Introduction to Control Flow Analysis and Slicing
Course Notes for CISC422/853 (Winter 2009)

Juergen Dingel (dingel@cs.queensu.ca)
March 3, 2009

Contents
1 Control flow analysis 2
1.1 For imperative languages, 2
1.2 For functional and object-oriented languages 3
2 Program slicing 5
2.1 Basic definitions for static slicing, 5
2.2 Relevant variables and statements 6
2.3 Dataflow equations for relevant variables and statements 9
2.3.1 Directly relevant variables R%(7) 9
2.3.2 Directly relevant statements S 10
2.3.3 Relevant branch statements Bo 11
2.3.4 Relevant variables RZ%(3) 11
2.3.5 Relevant statements SZ° 12
2.4 Solving the dataflow equations 13
2.5 Examples 14
251 Examplel. 14
252 Example2. 15
253 Exampled. 16
254 Exampled. 18

1 Control flow analysis

The purpose of control flow analysis typically is to determine which statements
may be executed after some other statement. Control flow analysis is used for
compiler optimization and data-flow analysis. Control flow analysis typically
computes a control flow graph (CFG). A node in a CFG represents an atomic
statement or a boolean condition. An edge in a CFG represents the possible
flow of control.

1.1 For imperative languages

For imperative languages without first-order procedures (procedures cannot be
passed as arguments or returned as results), control flow analysis usually is very
straight-forward. Iteration statements like while and repeat statements cause
branching and looping in the graph, whereas conditional statements only cause
branching. The program

Ci= 1. a:=5;
2: c:=1;
3: whilec<ado
4: c:=c+a
5: end;
6: a:=a-c;
7: c:=0

for instance, has the control flow graph given in Figure 1. The line numbers
in a program are called locations. We will assume that every location ! in a
program P corresponds uniquely to a node in the control flow graph of P. For
convenience, we will use locations to refer to nodes and vice versa.

Note that some control flow analyses group sequences of nodes that are
connected linearly and without branching into a single node. For instance, the
sequence of nodes in Figure 1 with locations 1, 2, and 3 would be replaced by a
single node. We will not consider this kind of grouping here.

The algorithm for computing the control flow graph from the abstract syntax
tree (AST) of a program is given in Figure 2. Each node in the CFG has a list of
predecessor (preds) and a list of successors (succs). The key idea of the algorithm
is to represent a CFG by a pair of nodes (first, last). Node first forms the entry
into the CFG while node last is the exit of the CFG. The method toCFG(Stmt
s) is defined inductively over the structure of s. If s is an assignment, a single
node is returned. If s is a sequential composition s; ;s2, the CFGs for s; and s
are computed recursively. The CFG for s; ;52 is then obtained by connecting the
exit of s; with the entry of s,, that is, the entry of s, is added to the successors
of the exit of s; and the exit of s; is added to the predecessor of the entry of
s9. The remaining cases are similar.

The control flow graph G of a program C has two important properties:

e Every program execution of C' will have a corresponding path in G.

1: 1 a:=5 |J

A7 e 1

2: c:=1 Y
y b]

S ~

. . ‘
6: ! a:=a—c Y

.| . |
7: c:=0 Y

Figure 1: Control flow graph of program C

e However, a path in G does not necessarily correspond to a program exe-
cution of C.

Note that branching conditions in CFGs remain uninterpreted. A path might
thus represent an unfeasible execution. The program

1. z:=1;

2: ifzx =1 then
3: T:=2

4: end

for instance, only has one execution, but its control flow graph contains two
paths.

1.2 For functional and object-oriented languages

For higher-order functional languages and object-oriented languages control flow
analysis is a lot harder. To see this, consider the following functional and object-
oriented program fragments.

public class Node {
public Vector preds, succs;
public link (Node ny, Node nz) {
ny.succs.add(nz) ; ne.preds.add(n)

