CISC422/853: Formal Methods A7 E

in Software Engineering:
Computer-Aided Verification @@= (q

CW/ITH LOTY
F PICTURELY b

s o

Topic O: Intro, Motivation,
Overview, Admin

Juergen Dingel
Jan 5, 2009

CISC422/853, Winter 2009 1

About Me

= Born and raised in Germany
= Undergrad in Berlin, Germany
» Grad school at CMU in Pittsburgh, PA
= At Queen’s since January 1, 2000
= Research interests:
« software development, programming languages

« all things having to do with supporting software development through
modeling and analysis: E.g.,
- software model checking
- foundations of UML and MDD

- run-time monitoring, testing, etc

CISC422/853, Winter 2009 2

About (some of) our research

» Foundations of Model-Driven Development (MDD)

* Main goal: Develop notations, methods, tools to
° increase level of abstraction
-~ through use of models
° increase degree of automation
- e.g., through code generation from models

in software development
“Models, rather than code,
form the primary artifact”
e “Models are the new code”

sl i Eridge

PROFILE

* “Put more “engineering’ into
software engineering”
e “MDD = Computer-aided manufacturing for IT”

CISC422/853, Winter 2009 3

MDD = computer-aided manufacturing for IT

Mechanical design from 1800 to about 1980:
1. Draftsmen create 3-view drawings

2. Machinists create parts from drawings

= laborious, error-prone, inefficient

CISC422/853, Winter 2009 4

MDD = Computer-aided manufacturing for IT
(Cont’d)

Concorde (1976 — 2003)

» >100,000 drawings

* in 2 languages, using both metric and imperial systems

= worked, but 7x over budget

CISC422/853, Winter 2009

MDD = Computer-aided manufacturing for IT
(Cont’d)

= Mechanical design from about 1972: CAD/CAM

1. Create drawings with computer (CAD)

2. From drawing, computer automatically generates program to
drive the milling and CNC machines (CAM)

= much better analysis capabilities and productivity
= CAD/CAM has revolutionized manufacturing

= Most IT development today:
* models are still predominantly for communication

MDD suggests to
° make computers “understand” the models, and
° automatically generate code from models

This course is not about MDD, | am looking for grad students to
but it is about models and analysis | | help us make this vision a reality
CISC422/853, Winter 2009 6

Next few lectures

*= Motivation

e Software development is hard

* Itwon't get any easier

* Need more powerful tools and techniques
= Qverview

= Admin stuff

CISC422/853, Winter 2009

Complexity of today’s software

Product Lines of code
Microsoft Word in 1983 27,000

Micra Software is one of the most
M complex man-made artifacts!

Tax processmg SysStEenTTor TRS >"TUU IO

Pacemaker > 100.000
C But perhaps
Ce “Lines of code”

Cais a poor measure of complexity?!
Carin 2010 ?

[Source: “Why Software Fails”. R.N. Charette. IEEE Spectrum, Sept 2005]

CISC422/853, Winter 2009 8

Complexity of today’s software
(Cont'd)
= State of a program P
¢ snapshot of execution of P
« formally: mapping of variables in P to values
= State space of P
» set of reachable states of P

™ tatn cnannc nan ha vinng lavran
J

Software is one of the most
complex man-made artifacts!

* What about Windows XP?

CISC422/853, Winter 2009 9

Consequences of this complexity

= Computers still “under-utilized”

“It is widely agreed that the main obstacle to “help computers
help us more” and relegate to these helpful partners even more
complex and sensitive tasks is not inadequate speed and
unsatisfactory raw computing power in the existing machines,
but our limited ability to design and implement complex systems
with a sufficiently high degree of confidence in their correctness
under all circumstances”

Amir Pnueli, Turing Award Winner

in foreword to [CGP99]

CISC422/853, Winter 2009

10

Consequences of this complexity

. (Cont’d)
» Failing software
* money
° Examples: ESA Ariane 5, Mars Climate Orbiter, US telephone
system, ...

° Cost of errors in software in US in 2001:

[Source: US National Institute of
Standards and Technology]

US$ 60B

e lives
° Therac 25, ...

More details
° Peter Neumann’s www.risks.org

° Ivars Peterson. Fatal Defect: Chasing Killer Computer Bugs. Vintage
Books, New York, 1996.

