
1

SPACE AND TIME HIERARCHIES

This material is covered in section 9.1 in the textbook.

We have seen that comparing the power of deterministic and nondeterministic time

bounds is very challenging. For corresponding questions dealing with space bounds we have

the nice result from Savitch’s theorem. Next we consider the natural question: suppose we

increase (“sufficiently much”) the time or space bound, does this guarantee that the power

of the (deterministic) Turing machines increases?

Our intuition suggests that giving Turing machines more time or space should increase

the computational capability of the machines. Under some reasonable assumptions, this

turns out to be the case: we can establish strict inclusions for the classes, assuming that we

restrict consideration to constructible functions.

Definition. (Def. 9.1) A function f : IN −→ IN is space constructible if there is a Turing

machine that on input 1n writes the binary representation of f(n) on the output tape and

the computation uses space O(f(n)).

In the above definition we always assume that f(n) ≥ log n and hence it does not matter

whether or not the space used on the output tape is counted.

• All the commonly used space bounds, such as polynomials, log n, 2n, are space con-

structible. This can be easily verified (examples in class).

Note that in the definition of space constructibility of f(n), the argument for the

function is represented in unary – this corresponds to our usual convention that the

argument of a space bound function is the length of the input.

Space hierarchy theorem (Th. 9.3) For any space constructible function f : IN −→ IN

there exists a language A decidable in space O(f(n)) but not decidable in space o(f(n)).



Computability and Complexity CISC462, Fall 2018, The space and the time hierarchy 2

Proof: Uses diagonalization. Time permitting, we may go through the proof in class.

Corollary. For any functions f1(n), f2(n) ≥ log n where

1. f1(n) = o(f2(n)), and

2. f2 is space constructible

we have

SPACE(f1(n)) ⊂ SPACE(f2(n)).

Note that above “⊂” denotes strict inclusion.

Using Savitch’s theorem we obtain also:

Corollary. NL ⊂ SPACE(n)

Similarly if we define:

EXPSPACE =
⋃
k≥1

SPACE(2nk

)

the space hierarchy theorem gives the strict inclusion

PSPACE ⊂ EXPSPACE.

For establishing a hierarchy result for time complexity classes we again need the following

technical definition.

Definition. (Def. 9.8) A function t : IN −→ IN, t(n) ≥ n, is time constructible if there is

a Turing machine that on input 1n writes the binary representation of t(n) on the tape and

the computation uses O(t(n)) steps.

Time hierarchy theorem. (Th. 9.10) For any time constructible function t(n) ≥ n · log n

there exists a language B decidable in time O(t(n)) but not in time o(t(n)/ log t(n)).



Computability and Complexity CISC462, Fall 2018, The space and the time hierarchy 3

Corollary. TIME(t1(n)) ⊂ TIME(t2(n)) if t1(n) = o(t2(n)/ log(t2(n))) and t2(n) ≥ n · log n

is time constructible.

Corollary. P ⊂ EXPTIME

Why do we need the constructibility assumptions? If we would allow arbitrary functions

as time/space bounds (or even arbitrary computable functions) it is possible to get very

strange results of the following type:

Gap theorem (Borodin, 1972) There is a total strictly monotonic computable function

f : IN −→ IN such that

TIME(f(n)) = TIME(2f(n)).

The “gap theorem” is proved using a form of diagonalization (but the proof is beyond

the scope of this course). The reasons for the constructibility assumptions are discussed also

in the early part of section 9.1 in the textbook.

By adding the constructibility assumption we can eliminate the strange situations implied

by the gap theorem, and we are able to establish the time and space hierarchy results

discussed above. All reasonable (“naturally occurring”) functions that are at least linear are

normally time constructible, and all reasonable functions that are at least logarithmic are

normally space constructible.

Examples. What are the relationships between the following pairs of complexity classes?

(equal, strict inclusion, inclusion that is not known to be strict)

1. TIME(2n) and TIME(2n+5)

2. TIME(2n) and TIME(3n)

3. NSPACE(2n) and SPACE(5n)



Computability and Complexity CISC462, Fall 2018, The space and the time hierarchy 4

4. NSPACE(2n) and SPACE(4n)

5. SPACE(n) and SPACE(n · log n)

6. TIME(n) and TIME(n · log n)

7. TIME(2n) and TIME(n2 · 2n)