}

public class Cfg {
public Node first, last;
public Cfg(Node f, Nodel) {
first = f; last =1

b}
public Cfg toCfg(Stmt s){
if (s is an assignment z:=e¢) then
Node n = new Node(z,e);
return new Cfg(n,n);
else if (s is sequential composition s1 ; s2) then
Cfg cfg1 = toCfg(s1);
Cfg cfg2 = toCfg(s2);
link(cfgl.last, cfg2.first);
return new Cfg(cfgl.first, cfg2.last);
else if (s is if b then s; else s3) then
Cfg cfgl = toCfg(s1);
Cfg cfg2 = toCfg(s2);
Node testNode = new Node(b);
link(testNode, cfgl.first);
link(testNode, cfg2.first);
Node endNode = new Node(“END”);
link(cfgl.last, endNode);
link(cfg2.last, endNode);
return new Cfg(testNode, endNode)
else if (s is while b do s;) then
Cfg cfg = toCfg(s1);
Node firstNode = cfg.first;
Node testNode = newNode(b);
link(testNode, cfg.first);
link(cfg.last, testNode);
Node endNode = new Node(“END?);
link(testNode, endNode);
return new Cfg(testNode, endNode);

}

Figure 2: Algorithm to compute CFG from AST

class A {

let public void m() {...}

app =fn f,zin (f z) ilass subA {

Zigé z iﬁ ‘Z 12 EZ i ;g public void m() extends A {...}
in

(app addl 0) + (app add2 0)
end

class subsubA {
public void m() extends subA {...}

c.am() ...

In the functional program on the left, the function that gets applied to z in
the body of function app depends on the context in which app is called. In the
object-oriented program on the right, the version of m that is executed (if any)
depends on the type of a. The presence of higher-order functions and object-
oriented polymorphism give the control flow more variability and make it much
harder to perform control flow analysis.

2 Program slicing

A program slice consists of the parts of a program that (potentially) affect the
values computed at some point of interest, referred to as a slicing criterion.
The task of computing program slices is called program slicing. The original
definition of a program slice was presented by Weiser in 1979 [Wei79]. Since
then, various slightly different notions of program slices have been proposed, as
well as a number of methods to compute them. An important distinction is that
between a static and a dynamic slice. The former notion is computed without
making assumptions regarding a program’s input, whereas the latter relies on
some specific test case. Procedures, unstructured control flow (eg, GOTO),
composite datatypes and pointers, and interprocess communication each require
a specific solution. In this introduction we will only consider the simplest case:
static slicing of structured imperative programs without nonscalar variables (eg,
arrays or pointers), procedures, or interprocess communication.

2.1 Basic definitions for static slicing

We have seen how (mutually recursive) dataflow equations can be used to de-
scribe conveniently various static program analyses like reaching definitions,
available expressions, or live variables. In each case, the result of the analysis
was obtained from a solution of these equations. The desired solution to the
equations was given by the least (in case of reaching definitions and liveness) or
the greatest (in case of available expressions) fixed point of the (mutually recur-
sive) functions described by the equations and was obtained through straight-
forward fixed point iteration that we have already seen in the context of model
checking.

Since static program slicing is nothing else but another static program analy-
sis technique, Weiser’s original definition in [Wei79] also is based on the iterative
solution of a set of dataflow equations. However, while the static program anal-
yses we have already seen are concerned with determining certain information
about each node in the Control Flow Graph (CFG) of the program, the goal
of program slicing is to identify parts of the program that are (ir)relevant to
the values of certain variables at certain program points. Another difference is
that the equations used to describe a program slice do not involve gen and kill
functions. Intuitively, this is because the information generated and killed at
each node does depend not only on the statement executed at the node, but
also on the slicing criterion and the surrounding program context.

Definition 2.1 (Basic definitions)
Let P be a program.

1. Slice. A slice S of P is an executable program that is obtained from P
by deleting zero or more statements.

2. Slicing criterion. A slicing criterion consists of a pair (n, V) where n is
a node in the CFG of P and V is a subset of the variables in P.

3. Slice with respect to criterion. Let (n,V) be a slicing criterion of P.
A slice S of P is called a slice of P with respect to criterion (n,V), if it
contains the statement at node n and whenever P halts for a given input,

e S also halts for that input, and

e S computes the same values for the variables in V whenever the
statement corresponding to the node n is executed.

4. Minimal slice. A slice is called minimal, if no other slice for the same
criterion contains fewer statements. O

Theorem 1 Minimal slices are not necessarily unique and the problem of de-
termining whether a given slice is minimal is undecidable.

