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Chapter 1

CTL model checking

CTL model checking uses a temporal logic called computation tree logic (CTL)
as specification logic.

1.1 CTL

1.1.1 Syntax
CTL formulas are defined by the following BNF

p = fflttlp| (o) | (@A) | (Ve | (=) |
AXo | EXp | AGy | EGy | AF ¢ | EF ¢ |

Ao U ga] | E[pr U @]

where ff and ff denote “false” and “true” respectively and p is an atomic
proposition, that is, an undevisible boolean expression that can be evaluated
in any state. We assume that all atomic propositions are collected into a set
AP. Note that every temporal connective is a pair of letters. The first one (‘A’
or ‘E’) can be thought of as quantification over the set of paths from the current
state. The second one (‘X’,‘G’,‘F’, or ‘U’) can be thought of as quantification
over the states in a selected path. Each pair of letters thus represents a nested
quantification, the first one over paths, the second over states. The following
table indicates the intuitive meaning of each pair.
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AX ¢ “Along all paths, in the next state, ¢ holds”
EX ¢ “Along at least one path, in the next state, ¢ holds”
AG ¢ “Along all paths, in all future states, ¢ holds”
“Along all paths, ¢ holds globally”
EG ¢ “Along at least one path, in all future states, ¢ holds”
“Along at least one path, ¢ holds globally”
AF ¢ “Along all paths, in some future state, ¢ holds”, or
“Along all paths, ¢ holds eventually”
EF ¢ “Along at least one path, in some future state, ¢ holds”, or
“Along at least one path, ¢ holds eventually”
A [cpl U gag] “Along all paths, ¢ holds at least until 2 does”
E [<p1 U <p2] “Along at least one path, 1 holds at least until > does”

The binding priorities of the new connectives generalize the ones for propo-

sitional logic.

-,AX,EX,AG,EG,AF,EF bind most tightly
A,V
—

+,AU,EU bind least tightly

1.1.2 Semantics

Formulas are interpreted over interpreted finite state machines. Given an iFSA
M= (S,5,L,d,F), a state s, and a CTL formula ¢, the satisfaction relation
(M, s) = ¢ is defined to be the smallest relation that satisfies:
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p if eval(p, s) = true

-1 if not (M, s) E 1

¢1 A2 if (M, s) = ¢ and (M, 5) | @2

e1 V2 if (M, s) E 1 or (M, s) = ¢2

w1 = @2 if not (M, s) = 1 or (M, s) = ¢

AX o if for all s’ such that (s,1,s") € ¢ for some | € L,

we have (M, s') = ¢

EX g if for some s’ such that (s,1,s') € § for some | € L,
we have(M,s') E ¢

AG ¢ if for all runs sy $983...in M such that s = s; we have
(M,s;) Epforalli>1

EG ¢ if for some runs s; 8283 ... in M such that s = s; we have
(M,s;) Epforalli>1

AF o if for all runs s; 5283 ... in M such that s = s

there exists 4 > 1 such that (M, s;) = ¢
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Figure 1.1: Beginnings of two systems whose initial states satisfy EF .

(M,s) = EF g if for some run s;szs3 ... in M such that s = s;
there exists ¢ > 1 such that (M, s;) = ¢

(M,s) [ Alpr U o] if for all runs s;5,s3. .. in M such that s = &
there exists some ¢ > 1 such that (M, s;) = 2, and
for all 1 < j < i, we have (M, s;) = ¢1

(M,s) E E[p1 U ] if for some run s1s:83. .. in M such that s = s
there exists some ¢ > 1 such that (M, s;) = 2, and
for all 1 < j < i, we have (M, s;) = ¢1

The clauses involving propositional connectives only offer no surprises. To il-
lustrate the temporal connectives, it is useful to unwind the state machine into
a so-called computation tree. The advantage of this representation is that the
computation paths of a system can be directly read off.

The computation trees in Figures 1.1, 1.2, 1.3, and 1.4, illustrate the four
unary temporal connectives. More precisely, for each connective we give one
or two examples of a system in form of a computation tree whose initial state
satisfies the formula built using that connective. To illustrate the until
operator, consider the following computation path.

80 81 S2 83 S4 S5 S 87 S8 89 810

N—————— q
p

Each of the states s3 to sg satisfies [p U q], while the states sy to s3 do not.

