
Computability and Complexity CISC462, Fall 2018, The class NP 1

THE CLASS NP

Many important algorithmic problems have the following property:

• there is no known polynomial time algorithm to find a solution to the problem;

• if a solution to the problem is given, it is easy to verify (in polynomial time) that it is

indeed a solution.

We can formalize the idea as follows (see section 7.3):

Definition. An algorithm (or a Turing machine) V verifies a language A if

A = {w | V accepts < w, s > for some string s}

Above V is a polynomial time verifier if it runs in time polynomial in the length of w.

Note: Above the string s is called the certificate for membership in A. The length of a

certificate can be arbitrary and is not included in the running time. However, a polynomial

time verifier can use only certificates of polynomial length. (Why?)

• NP is defined to consist of the languages that have polynomial verifiers.

Alternatively, NP could be characterized by polynomial time nondeterministic Turing ma-

chines (which is sometimes used as the definition).

Theorem. (Th. 7.20 in the text) NP consists exactly of languages recognized by nondeter-

ministic polynomial time Turing machines.

• The question P =? NP remains still open. Also it is not known whether or not NP is

closed under complementation.

Computability and Complexity CISC462, Fall 2018, The class NP 2

The so called NP-complete problems occupy an important place in our study of com-

plexity: if it were to be proven that P 6= NP, then none of the NP-complete problems are in

P.

For estimating/comparing the difficulty of problems in NP we can use a time-bounded

variant of the mapping reductions (considered earlier in Chapter 5).

A function f : Σ∗ −→ Γ∗ is computable in polynomial time if there is a deterministic

Turing machine M and a polynomial p such that when M is started with input w (∈ Σ∗) it

halts after at most p(|w|) steps and the tape contents is f(w).

Definition. (Def. 7.29, section 7.4) A language A is polynomial time reducible to language

B, A ≤P B, if there is a polynomial time computable function f with the property that

(∀w ∈ Σ∗) w ∈ A ⇔ f(w) ∈ B.

Polynomial time reductions have the following properties:

1. A ≤P A for all languages A.

2. If A ≤P B and B ≤P C, then A ≤P C (here A,B,C are languages).

3. If A ≤P B and B ∈ P, then A ∈ P (P is closed under ≤P).

Definition. (Def. 7.34) A language B is NP-complete if

1. B ∈ NP, and

2. every language in NP is polynomial time reducible to B.

Theorem. Let B be an NP-complete language.

1. If B ∈ P then P = NP.

Computability and Complexity CISC462, Fall 2018, The class NP 3

2. If B ≤P C and C ∈ NP, then also C is NP-complete.

The “original” NP-complete problem is satisfiability

SAT = {< φ >| φ is a satisfiable Boolean formula }.

Cook–Levin theorem: SAT is NP-complete.

The proof of the Cook–Levin theorem requires an involved construction. In the fol-

lowing example we consider a language that has a simple NP-completeness proof. The

below problem (language) has an “artificial” definition and is not very useful for establish-

ing NP-completeness of other problems. However, it provides a simple way to prove that

NP-complete problems do exist.

Example. Here we consider a “simple NP-complete problem”, that is, a problem for which

we can establish the NP-completeness straightforwardly (relying only on the definition of

NP-completeness).

Define

Bsimple = {< M,w > ·1t | M is an NTM that accepts w in at most t steps }.

That is, the strings of the language Bsimple consist of an encoding of a nondeterministic TM

M and input string w followed by t copies of symbol “1” where the NTM M accepts w in a

computation with at most t steps.

The language Bsimple is defined directly in terms of computations of an arbitrary Turing

machine, where the time bound is given as part of the input and in unary notation. For this

reason, the language Bsimple is not very useful for establishing the NP-hardness of natural

combinatorial problems – if we want to reduce Bsimple to a combinatorial problem Ccomb

(involving graphs, scheduling etc.) this could be roughly as hard as showing that an arbitry

Computability and Complexity CISC462, Fall 2018, The class NP 4

problem defined by a polynomial time bounded NTM can be reduced to Ccomb. The “advan-

tage” of the language definition Bsimple is that it allows a simple proof of NP-completeness,

based only on the definition of NP-completeness.

• In class we will show that Bsimple is NP-complete.

There exist “hard” problems inside NP that are not known to be NP-complete.

Example. Graphs G and H are called isomorphic if the nodes of G can be “reordered” so

that it is identical to H.

The graph isomorphism problem is encoded as the language

ISO = {< G,H >| G and H are isomorphic graphs }

It is easy to see that ISO is in NP. (How?) There is no known polynomial time algorithm

for ISO but, on the other hand, ISO is not known to be NP-complete. It would be very hard

to prove that ISO is not NP-complete. (Why?)

To conclude we note the following:

• It is not known whether NP is closed under complementation. The language family

consisting of complements of languages in NP is denoted coNP.

• If we can show that NP 6= coNP, what are the consequences?

• Is it possible that NP = coNP but NP 6= P?

• Also it is not known whether or not graph isomorphism is in coNP.

• Assume it is shown that P = NP. Under this assumption, what can we say about the

class of NP-complete problems?

On the other hand, if we were to show that ISO is not NP-complete, what are the

consequences?