Proof: Omitted. n

Just like for the other program analyses we’ve discussed, the fact that the
underlying problem is undecidable destroys all hope for an algorithm that always
terminates with the exact solution, that is, with a minimal slice. We therefore
have to settle for a (hopefully still informative) approzimation to the exact
solution.

2.2 Relevant variables and statements

The most important notion for computing slices is that of a relevant variable.
All other necessary notions build on that. This section presents the definition of
relevant variables and shows how it can be used to compute slices. Section 2.3
will then show how the relevant variables can be computed.

Definition 2.2 (Relevant variables)

Let i be a node in the CFG of a program P and let C = (n, V') be a criterion.
We say that a variable v is relevant at a node i with respect to C if the value
of v right before execution of the statement in ¢ may influence the value of at
least one variable in V' at node n. O

In other words, given an execution of the program that is about to go through
node i, changing the value of v right before ¢ is entered, may also change the
value of at least one variable in V' at n. Consider, for instance, the following
program P;

1: z:=w;
2: y:i=z;
3: z:=y;
4: output(z)

with the criterion Cy = (4, {z}). The following table summarizes which variables
are relevant at which node in the CFG of P;.

node i | 4 |3]2 1

variables relevant at i | {z} | {y} | {2} | {w}

Clearly, changing the value of y right before node 3 will influence the value of z
at 4, that is, y is relevant at 3 with respect to C;. However, changing the value
of x right before node 1, will never have any effect on the value of x at 4, that
is, x is not relevant at 1 with respect to Cy. As another example, consider the
program P

1: ifw =tt then

2: z:=1t
else
3: d:=1;
4. if z = tt then
5: y:=tt
else
6: di=d+1;
7: ify =tt then
8: x:=tt
else
9: di=d+1;

10: output(zx)
with the criterion Co = (10,{z}). The relevant variables are given by the
following table.
nodei |10 | o |8] 7 | 6 | 5] 4 | 3 | 2 | 1
rel.vars. | {z} | {z} | {} | {z9} | {z2} | {2} | 2wz} | {ow2} | {20} | {ovo20}

Once we have the relevant variables, computing the corresponding slice is
easy.

Definition 2.3 (Relevant statements)
Given a program P with node i and a criterion C, we say that

e an assignment at node i in P is relevant with respect to C' if it defines a
variable that is relevant at at least one successor of i with respect to C,

e an if b then P; else P, statement at node ¢ in P is relevant with respect
to C if either P; or P, contain at least one relevant statement,

e a while b do P’ statement at node 4 in P is relevant with respect to C' if
P’ contains at least one relevant statement. O

For instance, the following statements of P, are relevant with respect to C}.

1: z:i=w;
2: y:=z;
3: z:=y;

Similarly, the statements

1: ifw =tt then
2 z:=tt
4: if z = tt then
5: y:=tt
7: ify =tt then
8 T:=tt

from P, are relevant with respect to C,.

Computing slices from relevant variables and statements

It turns out that if we take the statement mentioned in the criterion and all
relevant statements, then we get a slice.

Theorem 2 Given a program P and a criterion C' = (n, V'), the statement at
n together with the set of statements of P relevant with respect to C'is a slice
of P with respect to C.

Proof: Need to show that requirements in Definition 2.1 are met. Omitted. B

The algorithm to be presented in Section 2.4 will compute the slice of a
program P with respect to criterion C = (n, V) as follows:

1. First, the variables of P relevant with respect to C are computed.

2. Then, the relevant variables are used to determine the set of statements
of P relevant with respect to C.

3. Finally, the slice is obtained by adding the statement in node n to the set
of relevant statements.

For each of the example programs and criteria given above, convince yourself
that above three steps do indeed compute slices.

While the implementation of the second step is straight-forward, the imple-
mentation of the first step is not. The next section describes the sets of relevant
variables and statements using dataflow equations. The implementation of the
first step can then be read off these equations in a way similar to the one already
used for the program other analyses.

2.3 Dataflow equations for relevant variables and state-
ments

We need to identify a subset of the relevant variables and statements called
directly relevant variables and statements.

Directly relevant variables and statements

Intuitively, the sets of directly relevant variables and statements only capture
which variables and statements directly influence the criterion without taking
the control flow into account.

