
1

Concurrency Control

Locking

CISC 432/832 2

Conflict Serializable Schedules

• Two schedules are conflict equivalent if:
– Involve the same actions of the same

transactions

– Every pair of conflicting actions is ordered the
same way

• Schedule S is conflict serializable if S is
conflict equivalent to some serial schedule

CISC 432/832 3

Example
• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2

A

B

Dependency graph

2

CISC 432/832 4

Dependency Graph

• Dependency graph: One node per Xact;
edge from Ti to Tj if Tj reads/writes an
object last written by Ti.

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

CISC 432/832 5

Review: Strict 2PL

• Strict Two-phase Locking (Strict 2PL) Protocol:
– Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on object
before writing.

– All locks held by a transaction are released when the
transaction completes

– If an Xact holds an X lock on an object, no other Xact
can get a lock (S or X) on that object.

• Strict 2PL allows only schedules whose
precedence graph is acyclic

CISC 432/832 6

Two-Phase Locking (2PL)

• Two-Phase Locking Protocol
– Each Xact must obtain a S (shared) lock on

object before reading, and an X (exclusive) lock
on object before writing.

– A transaction can not request additional locks
once it releases any locks.

– If an Xact holds an X lock on an object, no
other Xact can get a lock (S or X) on that
object.

3

CISC 432/832 7

View Serializability
• Schedules S1 and S2 are view equivalent if:

– If Ti reads initial value of A in S1, then Ti also
reads initial value of A in S2

– If Ti reads value of A written by Tj in S1, then Ti
also reads value of A written by Tj in S2

– If Ti writes final value of A in S1, then Ti also
writes final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

CISC 432/832 8

Lock Management

• Lock and unlock requests are handled by the lock
manager

• Lock table entry:
– Number of transactions currently holding a lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests

• Locking and unlocking have to be atomic
operations

• Lock upgrade: transaction that holds a shared lock
can be upgraded to hold an exclusive lock

CISC 432/832 9

Deadlocks

• Deadlock: Cycle of transactions waiting for
locks to be released by each other.

• Two ways of dealing with deadlocks:
– Deadlock prevention

– Deadlock detection

4

CISC 432/832 10

Deadlock Prevention

• Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two
policies are possible:
– Wait-Die: It Ti has higher priority, Ti waits for

Tj; otherwise Ti aborts
– Wound-wait: If Ti has higher priority, Tj

aborts; otherwise Ti waits

• If a transaction re-starts, make sure it has its
original timestamp

CISC 432/832 11

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions

– There is an edge from Ti to Tj if Ti is waiting
for Tj to release a lock

• Periodically check for cycles in the waits-
for graph

CISC 432/832 12

Deadlock Detection (Cont.)
Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

5

CISC 432/832 13

Multiple-Granularity Locks

• Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

• Shouldn’t have to decide!

• Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

CISC 432/832 14

Solution: New Lock Modes,
Protocol

• Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

�
Before locking an item, Xact
must set “ intention locks”
on all its ancestors.

�
For unlock, go from specific
to general (i.e., bottom-up).

�
SIX mode: Like S & IX at
the same time.

-- IS IX

--

IS

IX

××××

××××

××××

×××× ××××

××××

S X

××××
××××

S

X

×××× ××××

××××

××××

××××

×××× ××××

××××

CISC 432/832 15

Multiple Granularity Lock
Protocol

• Each Xact starts from the root of the hierarchy.

• To get S or IS lock on a node, must hold IS or IX on
parent node.
– What if Xact holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

• Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

6

CISC 432/832 16

Examples
• T1 scans R, and updates a few tuples:

– T1 gets an SIX lock on R, then repeatedly gets
an S lock on tuples of R, and occasionally
upgrades to X on the tuples.

• T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

• T3 reads all of R:
– T3 gets an S lock on R.
– OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX

××××

××××

××××

×××× ××××

××××

S X

××××
××××

S

X

×××× ××××

××××

××××

××××

×××× ××××

××××

CISC 432/832 17

Dynamic Databases
• If we relax the assumption that the DB is a fixed

collection of objects, even Strict 2PL will not
assure serializability:
– T1 locks all pages containing sailor records with rating

= 1, and finds oldestsailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and, say,

age = 80), and commits.
– T1 now locks all pages containing sailor records with

rating = 2, and finds oldest(say, age = 63).

• No consistent DB state where T1 is “correct”!

