
CISC422/853, Winter 2009 1

Juergen Dingel
Jan, 2009

Topic 1: A few words about concurrency

CISC422/853: Formal Methods
in Software Engineering:

Computer-Aided Verification

CISC422/853, Winter 2009 2

What is concurrency?
Concurrent programs…
consist of units (typically called threads, or processes) that

° on a multi-processor machine: could be executed by different
processors at the same time

° on a single-processor machine: could be executed
by different schedules in different interleavings

° communicate through
qshared memory or message passing

Demos:

demo1.cdemo1.c

demo2.cdemo2.c

garden1.javagarden1.java

(2 threads, 1 shared variable)

(2 threads, 1 shared object)
[Kramer, McGee: “Concurrency: State Models and

Java Programs” http://www.doc.ic.ac.uk/~jnm/book/]

(2 threads, no shared variables)

CISC422/853, Winter 2009 3

What is concurrency? (Cont’d)
Concurrent programs
typically require

° synchronization though, e.g.,
q locks: e.g., one per object; only held by ≤ 1 processes
qsemaphores: natural number n together with two atomic operations:

⋅ P(n): if n>0, then n:=n-1; else suspend calling process
⋅ V(n): if some process p suspended on n, then resume p; else n:=n+1

qmonitors: abstract data type representing a shared resource
⋅ private monitor variables, monitor operations, condition variables

° to prevent interference on shared data through race conditions

Demo

garden2.javagarden2.java (2 threads, 1 shared and synchronized object)

CISC422/853, Winter 2009 4

Why is it hard?

Sequential programs special case of concurrent ones
• Every concurrent program can be made to execute

sequentially without much effort
° tradeoff: amount of parallelism ⇔ risk of interference
° ideally: program exhibits a maximal degree of concurrency, i.e.,

contains a minimal amount of synchronization

Consequences:
• Harder to write: When adding a line of code to

° a sequential program, programmer must be aware of what
qhas happened up until that point, and
qwill happen after that point

° a concurrent program, programmer must also be aware of what
qmay have or may not have happened concurrently
⇒ harder to get code to work correctly

CISC422/853, Winter 2009 5

Why is it hard? (Cont’d)

Consequences (Cont’d)
• Harder to debug:

° When program doesn’t work may be difficult to reproduce error

• Harder to test:
° Impossible to test program comprehensively with respect to all

possible schedulings

• Harder to reason about:
° unexpected interference can lead to surprising results

“I’ve come across many teams whose application worked fine even
under heavy and extended stress testing, and ran perfectly at
many customer sites, until the day that a customer actually had a
real multiprocessor machine and then deeply mysterious races
and corruptions started to manifest intermittently.”

“I’ve come across many teams whose application worked fine even
under heavy and extended stress testing, and ran perfectly at
many customer sites, until the day that a customer actually had a
real multiprocessor machine and then deeply mysterious races
and corruptions started to manifest intermittently.”

[H. Sutter. “The free lunch is over: A fundamental turn to concurrency in software”. Dr. Dobb's Journal, 30(3), March 2005]

CISC422/853, Winter 2009 6

Unexpected interference can lead to
surprising results

Consider the following concurrent program with shared
variable x:

What are the values that x can have upon termination?
• When assignments are atomic: ?
• When assignments are not atomic: ?

What if N = 1000? N =108?
Could you devise a comprehensive test that shows this?

N := 5; x := 0;
for (i=0; i<N; i++) { for (j=0;j<N; j++) {

x := x+1; x := x+1;
} }

N := 5; x := 0;
for (i=0; i<N; i++) { for (j=0;j<N; j++) {

x := x+1; x := x+1;
} }

CISC422/853, Winter 2009 7

Testing Doesn’t Always Cut It
int x, y, tmp;

thread swap() {

tmp = x;

x = y;

y = tmp;

}

proc p(int i, j) {

// pre: i+j is odd

...

}

thread main() {

x=1; y=2;

run swap();

run swap();

p(x, y);

}

int x, y, tmp;

thread swap() {

tmp = x;

x = y;

y = tmp;

}

proc p(int i, j) {

// pre: i+j is odd

...