In the following, let ¢,j range over nodes in the CFG and let the notation
i —rorg j express that there is an edge from node i to node j in the CFG,
that is, j is a successor of 4. Let Def (i) denote the set of variables defined (i.e.,
assigned to) at i. Note that in the presence of aliases, a single assignment can
define multiple variales. Also, let Use(i) denote the set of variables used (i.e.,
read) at i.

2.3.1 Directly relevant variables R (i)

Given a slicing criterion C' = (n,V) and a node 4, the set of directly relevant
variables at i, R (i), is defined as':

e all criterion variables are directly relevant at the criterion node, that is,
RL(i) =V ifi=n.

e otherwise, v is directly relevant at i, if i has a successor j such that

— v is either directly relevant at j and not defined (assigned to) in 4, or

— v is used (evaluated) in ¢ and 4 defines a variable that is directly
relevant at j.

Formally, for all nodes i in the CFG, v € R (i) if there exists a node j
such that i —¢oprg J and

~ v € RA(j) and v & Def(i), or

— v € Use(i) and Def(i) N R%(5) # {}.

1The superscript in R% indicates that no branching statements are considered.

Or, even more formally,

v, if i=n
R (i) = {v]3ji —cra i A ((ve RE(H) Av & Def(i)) (1)
V(v € Use(i) A Def(i) N R (5) # {})) } o/w

for all i. Note that if node ¢ defines exactly one variable, then the condition
Def(i) N RY(j) # {} can be simplified to Def(i) € R (j).

Intuitively, if z is directly relevant at node 4, then the value of x right before
execution of ¢ may influence the values of the variables in V' at n without taking
the control flow of the program into account. For instance, let P3 be the program

1: w:=0s

2: ifxz =r then

3: y=y+1;
else

4: 2:=0;3

5: x:=z+ w;
6: output(x)

where the scope of the conditional is indicated by indentation and let C3 be the
slicing criterion (6, {z,y}). We have

nodei| 6 | 5 | 4 | 3 | 2 | 1
R%(0) | {z,u} | {w,y,2} | {w,y} [{w,y,2} | {w,y,2} | {y,2}-

Variable w is not directly relevant at node 1, because the value of w right before
1 does not influence the value of z or y at 6. Variable y is directly relevant at
node 3, because the value of y right before execution of 3 influences the value of
y at node 6 even without taking boolean conditions into account. The fact that
the variables y and z are relevant at the first node indicates that these variables
are uninitialized and that the value of x or y at 6 depends on them. Note that
variables r and z are not directly relevant at any of the nodes. This is because,
as mentioned above, direct relevance ignores the control flow. But, clearly, the
values of r and z before nodes 1 and 2 may influence the value of y at node
6. Therefore, r and z are relevant at 1 and 2 in the sense of Definition 2.2. In
other words, the notion of direct relevance does not quite capture the notion of
relevance of Definition 2.2.

2.3.2 Directly relevant statements S,

A statement at node i is directly relevant if it defines a variable that is directly
relevant at a successor j of i.

S& = {i|3ji—rcre j and Def(i) N RE(5) # {}}

10

For instance, program Pj contains the following directly relevant statements
with respect to criterion Cs = (6, {z,y})

1: w:=0;
3: y=y+1
4: z:=0;
5: x:=z+ w;

Note that the statement at node 6 together with the above statements does not
form a slice of P3 with respect to Cs. This is because the value of y at 6 in the
resulting program may be different from the value of y at 6 in P5;. Thus, the
second condition of Definition 2.1.3 is violated.

Relevant variables and statements

As mentioned above, the computation of the directly relevant variables ignores
the variables that influence the variables in the criterion by influencing boolean
conditions in if or while statements. For instance, variables r and z in program
P3 above are not directly relevant at nodes 2 or 1. But, as already argued
above, both r and x are relevant at nodes 1 and 2 in the sense of Definition 2.2.
The following definition of relevant branch statements will help to remedy this
discrepancy.

2.3.3 Relevant branch statements B¢

We call the boolean tests b in if and while statements branch statements. The
scope of a branch statement is either the then and the else branch or the loop
body. A branch statement is relevant, if its scope contains a relevant statement.

