
CISC-471 WINTER 2015

HOMEWORK 7

Please work on these problems and be prepared to share your solutions with classmates
in class on Wednesday March 4. NOTE To provide an incentive for you to do this work
you may submit it to me either hard copy or electronically either in class on March 4, or
electronically before class on March 4. Your work will not be marked nor will it be returned.
However, I will keep it, and use it to possibly raise your grade when it comes time to submit
the final grades, For example if you do poorly on the final and have consistently handed in
homework I may raise your grade.

Programming

Write a program that implements the algorithmic solution for problems 6.21, 6.22, and
6.23 given below. I will ask students to demonstrate their program when answering those
problems. There is a dynamic programming solution for each of those problems, (and
obviously for 6.20), so programs that solve one of these problems should be able to solve
any of the others with minor modification.

Problems

These questions come from An Introduction to Bioinformatics Algorithms by Neil C.
Jones and Pavel A. Pevzner.

Problem 6.20: Consider the sequences v = TACGGGTAT and w = GGACGTACG.
Assume that the match premium is +1 and that the mismatch and indel penalties
are -1.

• Fill out the dynamic programming table for a global alignment between v
and w. Draw arrows in the cells to store the backtrack information. What is
the score of the optimal global alignment and what alignment does this score
correspond to?

• Fill out the dynamic programming table for a local alignment between v and
w. Draw arrows in the cells to store the backtrack information. What is the
score of the optimal local alignment in this case and what alignment achieves
this score?

Problem 6.21: For a pair of strings v = v1, ..., vn and w = w1, ..., wm, define M(v, w)
to be the matrix whose (i, j)th entry is the score of the optimal global alignment
which aligns the character vi with the character wj . Give an O(nm) algorithm
which computes M (v, w).

1



2 HOMEWORK 7

Problem 6.22: Define an overlap alignment between two sequences v = v1, ..., vn
and w = w1, ..., wm to be an alignment between a suffix of v and a prefix of w.
For example, if v = TATATA and w = AAATTT, then a (not necessarily optimal)
overlap alignment between v and w is shown below:

ATA

AAA

An optimal overlap alignment is an alignment that maximizes the global alignment
score between vi, ..., vn and w1, ...wj , where the maximum is taken over all suffixes
vi, ..., vn of v and all prefixes w1, ...wj of w. Give an algorithm which computes the
optimal overlap alignment, and runs in time O(nm). Explain how to fill in the first
row and column of the dynamic programming table and give a recurrence to fill in
the rest of the table. Give a method to find the best alignment once the table is
filled in.

Problem 6.23: Suppose that we have sequences v = v1, ..., vn and w = w1, ..., wm,
where v is longer than w. We wish to find a substring of v which best matches all
of w. Global alignment wont work because it would try to align all of v. Local
alignment wont work because it may not align all of w. Therefore this is a distinct
problem which we call the fitting problem. Fitting a sequence w into a sequence v
is a problem of finding a substring v’ of v that maximizes the score of alignment
s(v’, w) among all substrings of v. For example, if v = GTAGGCTTAAGGTTA
and w = TAGATA, the best alignments might be as shown in the table below.

6.16 Problems 215

Problem 6.21

For a pair of strings v = v1 . . . vn and w = w1 . . . wm, define M(v, w) to be the
matrix whose (i, j)th entry is the score of the optimal global alignment which aligns
the character vi with the character wj . Give an O(nm) algorithm which computes
M(v,w).

Define an overlap alignment between two sequences v = v1 . . . vn and w = w1 . . . wm to be
an alignment between a suffix of v and a prefix of w. For example, if v = TATATA and w =
AAATTT, then a (not necessarily optimal) overlap alignment between v and w is

ATA
AAA

Optimal overlap alignment is an alignment that maximizes the global alignment score between
vi, . . . , vn and w1, . . . wj , where the maximum is taken over all suffixes vi, . . . , vn of v and all
prefixes w1, . . . wj of w.

Problem 6.22

Give an algorithm which computes the optimal overlap alignment, and runs in time
O(nm).

Suppose that we have sequences v = v1 . . . vn and w = w1 . . . wm, where v is longer than w.
We wish to find a substring of v which best matches all of w. Global alignment won’t work
because it would try to align all of v. Local alignment won’t work because it may not align all
of w. Therefore this is a distinct problem which we call the Fitting problem. Fitting a sequence
w into a sequence v is a problem of finding a substring v′ of v that maximizes the score of
alignment s(v′,w) among all substrings of v. For example, if v = GTAGGCTTAAGGTTA and
w = TAGATA, the best alignments might be

global local fitting
v GTAGGCTTAAGGTTA TAG TAGGCTTA
w -TAG----A---T-A TAG TAGA--TA

score −3 3 2

The scores are computed as 1 for match, −1 for mismatch or indel. Note that the optimal local
alignment is not a valid fitting alignment. On the other hand, the optimal global alignment con-
tains a valid fitting alignment, but it achieves a suboptimal score among all fitting alignments.

Problem 6.23

Give an algorithm which computes the optimal fitting alignment. Explain how to fill
in the first row and column of the dynamic programming table and give a recurrence
to fill in the rest of the table. Give a method to find the best alignment once the table
is filled in. The algorithm should run in time O(nm).

The scores are computed as 1 for match, -1 for mismatch or indel. Note that
the optimal local alignment is not a valid fitting alignment. On the other hand,
the optimal global alignment contains a valid fitting alignment, but it achieves a
suboptimal score among all fitting alignments.

Give an algorithm which computes the optimal fitting alignment. Explain how
to fill in the first row and column of the dynamic programming table and give a
recurrence to fill in the rest of the table. Give a method to find the best alignment
once the table is filled in. The algorithm should run in time O(nm).


	Programming
	Problems