CISC422/853, Winter 2009 11

Consequences of this complexity
(Cont’'d)

= Failing software development

» According to the 1995 Standish report
° 94 of 100 projects have to be restarted
° 31% of all projects are cancelled
° Of the ones not cancelled
- 23% have cost overruns of > 50%
~ 67% have time overruns of > 50%
* Most costly activity in SW development:
° Quality assurance
« Examples:

° Luggage Handling system at Denver airport, Canadian Gun
Registry, US FAA Advanced Automation System, German Tax
Processing system, ...

CISC422/853, Winter 2009

Example: Therac-25 (1985-87)

Radiotherapy machine with SW controller
Several deaths due to burning
Problems:

« “poor SWE practices”,

« error messages cryptic/undocumented,
« false error messages,

« user interface w/o safety checks
References:

¢ N.G. Leveson and C.S. Turner. An Investigation of the
Therac-25 accidents. Computer, 26(7):18-41, July 1993.

CISC422/853, Winter 2009 13

Example: “Browser War” (MS vs NS)

= |n anutshell:

* From 1995 to 1997 NS concentrated on features at the expense of
good design

« MS hurried to get IE going, but took time to restructure IE3.0 (NT
built from scratch, shared components in Office)

¢ By 1997, NS C4.0 had 130 developers, 3M loc
« Two months not enough to rearchitect NS C4.0
* NS decides to start from scratch with C6.0
« (6.0 never finished, developers reassigned to C4.0
* Cb5.0 open source, but nobody wants to work on it
e MS wins Browser War, AOL buys NS
= NS C4.0 still contains 1.2M loc
= Reference:
* [CY98]

CISC422/853, Winter 2009 14

Example: ESA Ariane 5 (June 1996)

= OnJune 4, 1996, unmanned Ariane 5 launched by ESA explodes
40 seconds after lift-off

= One decade of development costing $7billion lost
» Rocket and cargo valued at $500million destroyed

= What went wrong?
* Bad reuse of code from Ariane 4
« Bad fault-tolerance mechanism

* Bad coding practices
CISC422/853, Winter 2009 15

Example: ESA Ariane 5 (June 1996)

1
(Cont’d)
Example of how not to do reuse: g
OBC (Ariane 4) o— FCS
» Parts of Flight Control System (FCS)
taken from Ariane 4 g
OBC (Ariane 5)
» Horizontal velocity much greater for

Ariane 5
« Unprotected conversion operation in FCS causes error
* On-board computer (OBC) interprets error code as flight data

» Launcher self-destructs

Example of how not to achieve fault-tolerance:

¢ FCS and backup FCS identical, thus backup also failed
Example of how not to code:

« When code caused exception, it wasn’t even needed anymore
References:

. JG|89§J’_and www.ima.umn.edu/~arnold/disasters/ariane.html
CISC422/853, Winter 2009

Example: NASA Mars Climate Orbiter
(1999)

Some programs worked in English
units, some metric units

-

Conversion from English to metric
forgotten

Instead of 65 miles probe
attempted to orbit 65 km

(40 miles) above Mars
$327M lost

References:
e http://mars.jpl.nasa.gov/msp98/

orbiter/

CISC422/853, Winter 2009 17

Example: FAA Advanced Automation
System (2001)

“FAA’s major modernization project, the Advanced
Automation System (AAS), was originally estimated to cost
$2.5 billion with a completion date of 1996. The program,
however, experienced numerous delays and cost overruns,
which were blamed on both FAA and the primary
contractor, IBM. In 1994, FAA cancelled part of the program
and split the remaining systems into three phases, and in
several cases, re-bid the contracts. [...] According to the
General Accounting Office, almost $1.5 billion of the $2.6
spent on AAS was completely wasted.”

