
Topic 5: Model Checking, Part 1

Readings: Spin book
• Chapter 11 (Using Spin)
• Chapter 8, pages 167-178 (Search Algorithms)

Juergen Dingel
Feb, 2009

CISC422/853: Formal Methods
in Software Engineering:

Computer-Aided Verification

CISC422/853, Winter 2009 Model Checking, Part 1 2

Outline

The SumToN Example (Source: CIS842 @ KSU)
Use this simple example to explain
• schedules
• computation trees
• 3 forms of exploration:

° random
° interactive
° exhaustive

CISC422/853, Winter 2009 Model Checking, Part 1 3

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

Source: 842@KSU
CISC422/853, Winter 2009 Model Checking, Part 1 4

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN (Cont’d)

declare a ‘byte’ to be an
integer with range 0..255
that will ‘wrap around’ when
operated on

declare a ‘byte’ to be an
integer with range 0..255
that will ‘wrap around’ when
operated on

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 5

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN (Cont’d)

declare three byte-
sized variables
declare three byte-
sized variables

Source: 842@KSU
CISC422/853, Winter 2009 Model Checking, Part 1 6

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN (Cont’d)

Each thread reads
the value of x in t1,
then t2, then sums
t1 and t2 to get a
new value for x

Each thread reads
the value of x in t1,
then t2, then sums
t1 and t2 to get a
new value for x

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 7

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN (Cont’d)

The “main” thread
asserts that x is not
equal to the value of N

The “main” thread
asserts that x is not
equal to the value of N

Source: 842@KSU
CISC422/853, Winter 2009 Model Checking, Part 1 8

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

• This transition can be
arbitrarily interleaved
with all others from
Thread1 and Thread2.
• This is how we check
invariants (properties
that should always
hold)

• This transition can be
arbitrarily interleaved
with all others from
Thread1 and Thread2.
• This is how we check
invariants (properties
that should always
hold)

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 9

106 $ Question

Answering this question requires us to reason
about possible schedules (i.e., orderings of
instruction execution)
Let’s try to find schedules that cause the
assertion to be violated for various values of
N…

Can the assertion in the SumToN example be
violated? If so, how?
Can the assertion in the SumToN example be
violated? If so, how?

CISC422/853, Winter 2009 Model Checking, Part 1 10

SumToN Assertion Violation

Violating schedule for N = 1:

[-, 0, 0, x = 1, t1 = 0, t2 = 0]

violation!

[0, 0, 0, x = 1, t1 = 0, t2 = 0](initial
state)

0:0

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

k:0

k:1

k:2

0:0

...that was easy!
Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 11

SumToN Assertion Violation (Cont’d)

1st violating schedule for N = 2:

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 2, 0, x = 1, t1 = 1, t2 = 1]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
state)

1:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]1:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

k:0

k:1

k:2

0:0 violation!

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 12

SumToN Assertion Violation (Cont’d)

2nd violating schedule for N = 2:

2:0 [0, 0, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 2, x = 1, t1 = 1, t2 = 1]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
state)

2:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

k:0

k:1

k:2

0:0 violation!

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 13

SumToN Assertion Violation (Cont’d)

3rd violating schedule for N = 2:

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
state)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; }

goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x !=
(byte)PARAM.N); }

return;
}

}

k:0

k:1

k:2

0:0

violation!

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 14

Computation Trees

system state

transition

choice points
(multiple enabled transitions)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 15

Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

First example
trace (schedule)

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 16

Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Second example
trace (schedule)

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 17

Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Third example
trace (schedule)

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 18

Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Fourth example
trace (schedule)

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 19

Computation Trees, Formally

Given a FSA A, the computation tree TA of A is obtained
by
• s0 is root of TA for s0 ∈ A.S0

• “unwinding” the tree using A.δ:
° for every s in TA, s’ is successor of s iff (s, l, s’) ∈ A.δ for some l

Given a FSA A, the computation tree TA of A is obtained
by
• s0 is root of TA for s0 ∈ A.S0

• “unwinding” the tree using A.δ:
° for every s in TA, s’ is successor of s iff (s, l, s’) ∈ A.δ for some l

Example:
Observations:

• paths(TA) = runs(A)
• a state may occur more than once along a path in TA

• states w/o outgoing transitions in A are leaves in TA

• every path in TA is infinite iff transition relation A.δ is total

CISC422/853, Winter 2009 Model Checking, Part 1 20

Aside: Model Checking “On-the-Fly”

Let
• D be representation of a system in input language of some

model checker MC
• iFSAD iFSA/computation tree corresponding to D

Two kinds of model checkers:
• On-the-fly: MC computes iFSAD step-by-step during

exploration
° Examples: Spin, Bogor

• Not on-the-fly: MC computes iFSAD before it starts the
exploration
° Example: NuSMV

What are the pros and cons of “on-the-fly” model
checking?

