Crash Recovery

The ACID properties
- A tomicity: All actions in the Xact happen, or none
happen.

. Consistency: If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

« | solation: Execution of one Xact is isolated from thaf
of other Xacts.

- D urability: If a Xact commits, its effects persist.

* TheRecovery Managerguarantees Atomicity &

Durability.
CISC 432/832 2
Motivation
o Atomicity:
— Transactions may abort (“Rollback”).
 Durability:

— What if DBMS stops running? (Causes?)

% Desired Behavior after crash!
system restarts: T1 |
— T1, T2 & T3 should be T2 _— |
durable. T3 —_— |
— T4 & T5 should be T4 |
aborted (effects not seen). | TS 1

CISC 432/832 3

Assumptions

e Concurrency control is in effect.
— Strict 2PL, in particular.
« Updates are happening “in place”.

— i.e. data is overwritten on (deleted from) the
disk.

¢ A simple scheme to guarantee Atomicity &
Durability?

CISC 432/832

Handling the Buffer Pool

« Force every write to disk?
— Poor response time. No Steal Steal
— But provides durability.

« Steal buffer-pool frames
from uncommited Xacts?
— If not, poor throughput. no Force Desired

— If so, how can we ensure
atomicity?

Force| Trivial

CISC 432/832

More on Steal and Force

» STEAL (why enforcing Atomicity is hard)
— To steal frame F: Current page in F (say P) is written
to disk; some Xact holds lock on P.
+ What if the Xact with the lock on P aborts?
* Must remember the old value of P at steal times(tpport
UNDOing the write to page P).
» NO FORCE (why enforcing Durability is hard)
— What if system crashes before a modified page is
written to disk?
— Write as little as possible, in a convenient place, at
commit time,to support REDOing modifications.

CISC 432/832

Basic Idea: Logging

* Record REDO and UNDO information, for every
update, in dog.
— Sequential writes to log (put it on a separate disk).
— Minimal info (diff) written to log, so multiple updates fit
in a single log page.
e Log: An ordered list of REDO/UNDO actions
— Log record contains:
<XID, pagelD, offset, length, old data, new data>
— and additional control info (which we’ll see soon).

CISC 432/832 7

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:

@® Must force the log record for an upddefore the
corresponding data page gets to disk.

@ Must write all log records for a Xabefore commit.
e #1 guarantees Atomicity.
e #2 guarantees Durability.

« Exactly how is logging (and recovery!) done?
— We'll study the ARIES algorithms.

CISC 432/832

WAL & the Log

» Each log record has a unique Log Sequence
Number (LSN). Log records

— LSNs always increasing. flushed to disk

» Eachdata page contains a pageLSN.

— The LSN of the most recelug record
for an update to that page.

» System keeps track of flushedLSN. /
— The max LSN flushed so far.

« WAL: Beforea page is written, |P5"N “Log tail!
—_ pageL SN flushedLSN "

pageLSNs flushedLSN

CISC 432/832

Log Records

Possible log record types:

LogRecord fields: « Update
prevLSN « Commit
XID
type Abort o
pagelD » End (signifies end of
update | length commit or abort)
records | offset « Compensation Log Records
only before-image (CLRs)
after-image

— for UNDO actions

CISC 432/832 10

Other Log-Related State

* Transaction Table:
— One entry per active Xact.

— Contains XID, status
(running/commited/aborted), and lastLSN.

 Dirty Page Table:
— One entry per dirty page in buffer pool.

— Contains recLSN -- the LSN of the log record
whichfirst caused the page to be dirty.

CISC 432/832 11

Normal Execution of an Xact

 Series of reads & writes, followed by commit
or abort.
— We will assume that write is atomic on disk.

« In practice, additional details to deal with non-atomic
writes.

» Strict 2PL.

« STEAL, NO-FORCEbuffer management, with
Write-Ahead Logging.

CISC 432/832 12

Checkpointing

 Periodically, the DBMS creates a checkppintorder
to minimize the time taken to recover in the e
system crash. Write to log:
— begin_checkpoint record: Indicates when chkpt began.
— end_checkpoint record: Contains curnéatt table anddirty
pagetable. This is a “fuzzy checkpoint’:
« Other Xacts continue to run; so these tables acewraly as of the
time of the begin_checkpoint record.
« No attempt to force dirty pages to disk; effeatiess of checkpoint
limited by oldest unwritten change to a dirty pa@® it's a good idea
to periodically flush dirty pages to disk!)

— Store LSN of chkpt record in a safe planagter record).

CISC 432/832 13

The Big Picture: What's Stored
Where

=] | [

LogRecords xact Table
%eDVLSN Data pages lastLSN
type each status
pagelD with a
length pageLSN Dirty Preelgfslable
offset
before-image master record
after-image flushedLSN

CISC 432/832

Simple Transaction Abort

« For now, consider an explicit abort of a Xact.
— No crash involved.