Safety and liveness properties: a fundamental distinction

Software properties in general and CTL formulas in particular can be partitioned
into two categories:

e Safety properties: Informally, a safety property is a property that states
that “nothing bad ever happens” [Lam77]. For instance, deadlock freedom
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Figure 1.2: Beginning of a system whose initial state satisfies EG ¢.

Figure 1.3: Beginnings of two systems whose initial states satisfy AF .

is a safety property. In CTL, safety properties are thus related to the
temporal connectives AG and EG. Examples of safety properties in CTL
include: AG z # 0 and EG (doorOpen — fanOff).

A safety property is violated iff the system has a (finite or infinite) exe-
cution sg, 81, 8o . .. with state s; such that “something bad has happened
in s;”. Then, the sequence of states sy, s1,...,8; is a counter example.
Safety properties, therefore, always have finite counter examples.

e Liveness properties: In contrast, a liveness property expresses that “some-
thing good will eventually happen”. As before, “eventually” here means
after an unknown, arbitrary but finite number of steps. For instance, ter-
mination is a liveness property. In CTL, liveness properties are related to
the temporal connectives AF and EF. Examples of liveness properties in
CTL include: AF z # 0 and AG (request — AF granted).

A liveness property is violated iff the system has an infinite execution
S0, 81, %2 - . . along which “the good thing never happens”. In this case, the
entire execution constitutes the counter example. In other words, liveness
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Figure 1.4: Beginning of a system whose initial state satisfies AG .

properties always have infinite counter examples.

It turns out that this classification is “exhaustive” in the sense that every prop-
erty can be expressed through the combination of a safety and a liveness prop-
erty [AS85]. In other words, when reasoning about the correctness of a system,
safety and liveness properties are the only kinds of properties you need to worry
about.

Schemas of useful CTL formulas
We list a few examples for the kinds of formulas that are often used.

e “It is possible to become super user”:

EF superUser

e “It is always possible to become super user”:

AG EF superUser

e “A request for some resource will always eventually be acknowledged”:

AG (requested — AF acknowledged)

e “Along every computation path, enabled always holds eventually”:
AG AF enabled

Note that this means that enabled will hold infinitely often along every
computation path.

e “A gsystem will never deadlock”:

AG - deadlocked
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e “From every hypertext page it is always possible to get to a hypertext

[T

page named ‘Home’ ”:

AG EF name=‘Home’

o “When picking up the phone it is possible to never receive a dial tone”:

AG (rchickedUp - EG - dialTone)

¢ “An upwards traveling elevator at the second floor will not change its
direction when it has passengers wishing to go the fifth floor”:

AG (ﬂoorz? A direction=up A Button5Pressed —

A [direction=up U ﬂoor:5]>

Equivalences

We already know that conjunction and disjunction are dual to each other, that
is, (¢ V 9) & = (= ¢ A = 9). Similarly, universal quantification and existential
quantification in predicate logic are dual, that is, (3z.¢) < = (V.- ¢). It turns
out that the temporal operators AG and EF are also dual to each other.

“EFp & AG -9

The next state operator X is its own dual.
“-AXyp & EX -y

A path 7 contains at least one state in which ¢ holds if and only if ¢ holds along
m until ¢ does. Consequently, the eventuality operator F can be expressed in
terms of the until operator U.

AF ¢ & AfttU o]
EF ¢ + E[itU ¢

Finally, the operator AU can be expressed in terms of negation, disjunction,
EU, and EG.

A[(,DU¢] ~ —|(E[—!QOQU(—'(pl/\—!(pg)]VEG—'(pQ)

These equations indicate that there is redundancy between the temporal
connectives. We can restrict our attention to an adequate set of connectives
to remove this kind of redundancy and to identify minimal sets of connectives
from which all other connectives can be obtained.
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Definition 1.1.1 Given a logic L, we say that a set C of connectives of L is
adequate for L, if all connectives in L can be expressed in terms of connectives
in C.

Example 1.1.1 1. The set of connectives {— ,A} is adequate for proposi-
tional logic. To see this, consider the following equivalences:

e (PVQR)e (= (=PA-Q))
e (P>Q)e (-nPVQ)
e (P Q) e (P> QA (Q—P))

2. The set of connectives {—,V,V} is adequate for predicate logic.

Exercise 1.1.1

1. Show that the set {AU,EU,EX} is adequate for all temporal connectives
in CTL, that is, express the remaining temporal connectives in terms of
negation and AU, EU, and EX.