CISC422/853, Winter 2009 Model Checking, Part 1 21

Aside: Model Checking Symbolically
Model checkers that are not on the fly, typically use a
sophisticated data structure called

Binary Decision Diagrams (BDDs)

to represent iFSAD

BDDs represent iFSAD “symbolically” in a graph rather
than explicitly
For many D, BDDs allow transition relation of iFSAD to
be represented very efficiently (through lots of sharing)
SMV, Cadence SMV, and NuSMV:
• BDDs were first used for model checking in SMV (Symbolic

Model Verifier, developed at CMU)
• Cadence SMV: developed at Cadence Labs (for Windows)
• NuSMV: open-source effort by IRST (Trento, Italy) and CMU

CISC422/853, Winter 2009 Model Checking, Part 1 22

Random Simulation

In a random simulation,
Bogor randomly
chooses a branch at a
choice point

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 23

Guided Simulation

In a guided simulation,
Bogor asks the user
which transition to take
at a choice point

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 24

Exhaustive Exploration

Both in random and interactive exploration, only one
path is explored at a time
If during random and interactive exploration
• violation found, then system incorrect (due to soundness)
• no violation found, then ??

Little better than a using a good debugger
We really want exhaustive exploration:
• Using exhaustive exploration, all executions (schedules) of

the system are checked for violations. So, if
° violation found, then system incorrect (soundness)
° no violation found, then system correct (completeness)

CISC422/853, Winter 2009 Model Checking, Part 1 25

Exhaustive Exploration (Cont’d)

Model checkers allow you to perform exhaustive
explorations
Challenge: Exploration may take

° a long time, because
q the system has lots of reachable states
q the system has lots of executions

° a lot of memory, because
qstates contain lots of information (e.g., processes have lots of

variables, or variables range over complex data structures)

Need safe optimizations (Topic 8)
But before that, we discuss algorithms for exhaustive
exploration. All are based on DFS and BFS
Using Bogor as example (Spin works similarly)

CISC422/853, Winter 2009 Model Checking, Part 1 26

Exhaustive Depth-first Search

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

At choice points, Bogor
chooses an unexplored
transition and
remembers that it needs
to come back and explore
the others…

At choice points, Bogor
chooses an unexplored
transition and
remembers that it needs
to come back and explore
the others…

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 27

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 28

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 29

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

CISC422/853, Winter 2009 Model Checking, Part 1 30

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 31

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space.

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 32

DFS with Bogor

CISC422/853, Winter 2009 Model Checking, Part 1 33

Bogor Output

CISC422/853, Winter 2009 Model Checking, Part 1 34

Bogor Counterexample Display

CISC422/853, Winter 2009 Model Checking, Part 1 35

DFS Basic Data Structures

State vector
• contains values of all variables and program counters for each

process

Depth-first stack
• contains states (or transitions) encountered down a certain path in

computation tree

Seen state set
• contains state vectors for all states that have been checked already

(seen) during depth-first search

Note
• values of these data structures shown in abstract manner only
• actual implementation of most model-checkers uses multiple clever

representations to obtain a highly optimized search algorithm

CISC422/853, Winter 2009 Model Checking, Part 1 36

SumToN State Vector Example

The state vector is the data structure corresponding to
the state (as previously discussed). It holds the value of
all variables as well as program counters for each
process, and represents a particular position in the
computation tree

… example state with
details on the next slide

… example state with
details on the next slide

CISC422/853, Winter 2009 Model Checking, Part 1 37

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

active thread Thread2() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

when x != (byte)0 do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN State Vector Example

…program
counters for
each thread

…program
counters for
each thread

[0,0,2,1,1,1]Example State Vector:
Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 38

SumToN Assertion Violation

Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

…recall state vectors leading
to violation of assertion

…recall state vectors leading
to violation of assertion

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 39

Bogor Output

… number of states explored
up to when error is found

… number of states explored
up to when error is found

CISC422/853, Winter 2009 Model Checking, Part 1 40

Depth-First Stack

The depth-first stack serves two purposes:
• When search comes to end of a path (or a state that has been

seen before) and backtrack, the top of stack tells us where to
backtrack to

• If an error is encountered, the current contents of stack gives
the computation path that leads to the error (counter example)