CISC 432/832 18

The Problem
• T1 implicitly assumes that it has locked the set of

all sailor records with rating = 1.
– Assumption only holds if no sailor records are added

while T1 is executing!

– Need some mechanism to enforce this assumption.
(Index locking and predicate locking.)

• Example shows that conflict serializability
guarantees serializability only if the set of objects
is fixed!

7

CISC 432/832 19

Index Locking

• If there is a dense index on the rating field using
Alternative (2), T1 should lock the index page
containing the data entries with rating = 1.
– If there are no records with rating = 1, T1 must lock the

index page where such a data entry would be, if it
existed!

• If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new pages
from being added, to ensure that no new records
with rating = 1 are added.

r=1

Data

Index

CISC 432/832 20

Predicate Locking

• Grant lock on all records that satisfy some logical
predicate, e.g. age > 2*salary.

• Index locking is a special case of predicate locking
for which an index supports efficient
implementation of the predicate lock.
– What is the predicate in the sailor example?

• In general, predicate locking has a lot of locking
overhead.

CISC 432/832 21

Locking in B+ Trees
• How can we efficiently lock a particular leaf node?

– BTW, don’t confuse this with multiple granularity locking!

• One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.

• This has terrible performance!
– Root node (and many higher level nodes) become

bottlenecks because every tree access begins at the root.

8

CISC 432/832 22

Two Useful Observations
• Higher levels of the tree only direct searches for

leaf pages.
• For inserts, a node on a path from root to modified

leaf must be locked (in X mode, of course), only if
a split can propagate up to it from the modified
leaf. (Similar point holds w.r.t. deletes.)

• We can exploit these observations to design
efficient locking protocols that guarantee
serializabilityeven though they violate 2PL.

CISC 432/832 23

A Simple Tree Locking:
Algorithm 1

• Search: Start at root and go down; repeatedly, S
lock child then unlock parent.

• Insert/Delete: Start at root and go down, obtaining
X locks as needed. Once child is locked, check if
it is safe:
– If child is safe, release all locks on ancestors.

• Safe node: Node such that changes will not
propagate up beyond this node.
– Inserts: Node is not full.
– Deletes: Node is not half-empty.

CISC 432/832 24

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

1) Search 38*

2) Delete 38*

3) Insert 45*

4) Insert 25*

23

9

CISC 432/832 25

A Better One:
Algorithm 2

• Search: As before.
• Insert/Delete:

– Set locks as if for search, get to leaf, and set X
lock on leaf.

– If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

• Gambles that only leaf node will be modified; if
not, S locks set on the first pass to leaf are wasteful.
In practice, better than previous alg.

CISC 432/832 26

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

1) Delete 38*

2) Insert 25*

4) Insert 45*

5) Insert 45*,

then 46*

23

CISC 432/832 27

An Even Better One:
Algorithm 3

• Search: As before.

• Insert/Delete:

– Use original Insert/Delete protocol, but set IX
locks instead of X locks at all nodes.

– Once leaf is locked, convert all IX locks to X
locks top-down: i.e., starting from node nearest
to root. (Top-down reduces chances of
deadlock.)

(Contrast use of IX locks here with their use in
multiple-granularity locking.)

10

CISC 432/832 28

Hybrid Algorithm
(Algorithm 4)

• The likelihood that we really need an X
lock decreases as we move up the tree.

• Hybrid approach:
Set S locks

Set SIX locks

Set X locks

CISC 432/832 29

Summary

• There are several lock-based concurrency control
schemes (Strict 2PL, 2PL). Conflicts between
transactions can be detected in the dependency
graph

• The lock manager keeps track of the locks issued.
Deadlocks can either be prevented or detected.

• Naïve locking strategies may have the phantom
problem

CISC 432/832 30

Summary (Cont.)
• Index locking is common, and affects performance

significantly.
– Needed when accessing records via index.

– Needed for locking logical sets of records (index
locking/predicate locking).

• Tree-structured indexes:
– Straightforward use of 2PL very inefficient.

– Bayer-Schkolnick illustrates potential for improvement.

• In practice, better techniques now known; do
record-level, rather than page-level locking.

11

CISC 432/832 31

Summary (Cont.)

• Multiple granularity locking reduces the
overhead involved in setting locks for nested
collections of objects (e.g., a file of pages);
should not be confused with tree index
locking!

