
1

FURTHER UNDECIDABLE PROBLEMS;

REDUCTIONS

This material is covered in Chapter 5 of the textbook.

• The undecidability of the language ATM means that there is no algorithm that decides,

for an arbitrary given Turing machine M and input string w, whether or not M accepts

w.

• Naturally in some individual cases it will be possible to predict whether a particular

Turing machine accepts a given input. The undecidability of the general problem

means just that there is no algorithm that gives the correct answer for all inputs.

• The undecidability of ATM was established using diagonalization. Now that we have

one language that is known to be undecidable it is possible to establish the undecid-

ability of many other languages (problems) using a technique called reduction.

Informal definition of reductions

Problem A reduces to problem B, if an algorithm for solving B (a TM to decide B) can be

used to construct an algorithm to solve A (a TM to decide A).

(Reducibility will be defined formally later.)

The above means that if A reduces to B and B is decidable, then also A is decidable.

On the other hand, if A is known to be undecidable and A reduces to B then also B is

undecidable.

This observation is the basis for establishing the undecidability of new problems relying

on the fact that we already know that some other problem is undecidable.



Computability and Complexity CISC462, Fall 2018, Reductions 2

What is usually called the TM halting problem can be encoded as the following language:

HALTTM = {< M,w >| M is a TM and M halts on input w}

The languageHALTTM is somehow related to the language ATM (the acceptance problem

for TMs), however, the precise definitions differ. Due to the similarity of the problems, it is

straightforward to reduce ATM to HALTTM , which is what we do in the following proof.

Theorem. HALTTM is undecidable.

Proof. For the sake of contradiction we assume that a TM N decides HALTTM . We

construct a TM P to decide ATM as follows:

Operation of P :

On an input < M,w > where M is a TM and w an input string for M we do the following:

1. Run N on input < M,w >

2. If N rejects, reject /* the computation of M on w is infinite */

3. If N accepts, simulate M on w until it halts

/* now we can be sure that M halts */

4. If M accepts, return accept;

if M rejects, return reject.

Assuming that N correctly decides HALTTM , the above algorithm decides ATM . The

latter is impossible since we know that ATM is undecidable.

We conclude that N cannot exist and HALTTM is undecidable. 2

The above proof followed the typical schema used in reducibility proofs for undecidability:

1. We reduced ATM to HALTTM (that is, used the hypothetical decider N to construct

a decider for ATM).



Computability and Complexity CISC462, Fall 2018, Reductions 3

2. Since ATM was known to be undecidable we could conclude that also HALTTM is

undecidable.

Note that the argument does not in any way assume the existence of the decider N . In fact,

as a consequence we conclude that N cannot exist!

Using reductions from ATM it is shown in the textbook section 5.1 that for languages

recognized by Turing machines also the following questions are undecidable:

• emptiness,

• equivalence,

• regularity.

Furthermore, also the following questions are undecidable for Turing machines:

• context-freeness,

• finiteness,

• etc. etc.

By generalizing the above proof techniques it is possible to prove a very strong undecid-

ability result that is called Rice’s theorem. Below we formulate this result and provide some

discussion on it. (The statement of Rice’s theorem is given as problem 5.28 and the proof

can be found in the solutions section.)

A property P of a Turing machine M is called a semantic property if it depends only on

the language recognized by M and not on the syntactic structure of M .

Examples of semantic properties include:

• M accepts the empty string;



Computability and Complexity CISC462, Fall 2018, Reductions 4

• M accepts some string;

• M accepts infinitely many strings;

• the language recognized by M is regular.

Thus if L(M1) = L(M2), then the TMs M1 and M2 have exactly the same semantic proper-

ties.

More formally, a property P can be expressed as a language consisting of exactly the

encodings < M > where M has the property P .

A semantic property P is said to be non-trivial if there exists a Turing machine M1 such

that < M1 >∈ P and a Turing machine M2 such that < M2 > ̸∈ P .

• What would be an example of a trivial semantic property?

• What is an example of a property of Turing machines that is not semantic?

Now Rice’s theorem can be formulated as follows:

Theorem (Rice). All non-trivial semantic properties of Turing machines are undecidable.

Rice’s theorem means that for an arbitrary given Turing machine M we cannot decide

any properties concerning L(M) except properties that are true for exactly all or exactly

none of the languages recognized by Turing machines.

Linear bounded automata

Definition (see section 5.1.) A linear bounded automaton (LBA) is a Turing machine where

the tape head is restricted to the part of the tape that initially contains the input.



Computability and Complexity CISC462, Fall 2018, Reductions 5

In other words, an LBA cannot “expand workspace” to the part of the tape that initially

consists of blank symbols. When an LBA reaches the end of the input (the first blank) it

can only stay in place or make a left move.

Within the tape squares that contained the input, an LBA can move freely in both

directions and rewrite the symbols occurring there.

The LBAs can recognize all context-free languages, and the usual examples of non-

context-free languages. It is, in fact, not easy to find examples of languages that cannot

be recognized by LBAs. Using diagonalization we can show that such languages do exist.

Chomsky Hierarchy

• Type 3 languages = regular languages

• Type 2 languages = context-free languages

• Type 1 languages = languages recognized by nondeterministic LBAs

• Type 0 languages = Turing-recognizable languages

• All inclusions in the Chomsky hierarchy are strict, that is, the family of Type i + 1

languages is strictly included in the family of Type i languages, i = 0, 1, 2.