Bc = {b]| b is branch statement and there ezists a node i € SZ°,
such that i is in the scope of b}

For instance, branch statement 2 in program Pj is relevant, because it has two
relevant statements in its scope.
2.3.4 Relevant variables R (i)

A variable is relevant at ¢ if it is directly relevant at ¢ or it is directly relevant
for one of the relevant branch statements.

RZ°(i) = RY(i)U U R((]b,Use(b))(i)
beEB¢

for all i in the CFG?2. For instance, for P; and C3 we have
nodei | 6 | 5 | 4 | 3 | 2 | 1
RZ°(i) | {z, 9} | {w,y, 2} [{w,y} | {w,y, 2} | {r,w,z,y,2} | {r,2,y,2}.

2The superscript in Réo indicates that branching statements are considered.

11

The above table is obtained from the previous one by including r and z into the
relevant variables at nodes 1 and 2.
2.3.5 Relevant statements S3°

A statement is relevant at 4 if it is a relevant branching statement or if it defines
a variable that is relevant a successor of i.

SZ° = BoU{i|i—crg j and Def(i) N RZ°(j) # {}}

For instance, all statements of program Pj are relevant with respect to Cj.

The dataflow equations

The equations for directly relevant and relevant variables and statements to-
gether form the dataflow equations that describe the slicing problem. As before,
let C be the criterion (n, V).

For all nodes ¢ in the CFG, we have

V, if i=n
RGG) = { {v]3ji—crc A (e RL(j) Av & Def(i)) 2)
V(v € Use(i) A Def(i) N Rg(5) # {}))}, o/w

S& = {il3ji —cre i A Defi)) NRE3) # {}} (3)
Bc = {b]| b is branch statement and there exists i € SZ°,

such that i is in the scope of b} (4)

RZG) = RADU U B, goen (5)

beBc
S¢° = BoU{i|3ji —cra j A Defli) N RZ°() # {}} (6)

A solution of the above system of equations consists of two sets of variables for
each node i (the directly relevant and the relevant variables at i), two sets of
statements (the directly relevant and relevant statements), and a set of branch-
ing statements, such that the substitution of the variables in the equations (SZ,
RY, B¢, Rc> 0, and 550) by their corresponding sets makes the all equations
true.

Besides the definitions in Section 2.2, the system of equations form a second
description of relevant variables and statements. We now have to argue that
the two descriptions coincide.

Theorem 3 Given a program P and a criterion C, a set of variables is a solution
to equation (5) if and only if it is relevant with respect to C' in the sense of
Definition 2.2.

Proof: Omitted. n

Corollary 2.1 Given a program P and criterion C = (n, V),

12

1. a set of statements of P is a solution to equation (5) if and only if it is
relevant with respect to C in the sense of Definition 2.3.

2. solutions of equation (6) together with the statement in node n are slices
of P. The smallest such solution is the minimal computed slice. O

Based on the above equations, we will now present an algorithm to compute
minimal slices.

2.4 Solving the datalow equations

We first compute the directly relevant variables and statements.

Computing the directly relevant variables and statements
1. For each node i in the CFG, initialize R (i) with {}.

2. For each node i in CFG, compute the directly relevant variables at i,
RY(i), using equation (2).

3. If there exists a node j such that the previous step has changed R (),
then go back to 2. Else, stop. R (i) contains the directly relevant variables
at ¢ for all i.

4. Compute the directly relevant statements S using equation (3).

Note that Step 2 is not specific about the order in which the nodes are being
considered. It turns out that this order influences the number of iterations nec-
essary to reach the fixed point. If the sets R (i) are computed in topologically
sorted order, then each R, (i) only needs to be considered once and one iteration
suffices. See, for instance, program P; above. The reason is that the topological
order implies that the system of equations (1) for R, is not mutually recursive.
Therefore it can be solved using standard algebraic substitution. Intuitively,
the topological order ensures that the information necessary for the updates for
node ¢ has already been computed when ¢ is being considered. However, the
nodes of a graph can only be topologically sorted if and only if the graph is
acyclic. If the graph is cyclic, then each Rgz) may have to be considered sev-
eral times before the correct value is found. In other words, we have to do fixed
point iteration. The reason is that if the CFG is cyclic, then the system of equa-
tions for R, is mutually recursive which means that it cannot be solved using
straight-forward algebraic substitution. Note that we have already encountered
this situation in the previous program analyses.