2. Express A[p U q] in terms of = p, = q, A\, V, =, EU, and EG.

There are lots of adequate sets of connectives for CTL. The following theorem
singles out an adequate set that we will use in Section 1.3 when constructing
the model checking algorithm.

Theorem 1 The set of operators false, = , A, EX, AF, and EU are adequate
for all connectives in CTL.

We conclude this section with a final list of equations.

AGy & ¢ NAX AGy

EGy & ¢ NEXEGy (1.1)
AF ¢ & ¢ VAX AF ¢
EF¢o & ¢ VEXEFp

A[chiﬁ] — dJV(cp/\AXA[goUzb])

ElpU¢] & ¢V (pAEXE[p Uy (1.3)

The equation for AG ¢ captures the fact that AG ¢ holds in the current state
s if and only if

e ¢ holds in s, and

e AX AG ¢ holds in s, that is, for all possible next states s’ AG ¢ holds
in 5.

The equation for AF ¢, on the other hand, expresses that AF ¢ holds in the
current state s if and only if

e either ¢ holds in s, or
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e AX AF ¢ holds in s, that is, for all possible next states s', AF ¢ holds
in s,

The computation trees in Figure 1.3 illustrate both cases. Finally, the equation
for A[p U 4] expresses that that A[p U 9] holds in the current state s if and
only if

e 1 holds in s, or

e pholds in s and AX A[p U 9] holds in s, that is, for all possible next
states s’, A[p U 4] holds in s'.

Similar arguments apply to the equations for EF ¢ EG ¢, and E[cp U 1[1]
respectively.

Notice how each equation describes each connective in terms of itself. Intu-
itively, for each equation, the formula on the right is obtained by “unwinding”
the formula on the left once — a process not unlike, for instance, unwinding a
while loop into the sequential composition of a conditional and the same loop:

while b do C = if b then C ;while b do C end

Indeed, just like in denotational semantics, where the behaviour of a while loop
is described in terms of all its unwindings, the meaning of each of the temporal
connectives can be described in terms of all its unwindings. This description
is called fized point semantics. In Section 1.3 we will see how it forms the
mathematical basis of our model checking algorithm.

1.2 Example: Mutual exclusion

At this point, we have discussed state machines and CTL and thus have both
inputs to a CTL model checker in place. Before we give more detail on how
precisely the model checker works, let us look at an example showing how all
the notions introduced so far fit together.

Suppose the processes C; in the concurrent program

C = cobegin Gy|...||Cpr_1 end

all share a resource, such as a printer, a database or a file on a disk. To ensure
consistency of the resource, it may be necessary to prevent multiple processes
from updating the resource simultaneously. To solve this problem, we identify
so-called critical sections and mon-critical sections in the code of each process
and restrict access to the resource using shared variables and synchronization
statements such that at most one process is executing its critical region at any
given time. This property is called mutual ezclusion. We will assume that each
location in each process is labeled and that each process C; has the following
shape

C; = [;:while true do
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neir Cione
crit Cior
end:l]

where the labels nc¢; and cr; indicate the non-critical and the critical sections
of C; respectively. Note that we have to assume that all critical sections C;j ¢,
always terminate. The non-critical sections Cj ., however, may or may not
terminate. Moreover, since the state machine corresponding to C' must be finite
for model checking to be applicable, we assume that all critical and non-critical
sections have a finite state space.

We want to modify each process C; such that access to the critical sections
is mutually exclusive. The main idea is to place the critical section of each
process between an entry and an ezit protocol. The entry protocol in process C;
will protect the critical section Cj . by checking if other processes are currently
executing their critical section. The exit protocol will notify the other processes
of the termination of the critical section and possibly allow other processes to
enter their critical section.

1.2.1 First attempt

Consider the program below. A variable turn that ranges over the numbers
from 0 to » — 1 is used to indicate which process will be allowed to enter its
critical region. Let @ denote addition modulo n.