• It is an open question whether the deterministic and nondeterministic LBAs recognize

the same family of languages.

The LBAs are an example of resource bounded Turing machines. In the second half of

the course we will see that comparing the power of determinism and nondeterminism with

the presence of resource bounds is usually very difficult.

Recall that (unrestricted) deterministic Turing machines can simulate nondeterministic

Turing machines, and this result was not too difficult to obtain.



Computability and Complexity CISC462, Fall 2018, Reductions 6

As before we can consider the membership and emptiness questions for LBAs. If not

separately mentioned, here a linear bounded automaton means a deterministic LBA.

ALBA = {< M,w >| M is an LBA that accepts string w}

ELBA = {< M >| M is an LBA and L(M) = ∅}

Theorem.

1. ALBA is decidable.

2. ELBA is undecidable.

Post Correspondence Problem

The Post Correspondence Problem (named after Emil Post) is a particularly simple un-

decidable problem that is useful for establishing the undecidability of, for instance, many

properties concerning context-free grammars.

Let Σ be an alphabet containing at least two symbols. An instance of the Post Corre-

spondence Problem (PCB) is a sequence of pairs of strings

(u1, v1), (u2, v2), . . . , (uk, vk)

where ui, vi ∈ Σ∗, i = 1, . . . , k.

A solution of the above instance is a sequence i1, i2, . . . , ir ∈ {1, . . . , k} such that

ui1ui2 · · ·uir = vi1vi2 · · · vir

Note: Elements of {1, . . . , k} may repeat in the sequence i1, i2, . . . , ir.



Computability and Complexity CISC462, Fall 2018, Reductions 7

Example. Consider the following PCP instance:

(a2, a2b), (b2, ba), (ab2, b)

Does this instance have a solution?

We define the language consisting of PCP instances that have a solution:

LPCP = {< P >| P is a PCP instance that has a solution }

In spite of the apparent simplicity of the definition of PCPs we have the following.

Theorem LPCP is undecidable.

We will omit the proof of this result; it is presented in detail in section 5.2 of the text if

you are interested. The proof consists of a reduction of ATM to LPCP .

Using a reduction from PCP it is possible to prove, for instance, that many questions

concerning context-free languages are unsolvable. All of the following are undecidable:

• ISECFG = {< G1, G2 >| G1, G2 are CFGs and L(G1) ∩ L(G2) = ∅}

(intersection emptiness of CFLs)

• ALLCFG = {< G >| G is a CFG with terminal alphabet Σ and L(G) = Σ∗}

(CFL universality)

• REGULARCFG = {< G >| G is a CFG and L(G) is regular }

(CFL regularity)

• EQCFG = {< G1, G2 >| G1, G2 are CFGs and L(G1) = L(G2)}

(CFL equivalence)

• INCCFG = {< G1, G2 >| G1, G2 are CFGs and L(G1) ⊆ L(G2)}

(CFL inclusion)



Computability and Complexity CISC462, Fall 2018, Reductions 8

As an example we prove the undecidability of “intersection emptiness” ISECFG. Recall

that it is decidable whether or not the language generated by a given context-free grammar

is empty.

Theorem. ISECFG is undecidable.

Proof. We use a reduction from PCP. Assuming that we would have an algorithm to decide

whether or not the intersection of two given CFLs is empty, we show that we could decide

also PCP.

Choose Σ = {a, b} and let IPCP be an arbitrary PCP instance over Σ:

(α1, β1), . . . , (αn, βn)

We define the following languages over the alphabet Σ ∪ {c} = {a, b, c}:

• Lmi = {w1cw2cw
R
2 cw

R
1 | w1, w2 ∈ {a, b}∗}

• L(α) = {baikbaik−1 · · · bai1cαi1αi2 · · ·αik | k ≥ 1, 1 ≤ ij ≤ n, j = 1, . . . , k}

• L(β) = {baikbaik−1 · · · bai1cβi1βi2 · · · βik | k ≥ 1, 1 ≤ ij ≤ n, j = 1, . . . , k}

• L0 = L(α)cL(β)R

It is not difficult to verify that Lmi, L(α), L(β), L0 are all context-free. (Will be done in

class.)

We observe that

L0 ∩ Lmi ̸= ∅ iff IPCP has a solution.

The languages L0 and Lmi are context-free. Hence if we could decide the emptiness of

the intersection of CFLs, we could also decide whether or not an arbitrary PCP instance has

a solution. 2



Computability and Complexity CISC462, Fall 2018, Reductions 9

The proof of undecidability of ISECFG uses a reduction from PCP. A proof using a

reduction directly from some property of Turing machines would be quite difficult!

Finally, a “rule of thumb” concerning decidability questions for the main computation

models:

• “All” questions are decidable for regular languages – the known counter-examples are

somewhat “artificial” problems.

• All questions are undecidable for languages recognized by general Turing machines

(Rice’s theorem). The only exceptions are the trivial questions that have only one pos-

sible answer for all inputs. (Note that here we are referring to properties of languages

recognized by TM’s since syntactic properties of TM’s may be decidable.)

• For context-free grammars (pushdown automata) there are both decidable and unde-

cidable questions. The majority of questions for LBAs which are equivalent to type 1

grammars in the Chomsky hierarchy (the so called “context-sensitive” grammars) are

undecidable, but some problems, like the LBA membership problem, are decidable.