G
row

th

Depth-first StackDepth-first Stack

CISC422/853, Winter 2009 Model Checking, Part 1 41

Depth-First Stack (Cont’d)

G
row

th

Stack of State VectorsStack of State Vectors

The depth-first stack can be implemented to hold
state vectors (straight-forward implementation)

[0, 0, 0, 1, 0, 0]

[0, 1, 0, 1, 1, 0]

[0, 1, 1, 1, 1, 0]

[0, 1, 2, 1, 1, 1]

[0, 1, 0, 2, 1, 1]

[-, 1, 0, 2, 1, 1]

Violating schedule
for N = 2
Violating schedule
for N = 2

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 42

Depth-First Stack (Cont’d)

[1:0]

[2:0]

[2:1]

[2:2]

G
row

th

The depth-first stack can be implemented to hold
transitions (requires less space, but harder to
implement)

[0:0]

Stack of TransitionsStack of Transitions

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 43

Depth-first Stack of Transitions

Generating a new state snew requires analyzer to
execute a transition t on current state s:

snew = execute(t, s)
Since analyzer is not holding states in the stack,
• if it needs to back-track and return to a previously

encountered state sprev, it needs to be able to “undo” a
transition t

sprev = undo(t, s)
• when providing variable values as diagnostic information for

an error path, the analyzer needs a “simulation mode” where
choice points are decided by the stacked transitions

CISC422/853, Winter 2009 Model Checking, Part 1 44

Depth-first Stack of Transitions
(Cont’d)

Since analyzer is not holding states in the stack,
• if it needs to back-track and return to a previously encountered

state sprev, it needs to be able “undo” a transition t
sprev = undo(t, s)

[2:0]
[2:1]

[1:0]

Stack of transitionsStack of transitions

pop, s2 = undo(2:1,s3)
pop, s1 = undo(2:0,s2)
pop, s0 = undo(1:0,s1)

current state s3
current state s3

s2
s2

s1
s1

s0
s0

CISC422/853, Winter 2009 Model Checking, Part 1 45

Depth-first Stack of Transitions
(Cont’d)

[2:0]
[2:1]

[1:0]

Stack of transitions
leading to error state

Stack of transitions
leading to error state

s3 = execute(2:1,s2)

s2 = execute(2:0,s1)

s1 = execute(1:0,s0)

s4 = execute(2:2,s3)
…

s2
s2

s1
s1

s0
s0

s3
s3

…
[2:2]

Since analyzer is not holding states in the stack,
• when providing variable values as diagnostic information for an

error path, analyzer needs a simulation mode where choice points
are decided by the stacked transitions

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 46

Depth-First Stack of Transitions
(Cont’d)

Many model-checkers (including SPIN and Bogor)
implement a depth-first stack of transitions
This reduces amount of required memory and meshes
well with its other space optimizations (e.g., bit-state
hashing – discussed in Topic 8)

CISC422/853, Winter 2009 Model Checking, Part 1 47

Seen State Set

There may be more than one path to a given state
If a state is reached for a second time, there is no
need to check s again (or any of the children of s in
the computation tree)
Seen State Set:
• used to avoid exploring/checking a part of the computation

tree that is identical to a part that has already been explored
before

• in Bogor: implemented as hash table

CISC422/853, Winter 2009 Model Checking, Part 1 48

=

Revisiting Via A Different Path

[0,0,0,1,0,0]

State Vectors in Fragment
of Computation Tree
State Vectors in Fragment
of Computation Tree

[0,1,0,1,1,0]

1:0

[0,1,1,1,1,0]

2:0

[0,0,1,1,1,0]

2:0

[0,1,1,1,1,0]

1:0

No need to explore subtree rooted at this state,
because it is identical to one previously explored

No need to explore subtree rooted at this state,
because it is identical to one previously explored

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

CISC422/853, Winter 2009 Model Checking, Part 1 49

Computation Tree as Graph

Sometimes we view the
computation tree as a graph
Sometimes we view the
computation tree as a graph

2:0 1:0

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

[0,1,1,1,1,0]

[0,0,0,1,0,0]

[0,1,0,1,1,0]

1:0

[0,0,1,1,1,0]

2:0

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

CISC422/853, Winter 2009 Model Checking, Part 1 50

Seen State Set

Computation TreeComputation Tree

1:0

[0,1,1,1,1,0]