Reference:
www.house.gov/transportation/press/press2001l/releasel5.html

CISC422/853, Winter 2009 18

Example: Intel’s Pentium FDIV Bug

= In summer 1994, Prof Thomas Nicely of Lynchburg
College first identified a problem with the floating point
processor of Intel Pentium chips
= The result of entering
(4195835/3145727) * 3145727 - 4195835

into the Windows calculator was 512, not 0

= Intel's PR disaster:
* Nov 1994: Intel disputes the severity of the problem
« Intel offers to replace chip based on need
« Intel stock price falls
« Dec 1994, Intel offers to replace all chips
= Total cost of bug to Intel estimated at: $475million

CISC422/853, Winter 2009 19

Example: NASA Mars PathFinder

= |Launched December 4, 1996

= A few days after landing on Mars, the
Sojourner rover tasks began missing their
deadlines causing total system resets

= Problem: priority inversion is the scenario
where a low priority task holds a shared (Mmad
resource that is required by a high priority Oocnter 993
task

= Reference:

http://research.microsoft.com/en-us/um/
people/mbj/mars pathfinder/

Authoritative Account.html

CISC422/853, Winter 2009 20

Example: Skype

The NewYork Times sures s

Aungust 17, 2007

Error in Skype’s Software Shuts Down Phone Service

By BRAD STONE

SAN FRANCISCO, Aug. 16 — The online telephone service Skype was not working for much of the day on
Thursday, leaving its 220 million users, some of them small businesses that had given up their landlines,
without a way to call colleagues, customers and friends.

Executives at Skype, a division of eBav that is based in Luxembourg, said its engineers worked throughout
the day to bring the service back online. But they said that while they had pinpointed the source of the
problem, they still did not know why it had resulted in a network failure, and they could not ensure that the
service would be running smoothly again by Friday.

“There is a chance this could go on beyond tomorrow, but it's our hope that it's going to be resolved,” Kurt
Sauer, Skype's chief security officer, said. “What happened today was caused by a unique set of events, the
genesis of which is not entirely understood.”

CISC422/853, Winter 2009 21

Example: The Blackout Bug

= 50 Million people w/o electricity
= Worst black out in North American history

= Cause: Race condition in alarm system (1076Loc of C)

Tracking the blackout bug
Kevin Poulsen, SecurityFocus 2004-04-07
<snip>
languages. Eventually they were able to reproduce the Ohio alarm crash in GE Energy’s
Florida laboratory, says Unum, "It took us a considerable amount of time to go in and
reconstruct the events." In the end, they had to slow down the system, injecting
deliberate delays in the code while feeding alarm inputs to the program. About eight
weeks after the blackout, the bug was unmask a particularly subtle incarnation of
a common pregramming error called : riggered on August 14th by a
perfect storm of events and alarm conditions on the equipment being monitored. The
bug had a window of opportunity measured in milliseconds, "There was a couple of
processes that were in contention for 2 commeoen data structure, and through a
software coding error in one of the application processes, they were both able to get
write access to a data structure at the same time," says Unum. "&nd that corruption
led to the alarm event application getting inte an infinite loop and spinning.” Testing
<snip>

CISC422/853, Winter 2009 22

In the future ...
» Qur dependency on SW will grow

» More software in almost everything
° health care
- computer-aided surgery
~ tele-medicine
- HL7 standards (www.hl7.o0rg)
for exchange, management and integration of electronic healthcare information
- networked watches, appliances, ...
° cars
- “drive by wire”
° infrastructure
- intelligent highways
° Clothes
- “smart” diapers

The "smart" diaper moisture detection system. Siden, J.; Koptioug, A.; Gulliksson, M. Microwave Symposium

Digest, 2004 IEEE MTT-S International 2, June 2004 Page(s): 659 - 662
CISC422/853, Winter 2009 23

Software im Automobil 2010 FO r

270Mrd. Example:

r]

In Cars

Pro Fahrzeug:

o/ g | Hardware 170 Mrd. ca. 2.400
125Mrd. / | Markt fiir
i 1 ___ Basissoftware 5 Mrd. ca. 70 E:ﬂl‘gg’:“d
Hlaurg:vnabe iy i Betriebssystem 20 Mrd. ca. 290 ' ’
ra. ol o /
Software | Ve Applikationssoftware €a.1090 | ca.1450=13%
25Mrd. g 75 Mrd. Wert Automobil
2000 3.870
Angaben: Betrage in €
Quelien: Mercer, HypoVereinsbank %
[source: www.automagazin.de]
In English:

« In 2010, software will make up 13% of a car’s overall value
» Compared to 2000, the market for automotive software will
quadruple to 100 Billion Euro