Ciy = while true do
necit Cines
en;: await turn = i;
Cry: Oi,cr;
ex;: turn:=turn ®1
end

The above algorithm is also called round robin algorithm. Before we use a CTL
model checker to verify that the modified system satisfies mutual exclusion, we
need to express the mutual exclusion in CTL.

o If we’re dealing with only two processes, the formula
muter = AG — (peg = crg A per = cry)

expresses that they cannot be in their critical section at the same time.
This formula generalizes to more than two processes in the obvious way.

After this modification the execution of the critical sections is indeed mutually
exclusive. More precisely, if M¢ is the finite state machine corresponding to C
for some fixed n, and s is an arbitrary initial state of M¢, then

(Mg, s) |= mutex
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holds.

Unfortunately, this solution suffers a drawback. If the execution of the non-
critical section Cj . of process ¢ never terminates, process i @ 1 will never get
permission to enter its critical section. In other words, a protocol must satisfy
more properties than mutual exclusion to be considered a good solution. Thus,
before we proceed, let us collect the other properties that we want the protocol to
satisfy. It turns out that there are two more properties besides mutual exclusion.

e Eventual entry Whenever any process wants to enter its critical section,
it will eventually be permitted to do so.

evtlEntry = AG (pc; = en; = AF pc; = cry)

e Deadlock freedom The system never deadlocks, more precisely, it is
never the case that all processes get stuck forever in their entry protocols.

noDeadlock = AG = (blockedy A ... A blocked,_1)

where blocked; = AG(pc; = en;). Note that this definition of deadlock
is slightly different from “all processes are stuck because they are waiting
for each other”.

Exercise 1.2.1 What is the logical relationship (if any) between eventual entry
and deadlock freedom?

1.2.2 Second attempt

The problem with our first attempt above is that a process can be given the
right to enter its critical section without being interested in entering it. To
remedy this, we introduce a boolean variable req; which, when set, indicates
that process i is interested in entering its critical section.

Ci, = while true do
neit Ciones
en;1: reg;:=tt;
en;2: await turn = 4
crit Ciers
eri1: reg;:=ff;
ex;2: turn:=f(i)
end

where
j, J is smallest interested process, ie,

f@) = j is smallest k for which reg; = tt.
i, if there is no interested process.

Unfortunately, this approach doesn’t completely correct the problem encoun-
tered in the previous attempt. Consider for instance the 2-process system

C = turn:=0;cobegin regy:=ff; Coz || reqi :=ff 5 Ci,2» end
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where Cp 2 has a non-terminating non-cricital section and Cj» has an empty
non-critical section, that is, Cg2),nc = C(1,2),nc = skip. This system has an
execution that ends in the following trace

DCo | rego | Py | regi | turn

neg | ff ne; i 0
ney | ff €ny 1 If 0
TnCo [f eny 2 tt 0

0

neo | ff | empo | it

Variable never gets set to point the interested process, because process Cp,s
never leaves its non-critical section. In other words, this system still does not
satisfy eventual entry, that is,

(Mg, s) £ evtlEntry

where Mo models C above.

1.2.3 Third attempt

We abandon the idea of the single shared variable turn granting access. Instead,
we start out very naively and allow process 7 to enter its critical region if there
is no other interested process. For simplicity, we assume for the moment that
we are dealing with 2 processes only.

Cis = while truedo
ncit Cines
en; 1: reg;:=tt
en; 2 await — reg;g1;

criz Ciers
er;: req;:=ff
end

This ensures mutual exclusion, but now the system can deadlock, that is,
(M¢, s) = noDeadlock.

To see this, consider the execution below

_pcy | reqo | pey | reqr
ne | ff | na | ff
neg | ff |ema| ff
ncy I |ema| tt

eng,1 | ff | em2 tt
eng2 tt | em 2 tt

in which both processes move out of their non-critical sections immediately and
express interest in entering their critical section at roughly the same time.
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1.2.4 Fourth attempt

The problem with the above solution is that both process can execute their entry
protocol at the same time and then get blocked at the await statement. To
remedy this, we introduce a new variable last, that, intuitively, whenever both
processes are blocked, “breaks the tie” between them and allows one of them
to proceed. The resulting solution is called the tie-breaker algorithm, or also
Peterson’s algorithm. Let x1, 22 := €1, 3 denote a multiple assignment statement
expressing that z; and 1z, are updated with the values of e; and e, respectively
at exactly the same time in one atomic step.