}

thread main() {

x=1; y=2;

run swap();

run swap();

p(x, y);

}

Will the call p(x,y) always
succeed?
Can’t exhaustively test for
these kinds of race
conditions, because

not enough control over
relative execution speeds on
multi-processor machines
not enough control over
scheduling policy on single-
processor machines
combinatorial explosion

CISC422/853, Winter 2009 8

But Wait, It Can Be Even Worse!

Ideally: statements in a program are executed
in the order in which they appear in the text
However: this is disallows many performance-
enhancing compiler optimizations (to, e.g.,
take advantage of parallelism, multi-level
caches, optimistic execution)
Next best thing: sequential consistency
• “every read of a variable will ‘see’ the most recent

write in execution order to that variable by any
processor”

• allows, e.g., “semantics-preserving” reordering

Ok for sequential programming, but still too
restrictive for concurrent programming

…

x = 1;

y = 2;

z = x+y;

…

…

x = 1;

y = 2;

z = x+y;

…

…

x = 1;

y = 2;

z = x+y;

…

…

x = 1;

y = 2;

z = x+y;

…

// x,y not

// aliases

CISC422/853, Winter 2009 9

But Wait, It Can Be Even Worse!
(Cont’d)

Wanted: Balance desires of program developer (ease
of program development) with desires of compiler
writer (optimization possibilities)
Enter: the Java Memory Model (JMM)
• Specifies minimal guarantees that JVM must make about

when the effect of an action A of thread T1 are visible to
action B of thread T2

• A in T1 visible to B in T2 iff A in T1 “happens before” B in T2

Definition: A in T1 happens before B in T2 if
°T1 == T2 and A comes before B
°A == T.start() and B is an action in T
°…
°(A in T1 happens before C in T3) and (C in T3 happens before
B in T2)

Definition: A in T1 happens before B in T2 if
°T1 == T2 and A comes before B
°A == T.start() and B is an action in T
°…
°(A in T1 happens before C in T3) and (C in T3 happens before
B in T2)

CISC422/853, Winter 2009 10

But Wait, It Can Be Even Worse!
(Cont’d)

In summary: JMM allows some surprising manipulations

public class PossibleReordering {
static int x = 0, y = 0;
static int a = 0, b = 0;
public static void main(String[] args) throws InterruptedException {

Thread one = new Thread(new Runnable() {
public void run() {

a = 1; x = b;
}

};
Thread two = new Thread(new Runnable() {

public void run() {
b = 1; y = a;

}
};
one.start(); two.start();
one.join(); other.join(); System.out.println("(" + x + "," + y + ")");

}
}

public class PossibleReordering {
static int x = 0, y = 0;
static int a = 0, b = 0;
public static void main(String[] args) throws InterruptedException {

Thread one = new Thread(new Runnable() {
public void run() {

a = 1; x = b;
}

};
Thread two = new Thread(new Runnable() {

public void run() {
b = 1; y = a;

}
};
one.start(); two.start();
one.join(); other.join(); System.out.println("(" + x + "," + y + ")");

}
}

• What will this
program output?

• Is this the only
output it can
produce?

• How do you test for
this?

Demo: Reorder.java

CISC422/853, Winter 2009 11

But Wait, It Can Be Even Worse!
(Cont’d)

In summary:
• JMM allows some surprising manipulations
• Synchronization statements allow programmer to

° restrict the “happens before” partial order, and thus to
prevent certain, unwanted compiler manipulations to occur

By the way:
• reading up on, experimenting with, and summarizing the JMM

would make a nice project

CISC422/853, Winter 2009 12

Why use concurrency?

Performance gain:
• ideally, speed up factor equal to number of processors

Ease of programming:
• concurrency is a real-world phenomenon
• many programming problems are inherently concurrent and

can be solved more naturally using concurrency:
° E.g., embedded systems, reactive systems

And we have seen last time, an embedded system may
be controlling the brakes in your car tomorrow…

CISC422/853, Winter 2009 13

Model checking

Model checking helps us out here:
• Exhaustive enumeration of all possible executions/schedules

of a concurrent program
• Check that all of them are ok
⇒ complete confidence (when exploration was exhaustive)