CISC422/853, Winter 2009 24

In Zukunft vernetzt FO r

Automobil 2010

Example:
P Regensensor R
“Infrarot- _ . .
o sNERI In Cars
-~ - N
s > e achibss | ~ Breénf--.
/ — . edal- .
S A e motoren S e ,
4 A 7~ dung | Ventile - 0 n
fagt ,/ /.'E’I:e""“'-' Tir | Getriebe Mm}m
/ y - W \
[/ gung ! sprit- . \ lanen-\
[En meter sitze kiima\\ strom- |
{ R e\
. \; \;ung \
sremi- |
sensor- KIZ Aktor
ebene ebene Bremsen kraft |
= { Jumbd:ia—'
| sonde |
| Lenk- R ra- . J. /
| winkel- |\ tethn, Airbags/ | StoB- y /
sensor Y AWZiinder Gurte \ dimpfer Ay ;
\ L N ven- y
\ Radar Gurt:- tile Tempe- /
\ straffer ratur: /
N, B A sen- /
! >y Bussysteme < soren
Kameras _~
/ o Y
Quete: Mercer R mmwem [SOUrCE: Www.automagazin.de]

In English:
» There are up to 80 separate electronic systems and

components in a car. In 2010, all of these could be networked.

Their functionality will then be solely driven by software.

In the future ... (Cont’'d)

= SW will get more and more complex

» Because it will ...
° ... be even larger
° ... carry out more complex tasks

° ... be more concurrent

~ “In the future, applications will need to be concurrent to fully
exploit CPU throughput gains” [Sut05]
° ... therefore potentially be more buggy
- “| conjecture that most multithreaded-general purpose
applications are so full of concurrency bugs that - as multicore
architectures become commonplace — these bugs will begin to
show up as system failures” [Lee06]

° ... have to function in more complex environments

CISC422/853, Winter 2009 25 CISC422/853, Winter 2009 26
In the future ... (Cont’'d) In the future: Conclusion
= Potential costs of SW failure will grow while
Product Lines of code likelihood of failure will increase
Microsoft Word in 1983 27,000 + Most vulnerable:
Microsoft Word in 2005 > 1 million ° Safety critical systems
Microsoft XP > 45 million ° Concurrent, distributed, and embedded systems
. - = We will need
Tax processing system for IRS > 100 million _ _
« better ways to deal with complexity
Pacemaker > 100,000 + more powerful QA techniques
CeIIphone in 2005 2 million ° achieving acceptable levels of quality in, e.g., large Morelon
. - concurrent or embedded systems with standard .
Cellphone in 2010 20 million . . " Y . this later...
techniques is very hard if not impossible
Car in 2005 (BMW) 7.5 million « see, for instance,
Carin 2010 (GM) 100 million ° 1999 PITAC-report (www.nitrd.gov/pitac/report/)
[Source: “Why Software Fails”. R.N. Charette. IEEE Spectrum, Sept 2005] ° research at MSR
CISC422/853, Winter 2009 27 CISC422/853, Winter 2009 28

http://research.microsoft.com/apps/dp/areas.aspx

+ Security and privacy ®6
+ Social science ®OE
= Software development PEE
Overview Included areas of interest
Our research in software development spans ® Code specification and

§ verification
all aspects of making developers mare

productive and software more trustworthy. It
includes programming-language design,

= Development tools
= Intentional programming

= Performance modeling and

compilers, specification and verification, optimization
development envircnments and tools, runtime = Programming languages
environments, formal models of systems, " :::31’;1“'”9 principles and

performance monitoring and optimization, and

= Runtime analysis and design
quality improvement.

» Software reliability
» Software testing
» Systems dependability

+ Theory ®E

CISC422/853, Winter 2009

29

What can we do?

Ways to control complexity

» Reuse, decomposition (e.g., modularity, divide &

conquer)

» Improve abstraction mechanisms

e e.g., through use of models such as finite state machines

» Improve analysis

* e.g, through model checking —__|

° on models

° directly on software

And this is what
this course is about!

Key ingredients for
“Model-Driven Development”

CISC422/853, Winter 2009

Software Verification: The Dream

class Main {

void static main () {
}

“yeg”

Program /’

Checker

“No, because ..."