Cis = while true do
ncit Cines
en;1: reg;, last:=tt, i;
enip: await (- regig V last # i);

criv Ciers
ex;: reg;:=ff
end

Note that variable last is shared. This attempt finally works. Mutual exclusion,
eventual entry and deadlock freedom are all satisfied. Moreover, it also scales
to arbitrary numbers of processes.

However, being the perfectionists that we are, we are still dissatisfied. The
multiple assignment statement used in C; 4 is hard, if not impossible, to imple-
ment on realistic machines. We will try to replace it with two simple assignments
executed sequentially. This leaves us with two versions depending on which of
the two assignments is executed first. Perhaps surprisingly, it turns out that
these two versions are not identical.

"4 = while true do
nci: Cines
en;1: reg;:=tt
en;2: last:=1;
eni3: await (- regign V last # i);

cri: Gy ers
er;: req;:=ff
end

If the variable last is updated after reg; is set, we obtain a correct solution. Just
like with Cj 4, all three properties are satisfied.
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If, however, last is updated before reg;, the resulting protocol is incorrect.

"y, = while true do

neit Cines

en;1: last:=1;

en;2: reg;:=tt;

en;3: await (- regig V last # i);

Cry: icrs
ex;: reg;:=ff
end

Exercise 1.2.2 Which of the three properties would the system using Ci’”4 vi-
olate? Explain your answer by giving a counter example, that is, describe a
violating computation path.

Exercise 1.2.3 The correctness of the above protocol is subject to the assump-
tion that the critical sections of all processes always terminate. Why?

1.3 The CTL model checking algorithm

When defining the algorithm below we make use of the fact that the connectives
ff, 7, A, AF, EU, and EX form an adequate set (Theorem 1). So, here’s the
algorithm:

Input: An interpreted FSA M = (5, Sy, L, 0, F) and a CTL formula ¢

Output: “Yes”, if (M,s)) = ¢ for all initial states sp € Sp. “No”,
otherwise.

1. Preprocessing Translate ¢ into an equivalent formula ¢’ that contains
only the adequate connectives mentioned in Theorem 1.

2. Labeling We compute the set of states that satisfy ¢'. Label the states
of M with the subformulas of ¢’ that are satisfied there, starting with the
smallest subformulas. Suppose that 1 is a subformula of ¢’ and that the
states satisfying all the immediate subformulas of ¢’ have already been
labeled. The states to label with ¢ are determined with the following case
analysis. If ¢ is

e ff: No states are labeled with ff,

p: Label state s with p if eval(p, s) = true,

11 A po: Label state s with ¢; A 1y if s is already labeled with
and ¢27

- 1p1: Label state s with = 1, if s is not already labeled with v,

EX 1;: Label state s with EX 1, if at least one of its successor
states is labeled with 1y,
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Step 0: AF

©

AF p

Step 2: AF p Step 3:
—>O(> Fixed point! 4’@

Figure 1.5: Sample execution of the CTL model checking algorithm

e AF ¢1:

(a) If any state s is already labeled with ¢, then label it with AF 1)y,

(b) label any state with AF 1), if all successor states are labeled with
AF ¢y,

(c) if step 2 changed the labeling, then go back to 2. Otherwise,
stop.

. E[wl U ¢2]:
(a) If any state s is already labeled with 5, then label it with
E[¢1 U 4],
(b) label any state with E[t); U 1] if it is labeled with ¢; and at
least one of its successor states is already labeled with E[¢ U 4],

(c) if step 2 changed the labeling, then go back to 2. Otherwise,
stop.

3. Postprocessing If all initial states Sy are labeled with ¢’, output “Yes”.
Otherwise, output “No”.

Figure 1.5 contains a sample execution of the algorithm. Let M be the top
left state machine and let ¢ be the CTL formula AF p. The algorithm reaches
a fixed point after three steps. Since all initial states are labeled with ¢ upon
termination, the state machine satisfies ¢, that is, M |= .

We now present the above algorithm in more concrete terms. We restrict
our attention to the labeling step of the algorithm. Figure 1.6 contains the main
function whereas Figure 1.7 contains helper functions to handle the cases EX,
AF, and EU.