* We want to “play back” the log in reverse order,
UNDOINg updates.
— Get lastLSN of Xact from Xact table.

— Can follow chain of log records backward via the
prevLSN field.

— Before starting UNDO, write afbort log record.
« For recovering from crash during UNDO!

CISC 432/832

o

&

e°0\> @,\'ﬁ
NN O

S R
Abort (Cont.) @ s &
Q(>

* To performUNDO, must have a lock on data!
— No problem!

» Before restoring old value of a page, write a CLR:
— You continue logging while you UNDO!!

— CLR has one extra field: undonextLSN

« Points to the next LSN to undo (i.e. the prevLSNhaf record we're
currently undoing).

— CLRsnever Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

« At end ofUNDO, write an “end” log record.
CISC 432/832 16

Transaction Commit

* Write commit record to log.
 All log records up to Xact's lastLSN are flushed.

— Guarantees that flushedLSNastLSN.

— Note that log flushes are sequential, synchronous writes
to disk.

— Many log records per log page.
e Commit() returns.
* Write end record to log.

CISC 432/832 17

Crash Recovery: Big Picture

Oldest log
rec.of Xact _f % Start from a checkpoint (found
active at crash N .
via master record).

Smallest %+ Three phases. Need to:
recLSN in i .
dirty page = = — Figure out which Xacts
:‘ﬂ? after committed since checkpoint,

naysis which failed (Analysis).

— REDO all actions.
Lastchkpt = # (repeat history)
l — UNDO effects of failed Xacts.

CRASH

cscazzezz A R U 18

Recovery: The Analysis Phase

« Reconstruct state at checkpoint.
— via end_checkpoint record.
¢ Scan log forward from checkpoint.
— End record: Remove Xact from Xact table.

— Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

— Update record: If P not in Dirty Page Table,
* Add P to D.P.T., set its recLSN=LSN.

CISC 432/832

Recovery: The REDO Phase

» Werepeat History to reconstruct state at crash:
— Reapplyall updates (even of aborted Xacts!), redo CLRs.
» Scan forward from log rec containing smallest recLSN

in D.P.T. For eacleLR or update log rec LSNREDO
the action unless:

— Affected page is not in the Dirty Page Table, or
— Affected page is in D.P.T., but has recLSN > LSN, or
— pageLSN (in DB LSN.
* ToREDOan action:
— Reapply logged action.
— Set pageLSN to LSN. No additional logging!

CISC 432/832

Recovery: The UNDO Phase

ToUndo={I |l a lastLSN of a “loser” Xact}
Repeat:
— Choose largest LSN among ToUndo.
— If this LSN is a CLR and undonextLSN==NULL
» Write an End record for this Xact.
— If this LSN is a CLR, and undonextLSN '= NULL
* Add undonextLSN to ToUndo

— Else this LSN is an update. Undo the update, write a
CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

CISC 432/832

Exa

‘RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

CISC 432/832

mple of Recovery
LSN

00
05
10
20
30
40
45
50
60

= update: T1 writes P5
- update T2 writes P3
— T1 abort
- CLR: Un@T‘l_‘LSN 10
- T1End

— update: T3 writes P1
— update: T2 writes P5

LOG

— begin_checkpoint

i~ end_checkpoint

< CRASH, RESTART

Example: Crash During Restart!

‘RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

CISC 432/832

LSN

00,05
10
20
30
40,45
50
60

70
80,85

90

LOG

— begin_checkpoint, end_checkpoint

-‘- update: T1 writes P5

_ update T2 writes P3
— T1 abort

undonextLSN

+ CLR: Undo T1 LSN 10, T1 End

—-— update: T3 writes P1

E

— update: T2 writes P5

X CRASH, RESTART

=+ CLR: Undo T2 LSN 60

— CLR: Undo T3 LSN 50, T3 end

X CRASH, RESTART

- CLR:Undo T2LSN20,T2end 23

Additional Crash Issues

* What happens if system crashes during Analysis?
During REDO?
* How do you limit the amount of work IREDO?
— Flush asynchronously in the background.
— Watch “hot spots”!
* How do you limit the amount of work iIlNDO?
— Avoid long-running Xacts.

CISC 432/832

Summary of Logging/Recovery

Recovery Manager guarantees Atomicity &
Durability.

* Use WAL to allowSTEAL/NO-FORCEW/0
sacrificing correctness.

* LSNs identify log records; linked into backwards
chains per transaction (via prevLSN).

» pagelLSN allows comparison of data page and log
records.

CISC 432/832 25

SummaryCont.)

» Checkpointing: A quick way to limit the amount
of log to scan on recovery.

* Recovery works in 3 phases:
— Analysis: Forward from checkpoint.
— Redo: Forward from oldest recLSN.

— Undo: Backward from end to first LSN of oldest Xact
alive at crash.

* Upon Undo, write CLRs.
* Redo “repeats history”: Simplifies the logic!

CISC 432/832 26