’ “The program should ... “

Requirements

CISC422/853, Winter 2009

31

SW verification: Fundamental limitations

= Some assumptions are always necessary

» Correct execution of a program relies on many things (e.g.,
editor, compiler, libraries, optimizer, hardware)

= correct workings of some things will have to be assumed

Some formality is necessary

* Must express requirements in precise, unambiguous terms
« E.g., propositional logic, predicate logic, temporal logic

Precision/scalability tradeoff

» The more complex the analysis, the less likely it will scale

= have to find happy medium

Undecidability

* Some properties of programs are undecidable
= must be careful we don’t ask for something impossible

CISC422/853, Winter 2009

32

Software Verification: The State of the Art

system DiningPhilosophers {
Fork[] forks;
thread P(Fork 1, Fork r) {
loc locO:
when ! (l.isHeld) do {...}

Model of moderately sized

goto locl
} “Yes”
_ e Program - “Maybe”

“No” +

1. pc1=0, pc2=0, x=0, y=1, ...
2.pcl=1, pc2=0, x=1,y=1, ...

G !(forks[0].isHeld &&
forks[1].isHeld && ...)

Requirements__, 3. pel=l, pc2=1, x=1, y=2, ...
expressed in some
formal notation of useful, counter example
yet limited expressiveness
CISC422/853, Winter 2009 33

Model Checking
= Typically:

Automatic technique based on exhaustive state space
exploration to decide if a finite state machine satisfies a
temporal logic specification

= Developed in early 1980s; has been tremendously
successful for hardware and protocol verification

< All large chip manufacturers (e.g., Intel, Motorola, Cadence)
use model checking

= Keys to success
« full automation (allows to hide complexity)

e counter examples (allow developers to see precisely where
things go wrong)

e optimization techniques (e.g., abstraction, Partial Order
Reduction, Binary Decision Diagrams)

CISC422/853, Winter 2009 34

Model Checking (Cont’d)

= Challenges

e state space explosion through
° large number of variables
° large number of values variables can take on

° high degree of non-determinism (e.g., through large number of
unsynchronized parallel processes)

= Successes
* new optimization techniques (e.g., Boolean programs)
« lots of publicly available tools (e.g., Bandera, VeriSoft, JPF)
« already some industrial success stories (e.g., SLAM at MSR)
e 2008 Turing Award for Clarke, Emerson, and Sifakis

CISC422/853, Winter 2009 35

This Course

= Introduction to fundamental concepts, techniques,
tools, and research questions in model checking

= QOther forms of software verification that we will not
consider:
» proofs of correctness

° e.g., Hoare logic, weakest preconditions
° because it doesn't scale

e theorem proving

° because it doesn't scale
(However, both areas of research have been very
influential and we will use some of their results

E.g., MSR’s Spec# http://research.microsoft.com/en-

us/proj ects/specsharp/)
CISC422/853, Winter 2009 36

Success Story 1: SLAM Project at MSR

= Started in 2000, hired lots of “formal people”

= SLAM starting points:
» Buggy third-party device drivers are big headache for MS
° more than 5,000 device drivers for Windows in the field
° Windows Kernel interface provides more than 800 functions
° MS provides Driver Development toolkit to facilitate development
« Device drivers good domain for formal analysis, because
° relatively small (typically less than 100,000 lines of C code)
° interface rules mostly control oriented

= SLAM goal:

¢ use model checking to check rigorously that code obeys
“interface usage rules”

CISC422/853, Winter 2009 37

Success Story 1: SLAM Project at MSR

SLAM main ingredients:
e Boolean programs

° subsetof C

° conservative abstraction of original C program

° many difficult problems (e.g., Halting problem) are decidable
e abstract-check-refine loop for Boolean programs

m " Correct”
d Custom

“1 h ﬁ -

Abstractior] odel Checke

Object take() { Error-trace

tail=(tail+1)%size;
return buffertal];

Abstraction

refinement es)

Error-trace | N0l

. e BUG!”
* innovative use of established formal analysis techniques, e.g.,

° model checking

° theorem proving

° static analysis
CISC422/853, Winter 2009 38

Success Story 1: SLAM Project at MSR

= SLAM mile stones:
e 2001: SLAM finds its first bug
* March 2002: demo to Bill Gates
¢ August 2002: Driver Quality Team formed to
° gradually hand over project to Windows development group
° extend SLAM to a user-friendly tool SDV (Static Driver Verifier)
e April 2003: decision made to turn SDV into a product
¢ Nov 2003: SDV presented at Driver Developer Conference
e Aug 2005: beta-version of SDV released
= References:
¢ [BCLRO04]: Th.Ball, B.Cook, V.Levin, S.Rajamani: SLAM and Static
Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft. MSR-TR-2004-08.
e www.research.microsoft.com/slam

e www.microsoft.com/whdc/devtools/tools/sdv.mspx

CISC422/853, Winter 2009 39

Success Story 2: Java PathFinder

RO®ANRO

()