Let us analyze the complexity of this algorithm. The clauses for AF and
EU are the most expensive. In particular, they both contain a loop which,
in every iteration, applies a labeling step to every vertex in the graph and
which terminates only when these labeling steps stop incurring any changes.
Using a standard breadth-first traversal algorithm, every node in a graph can
be visited in O(] S | + | R |) giving the worst-case complexity of a single
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function SAT(y) =
(* returns the set of states satisfying ¢ *)
begin case ¢ of
tt: return S
ff : return
p:return {s|p € L(s)}
= 1 : return S\SAT(y;)
1 A @2 : return SAT(p1) N SAT(p2)
1 V @9 : return SAT(p1) U SAT(p2)
p1 = o : return SAT(= @1 V p2)
AX ¢; : return SAT(— EX = ¢4)
EX ¢ : return SATgx (¢1)
AF ¢ : return SAT ar (1)
EF ¢, : return SAT(E[tt U ¢])
AG ¢; : return SAT(— EF- ¢,)
EG ¢ : return SAT (- AF- )
A1 U 3] :return SAT(= (E[= 2 U (=1 A = 2)] VEG @)
E[p1 U ;] : return SATgy (g1, ¢2)
end
end

Figure 1.6: The function SAT. Given a CTL formula ¢ it returns the set of
states satisfying ¢. Uses helper functions in Figure 1.7.
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function SATgx () =
(* returns the set of states satisfying EX ¢ *)
new X, Y;
begin
X :=SAT(p);
Y:={s0 € S| R(s0,%) for some s; € X}
return Y
end

function SAT pr(p) =
(* returns the set of states satisfying AF ¢ *)
new X, Y;
begin
X:=0; Y:=SAT(yp);
while X # Y do
X:=Y;
Y:=Y U{s| for all s’ with R(s,s’) we have s' € Y'}
end;
return Y
end

function SATgy(p,¥) =
(* returns the set of states satisfying E[p U ¢] *)
new W, X,Y;
begin
W:=SAT(p); X:=53; Y:=SAT(¢);
while X # Y do
X:= Y;
Y:i=YU(WnN{s| exists s’ with R(s,s') and s' € Y'})
end;
return Y
end

Figure 1.7: Helper functions for function SAT in Figure 1.6.




1.3. THE CTL MODEL CHECKING ALGORITHM 17

execution of step 2 where | S | and | R | denote the size of the state space
and the transition relation respectively. In the worst case, step 2 is executed
| S| times. Thus, the complexity of each individual clause of the algorithm is
O(S|-(|S]|+|R]) The number of subformulas of a formula is linear in
the number n of connectives in that formula. Thus, the complexity of the entire
algorithm is O(n- | S |-(] S|+ | R|)). Since we want to be able to verify large
systems with lots of states, the above result is not encouraging.

1.3.1 Optimizations
Explicit treatment of AX, EF, AG, EG and AU

The labeling algorithm treats the connectives AX, EF, AG, EG and AU in
terms of the adequate connectives EX, AF, and EU. This means that the
labeling algorithm only has to handle three different cases and allows a very
concise presentation. However, it also slows the algorithm down by a constant
factor. To handle AXy, for instance, we have to compute all states satisfying
¢, 7 p, EX- ¢, and then finally, - EX— ¢. An explicit treatment of EX
computes the states satisfying A X directly from those satisfying (:

e AX ;: Label state s with AX 1), if all of its successor states are labeled
with 1/)1,

Similarly for EF and AU:
¢ EF ¢1:

1. If any state s is already labeled with vy, then label it with EF 1,

2. label any state with EF 1); if some successor state is labeled with
EF ¢,

3. if step 2 changed the labeling, then go back to 2. Otherwise, stop.
[ ] A [1/)1 U ’(/12]2

1. If any state s is already labeled with 95, then label it with A [¢; U 4],

2. label any state with A[zpl U ¢2] if it is labeled with 1/; and all of
its successor states are already labeled with A[«/)l U 1/12],

3. if step 2 changed the labeling, then go back to 2. Otherwise, stop.
The explicit treatment of AG is slightly different:
e AG Yy:
1. Label all states with AG 1,

2. remove label AG 1, from any state s, if s is not labeled 1,

3. remove label AG v, from any state s, if s at least one successor not
labeled with AG 9,
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4. if step 3 changed the labeling, then go back to 3. Otherwise, stop.

The explicit treatment of EF is similar. Adding these cases to the algorithm
speeds it up by a constant factor.
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