R1 1≡ . . . (Cascade)

�
Joins: � �R (S T) (R S) T

� � �� 	
≡ (Associative)

� �
(R S) (S R)

� � ≡ (Commute)

CISC 432/832 10

More Equivalences
• A projection commutes with a selection that only uses

attributes retained by the projection.

• Selection between attributes of the two arguments of a
cross-product converts cross-product to a join.

• A selection on just attributes of R commutes with
R S. (i.e., (R S) (R) S)

• Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that are
needed for the join or are kept by the projection.

� � σ � �
� �σ≡

� �

CISC 432/832 11

Enumeration of Alternative Plans
• There are two main cases:

– Single-relation plans

– Multiple-relation plans

• For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
– Each available access path (file scan / index) is considered, and

the one with the least estimated cost is chosen.

– The different operations are essentially carried out together (e.g.,
if an index is used for a selection, projection is done for each
retrieved tuple, and the resulting tuples are pipelinedinto the
aggregate computation).

CISC 432/832 12

Cost Estimation
• For each plan considered, must estimate cost:

– Must estimate costof each operation in plan tree.
• Depends on input cardinalities.

• We’ve already discussed how to estimate the cost of
operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each operation in
tree!

• Use information about the input relations.

• For selections and joins, assume independence of predicates.

CISC 432/832 13

Cost Estimates for Single-Relation
Plans

• Index I on primary key matching selection:
– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

• Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

• Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

• Sequential scan of file:
– NPages(R).

+ Note: Typically, no duplicate elimination on projections!
(Exception: Done if user says DISTINCT.)

CISC 432/832 14

Example

• If we have an index on rating:
– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =

(1/10) * (50+500) pages are retrieved.
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) =

(1/10) * (50+40000) pages are retrieved.

• If we have an index onsid:
– Would have to retrieve all tuples/pages. With a clustered index,

the cost is 50+500, with unclustered index, 50+40000.

• Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

CISC 432/832 15

Queries Over Multiple Relations

• Fundamental decision in System R: only left-deep join
treesare considered.
– As the number of joins increases, the number of alternative plans

grows rapidly; we need to restrict the search space.

– Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.

• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

CISC 432/832 16

Enumeration of Left-Deep Plans
• Left-deep plans differ only in the order of relations, the

access method for each relation, and the join method for
each join.

• Enumerated using N passes (if N relations joined):
– Pass 1: Find best 1-relation plan for each relation.
– Pass 2: Find best way to join result of each 1-relation plan (as

outer) to another relation. (All 2-relation plans.)
– Pass N: Find best way to join result of a (N-1)-relation plan (as

outer) to the N’th relation. (All N-relation plans.)

• For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

CISC 432/832 17

Enumeration of Plans (Cont.)

• ORDER BY, GROUP BY, aggregates etc. handled
as a final step, using either an `interestingly
ordered’ plan or an addional sorting operator.

• An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE
have been used up.
– i.e., avoid Cartesian products if possible.

• In spite of pruning plan space, this approach is
still exponential in the # of tables.

CISC 432/832 18

Cost Estimation for Multirelation Plans

• Consider a query block:

• Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with eachtermreflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

• Multirelation plans are built up by joining one new relation
at a time.
– Cost of join method, plus estimation of join cardinality gives us

both cost estimate and result size estimate

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

CISC 432/832 19

Example

• Pass1:

– Sailors: B+ tree matches rating>5, and is probably
cheapest. However, if this selection is expected to
retrieve a lot of tuples, and index is unclustered, file scan
may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).

– Reserves: B+ tree on bid matches bid=500; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

• Pass 2:

– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation

– e.g., Reserves as outer: Hash index can be used to get
Sailors tuples that satisfy sid = outer tuple’ s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

CISC 432/832 20

Nested Queries

• Nested block is optimized
independently, with the outer tuple
considered as providing a selection
condition.

• Outer block is optimized with the
cost of `calling’ nested block
computation taken into account.

• Implicit ordering of these blocks
means that some good strategies are
not considered. The non-nested
version of the query is typically
optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:

SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

Equivalent non-nested query:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

CISC 432/832 21

Summary
• Query optimization is an important task in a relational

DBMS.

• Must understand optimization in order to understand the
performance impact of a given database design (relations,
indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

CISC 432/832 22

Summary (Cont.)
• Single-relation queries:

– All access paths considered, cheapest is chosen.
– Issues: Selections that matchindex, whether index key has all

needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another relation
(as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for each
interesting order of tuples is `retained’.