Java Code Bytecode

void add(Object o) { I
buffer[head] = o; 8 iconst_0

head = (head+l)%size;] istore_2

} : goto #39

object takeQ { —JAVAC— : gload_;“: — VM—

: ilload

tail=(tai I+1)%size; E ;a:oaiz

return buffer[tail]:

}

Now open source
on SourceForge at Special >
javapathfinder.sourgeforge.net VM

Possibly more on this later

Developed at NASA AMES Model
Helped find bugs in
spacecraft software éj

CISC422/853, Winter 2009 40

CISC422/853: Contents

. A few words on concurrency

. Modeling: How to describe behaviour of a software system?
° finite automata

. Intro to 2 software model checkers

° Bogor (Santos group at Kansas State University) Assignment 1

° Spin (G. Holzmann at JPL) (Bogor)

. Model checking |
° algorithms for basic exploration
. Specifying: How to express properties of a software system?

o

assertions, invariants, safety and liveness properties Assignment 2

° Linear temporal logic (LTL) and Buechi automata (Spin)

° Computation Tree Logic (CTL)

. Model checking I
° algorithms for checking properties

Assignment 3

C1SC422/853: Contents (Cont’d)

8. Optimizations

« Partial order reduction

Assignment 4
(slicing)

e Static analysis and slicing
9. Overview of software model checking tools

Final exam
¢ Covering the theoretical parts and some of the practical

Projects (for grad students)
e 2 possibilities
° practical: experimentation with a tool
° theoretical: look at some details of the theory
< | will provide list of suggestions
¢ In both cases, | expect project proposal, presentation &

(Theory) summary paper
CISC422/853, Winter 2009 41 CISC422/853, Winter 2009 42
C1SC422/853: Goals C1SC422/853: Expected Background
= Provide introduction to fundamental = Programming
e concepts, e concurrent
« techniques, « object-oriented
« tools and = Discrete maths
* research questions « sets, functions, relations, automata
in model checking = |ogic
= Give you some ideas for your own research + propositional and predicate logic
= Have fun!
CISC422/853, Winter 2009 43 CISC422/853, Winter 2009 44

CISC422/853: Evaluation

= For undergrads
e 4 assignments
° In groups of 1-2 students
¢ Final exam

= For grads
¢ 4 assignments
° In groups of 1-2 students
* Final exam
¢ project-related work
° In groups of 1-2 students
° Proposal, presentation, summary paper

CISC422/853, Winter 2009

60%

40%

50%

20%
30%

CISC422/853: Evaluation

= Assignments

e Al using Bogor Tutorials will be given to
* A2 using Spin introduce these tools;
o« A4 using Java Details tha

* A3 using pencil and paper

CISC422/853, Winter 2009 46

CISC422/853: Material

Lecture slides
¢ will be posted

Spin book

¢ Gerard Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison Wesley. 2004. ($80)

¢ You are encouraged to purchase it, but don’t have to
« At least 3 copies will be available in Douglas library

Course notes and papers
¢ distributed by instructor

® www.spinroot.com /I Spin website

e bogor.projects.cis.ksu.edu /I Bogor website

CISC422/853, Winter 2009

Online information (code and documentation)
® www.cs.queensu.ca/~cisc853 with link to WebCT forum

a7

CISC422/853: Material (Cont'd)

= Lectures
| highly recommend coming to lectures
» Text book doesn't cover everything (it's mostly for the Spin part)
+ Slides “supersede” text book in case of “conflict”

= Tutorials

» Every practical assignment will be preceded by a tutorial
providing a short introduction to the tool/software the assignment
asks you to use

* Led by TA Scott
» Dates and times: tha

CISC422/853, Winter 2009 48

References

Books:

= [CGP99]: E.Clarke, O.Grumberg, D.Peled. Model Checking. MIT Press. 1999.

= [Pet96]: I. Peterson. Fatal Defect: Chasing Killer Computer Bugs. Vintage Books, New York. 1996.

= [CY98]: M.A. Cusumano, D.B. Yoffie. Competing on Internet Time: Lessons from Netscape and Its
Battle with Microsoft. Free Press. 1998.