Computing the relevant variables and statements

Since the equations for relevant variables and branch statements are mutually
recursive, we again need to resort to fixed point iteration. Starting with the

13

directly relevant variables and statements as our initial approximation, the rel-
evant variables and statements are computed iteratively. In each iteration, the
current approximation is used to obtain a possibly better (but never worse)
one. Once all relevant variables have been determined, no further improvement
is possible, the iteration stops and the corresponding slice is output.

1. Compute the directly relevant variables and statements using the algo-
rithm in Section 2.4.

2. Initialize RZ°(i) for all i and SZ° with {}.

3. For each node i in CFG, compute the relevant variables at i, RZ°(i), using
equation (5).

4. Compute the relevant statements Sgo using equation (6).
5. Compute the relevant branch statements B¢ using equation (4).

6. If there exists a node j such that RSO (j) has changed during Step 3, then
goto back to 3. Else, stop. S3°U {n} contains the (approximation of the)
minimal slice with respect to C = (n, V).

Theorem 4 The above algorithm always terminates with the smallest solution
of the equations given in Section 2.3.

Proof: None of the sets updated in each iteration ever get smaller. Since
every program has a finite number of variables and statements, both of the
above iterations must eventually terminate. The proof that the least solution is
computed is omitted. [

According to Weiser, the above algorithm is O(n, X n; X n.) where n, is the
number of variables in the program, n; is the number of nodes in the CFG, and
and n, is the number of edges in the CFG [Wei79]. Note that the complexity is
independent of the number of variables in the slicing criterion.

2.5 Examples
2.5.1 Example 1

As a warm-up, reconsider program P;

1: z:=w;
2: y:i=z;
3: z:i=y;
4: output(z)

with the criterion C; = (4,{z}). Intuitively, the value that = ends up having
at node 4 is same as that of variable w at node 1, because it “flows” through
the variables z and y to . None of the statements can be removed without

14

creating the possibility of changing the value of z at 4. The program is its
own minimal slice with respect to criterion C. This is the result our algorithm
should compute. Let’s see if it really does. First, we have to compute the
directly relevant variables R (i). Suppose we consider the nodes against the
control flow (from largest node id to smallest node id). Then, we get

nodei|4|3|2| 1
REG) [{z} [{v} | {2} | {w}-

The set of directly relevant statements S2, that is, the set of nodes that define
a variable that is directly relevant at a successor, is

Sy = {1,2,3}.

Since the program does not contain any branch statements, the indirectly rele-
vant variables are identical to the directly relevant ones, that is, R3°(i) = R% (i)
for all ¢, which means that R, and S are fixed points and S U {4} constitutes
the minimal slice with respect to C;. The algorithm thus validates our result
from Section 2.2. Note that had we considered the nodes in opposite direc-
tion, that is, in direction of the control flow, three iterations would have been
necessary to reach the fixed point.

2.5.2 Example 2

Let us now consider the program P

1: v:=3;

2: w:=42;

3: x:=5+4w;
4: z:=w;

51 y:i=z;

6: output(z)

with the criterion Cy = (6, {z}). We get

nodei| 6 | 5 | 4 | 3] 2|1
RE(i) | {z} [{z} [{2} [{v} [{v} [{}

The fact that the first node in the CFG does not have any relevant variables
indicates that the value of x at 6 does not depend on any uninitialized variables.
Only the statements in nodes 1 and 3 define a variable that is directly relevant
to one of their successors. Thus,

Se = {1,3}.

Since the program does not contain any branch statements, the set of indirectly
relevant variables is the same as the set of directly relevant variables, that is,

15

R = RZ which implies S = SZ° and means that the program

1: v:i=3;

2:

3: x:=5+uv;
4

5:

6: output(z)

is the computed minimal slice.