Articles:

= [Gle96]: J. Gleick. A Bug and a Crash: Sometimes a Bug Is More Than a Nuisance. 1996. Available at
www.around.com.

= [LT93]: N.G. Leveson and C.S. Turner. An Investigation of the Therac-25 accidents. Computer,
26(7):18-41, July 1993.

= [Man02]: C. Mann. Why Software Is So Bad. Technology Review. July/August 2002.

= [Eco03]: Building a better bug-trap. The Economist, June 19, 2003.

= [BCLRO4]: Th.Ball, B.Cook, V.Levin, S.Rajamani: SLAM and Static Driver Verifier: Technology Transfer
of Formal Methods inside Microsoft. MSR-TR-2004-08.

= [Sut05]: H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobb's Journal, 30(3), March 2005

= [Lee06]: Edward A. Lee. The problem with threads. Computer, 39(5):33— 42, May 2006.
= [Pou04]: K. Poulsen, “Tracking the blackout bug”, SecurityFocus, http://www.securityfocus.com, Apr.

References (Cont’d)

Web Pages:

[Neu04]: P. Neumann. The Risk Digest. Available at www.risks.org.
www.research.microsoft.com/slam
www.microsoft.com/whdc/devtools/tools/sdv.mspx
www.house.gov/transportation/press/press2001l/releasel5.html
mars.jpl.nasa.gov/msp98/orbiter/

www.ima.umn.edu/~arnold/disasters/ariane.html

2004
CISC422/853, Winter 2009 49 CISC422/853, Winter 2009 50
Edit Wew Go Bookmarks Tools Help (4]
- - f’;‘ = http: ffwnur,cs. quesnsu.caj~ciscBS3jreadings. html v | @ 6o |[ClPITAC report 1999 k I d
tcanada.com - Flights - Booking Confirmat... |] PITAC report 1999 - Google Search [E8 crscasa: Readings [Foraing, Casting and CNC Machining

les

hing yet.
neral

+ Safety Critical Systems: Challenges and Directions. J.C. Emght. ICSE '02. Orlando, Florida. May. 2002. [pdf]
+ Formal Methods: State of the Art and Future Directions. E. Clarke and J. Wing. Report by the Working Group on Formal Methods for the ACM Workshep
on Strategic Directions in Computing Research, ACM Cotmputing Surveys, wol. 28, no. 4, December 1996, pp. 626-643. [ps, pdf]
+ The Risks Digest. A moderated forum on risks to the public in computers and related systems.
+ Article on the skill of being ablefwilling to pay attention to detail in the IT industry:
o A cleser look at attention to detal Communications of the ACH. Vol 48, Mo 7. July 2005, [pdf]
+ Article on the mcreased use of concurrency n software
o The Free Lunch Is Ower: A Fundamental Turn Toward Concurrency m Scftware. Herk Sutter. Dr. Dobb's Joumal. Vel 30, Mo 3. March 2005, [pdf].
+ Article on the importance of good design
o Battling Google, Microsoft Changes How It Builds Software. Robert A. Guth, Wall Street Journal Online. September 23, 2005, [pdf]
+ Various popular science articles on the sloppiness in the IT industry:
o Why Software Fails. Robert IN. Charette. IEEE Spectrum. September 2005, [pdf]
o A cleser look at attention to detal James I. Cappel, Victer B. Prybutol, and Benny Varghese. Communications of the ACH, Tuly 2005, Vel 48, Ne
7. [pdf]
o Building Better Software with Better Tools. Steven J. Vaughan-Nichols. IEEE Computer, September 2003
o Why Software Is S0 Bad, Technology Review, June 17, 2002. [ps, pdf]
o Will Bugs Eat Up The US Lead In Scftware?, Business Week, December 1999 [ps, pdf]
o High Tech's Missionaries of Sloppmess?, Salon com, December 2000. [ps, pdf]
o Comments on Software Quality, Watts 5. Humphrey, CMU SEL [ps, pdf]

: modified: Mon Jan & 13:06:23 EST 2006

= Course designed following

¢ CIS842: Specification and Verification of Reactive Systems at

Kansas State University

¢ G. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison Wesley. 2004.

= Thanks to John Hatcliff, Matt Dwyer, Robby, and
Gerard Holzmann for letting me use some of their
slides

CISC422/853, Winter 2009

52