2.5.3 Example 3

In the next example, we reconsider program P

1: ifw = tt then
2: z:=1t

else
3: d:=1;
4: if z = tt then
5: y:=tt

else
6: d:i=d+1;
7: ify =tt then
8: x:=1t

else
9: di=d+1;

10: output(z)
with the criterion Cy = (10, {z}). We get

nodei| 10 | 9 | 8| 7 |6 |5 | 4]3]2]1
RG() | {=} [{=} | 3 | {=} | {=} | {=} | {«} | {=} | {«} | {=}

and
Sg = {8}

Note that 8 is the only node at which z is not directly relevant. This is because
8 defines x and does not use z. Intuitively, the value of z before execution of 8
is irrelevant for the value of z at node 10. The fact that 8 is in S means that
the algorithm has determined that statement 8 is relevant for the value of z at
10 and thus needs to be included in the slice.

Since none of the examples in this section contained any branching state-
ments, the fixed point was always reached after one iteration. In the case of
Program P, more iterations will be necessary.

16

o Iteration 1: At the beginning of the first iteration, we compute the relevant
branch statements Bc. Node 8 is under the scope of branch statement 7.

Be = {7}

When computing the indirect relevant variables Réo, we include the vari-
ables that influence branch condition 7, because it in turn influences the
value of z at 10. Thus,

nodei | 10 | o | 8| 7 | 6 |5 | a4 | 3 | 2 | 1
R2°() | {z} | {2} | O | Lo} | (o} | {2} | {2} | {2} | {20} | {20}

and
Sz0 = {5,7,8}.
Since S # SZ°, we continue with the next iteration.

o Iteration 2: When recomputing B¢, the branching statements at node 4
now becomes relevant because the relevant statement 5 is in its scope.

Be = {4,7}.

Thus, also the variables that influence the condition in 4 must be consid-
ered relevant.

nodei| 10| o | 8| 7 | 6 | 5| 4 | 3 | 2 | 1
R2°G) | {2} [{2} | O | (e} | 2} | {2} | Loz} | {2002} | {2} | {2002}

and
Sz% = {2,4,5,7,8}.
Since the set S3° has changed in this iteration, we need to continue.

e Iteration 3: Again, the increase in relevant variables means an increase in
relevant branch statements.

Be = {1,4,7}.
The indirectly relevant variables and statements change again.

nodei | 10| o | 8| 7 | 6 |5 | 4 | 3 | 2 | 1

R2°G) | {=} | {=} | O | (o} | {ov} | {2} | {owsz} | {owoz} | {2} | {mpzw)
and

Sz0 = {1,2,4,5,7,8}.

17

input(n);

1:=1;

sum :=0;

product :=1;

while i < n do
sum:=sum + i3
product :=product * i;
1:=1+1

end

output(sum);

10: output(product)

(a)

0 IO UL i LN

©

©

0 IO UL ix LN

input(n);
1:=1;3

product :=1;
while i < n do

product :=product * i3
t:=t+1
end

output(product)

()

Figure 3: (a) Example program. (b) A slice of the program with respect to the
criterion (10, product).

Finally, a fixed point is reached and we can terminate. Program

1: ifw =tt then
2 z:=1t

4. if z = tt then
5: y:=tt

7: ify =tt then
8 T:=1t

10: output(z)

is the computed minimal slice. Our algorithm has correctly determined
that the else branches of the conditionals are irrelevant for the value of x
at node 10 and our result from Section 2.2 is validated.

2.5.4 Example 4

As a final example, consider the left program in Figure 3. The sets of relevant
variables arising during the computation are given in Figure 4. The fixed point
is reached after two iterations. The right program in Figure 3 is the computed
slice.

References
[WeiT9] M. Weiser. Program slices: Formal, psychological, and practical in-

vestigations of an automatic program abstraction method. PhD thesis,
University of Michigan, 1979.

18

node i || RY(i)

| R2°(i)

1

O © 00O Uk Wi

[y

{}

{}

{1}

{1}
{product,i}
{product,i}
{product,i}
{product,i}
{product}
{product}

{}

{n}

{i,n}

{i,n}
{product,i,n}
{product,i,n}
{product,i,n}
{product,i,n}
{product}
{product}

B¢
S50

{27 47 77 8}

{5}
{17274757 77 8}

Figure 4: Final results of the application of the slicing algorithm to the left

program in Figure 3 and slicing criterion (10, {product}).

19