2:0

When Bogor gets to this state, it checks
the Seen Set and finds it already has been checked, so it
backtracks from this point

When Bogor gets to this state, it checks
the Seen Set and finds it already has been checked, so it
backtracks from this point

Seen SetSeen Set

2:0

…
[0,0,0,1,0,0]
[0,1,0,1,1,0]
[0,1,1,1,1,0]
…
[0,0,1,1,1,0]

…
[0,0,0,1,0,0]
[0,1,0,1,1,0]
[0,1,1,1,1,0]
…
[0,0,1,1,1,0]

[0,1,1,1,1,0]

1:0

[0,0,0,1,0,0]

[0,1,0,1,1,0] [0,0,1,1,1,0]

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

active thread Threadk() {
loc loc0:

when x != (byte)0 do {
t1 := x; } goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

CISC422/853, Winter 2009 Model Checking, Part 1 51

Non-Terminating Systems

Let S be a finite state machine
• Due to the use of the Seen Set, checking S will always

eventually terminate
• Even if S has non-terminating executions (Why?)

system Loops

boolean x;

active thread Thread1() {
loc loc0: do { x := !x; }
goto loc0;

}

active thread Thread2() {
loc loc0: do { x := !x; }
goto loc0;

}
}

system Loops

boolean x;

active thread Thread1() {
loc loc0: do { x := !x; }
goto loc0;

}

active thread Thread2() {
loc loc0: do { x := !x; }
goto loc0;

}
}

Example: Consider the
system on the right...
1. Does execution of the

system terminate?
2. How many states does it

have?
3. Does an exhaustive

analysis of the state-space
of the system terminate?

CISC422/853, Winter 2009 Model Checking, Part 1 52

Finite is not Enough
So, the analysis of every BIR or PROMELA program
will always terminate...
... but it may take a really long time to do so
So, state spaces should not only be finite, but also
“small enough” for the exploration to be feasible
State Explosion Problem: Size of state space grows
exponentially with the number of parallel processes
Beware of systems with
• large numbers of parallel processes
• variables ranging over large domains

(e.g., int, long)
• variables ranging over large, complex data
• large numbers of variables

too many states;
analysis takes too

much time

states too large;
analysis requires too

much space

CISC422/853, Winter 2009 Model Checking, Part 1 53

Bogor Output

Size of Seen SetSize of Seen Set

generated states that
were found to be already
in the Seen Set

generated states that
were found to be already
in the Seen Set

CISC422/853, Winter 2009 Model Checking, Part 1 54

[Time: 4817 ms, Depth: 395] Error found: Assertion failed

Transitions: 38174, States: 15276, Matched States: 22899,
Max Depth: 1921, Errors found: 19

Total memory before search: 329,240 bytes (0.31 Mb)
Total memory after search: 4,327,968 bytes (4.13 Mb)
Total search time: 4897 ms (0:0:4)
States count: 15276
Matched states count: 22899
Max depth: 1921

[Time: 4817 ms, Depth: 395] Error found: Assertion failed

Transitions: 38174, States: 15276, Matched States: 22899,
Max Depth: 1921, Errors found: 19

Total memory before search: 329,240 bytes (0.31 Mb)
Total memory after search: 4,327,968 bytes (4.13 Mb)
Total search time: 4897 ms (0:0:4)
States count: 15276
Matched states count: 22899
Max depth: 1921

Bogor Output (Cont’d)

Deepest stack depth
reached during search

Deepest stack depth
reached during search

Running a model-check of SumToN with N = 5:

Depth in computation tree (i.e., transition stack) where assertion violation was
found (i.e., number of steps in error trace)

Depth in computation tree (i.e., transition stack) where assertion violation was
found (i.e., number of steps in error trace)

CISC422/853, Winter 2009 Model Checking, Part 1 55

checkAssertions(AS) {
for all s0∈ S0 {

seen := {}
stack := [s0]
DFS(s0)

}

checkAssertions(AS) {
for all s0∈ S0 {

seen := {}
stack := [s0]
DFS(s0)

}

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}

Checking for Assertion
Violations

set of states already exploredset of states already explored

get the transitions out of s
(possibly “on-the-fly”)

get the transitions out of s
(possibly “on-the-fly”)

pick one of the transitions to explorepick one of the transitions to explore

calculate the successor state calculate the successor state

if s has been seen before, ignore itif s has been seen before, ignore it

Source: 842@KSU

check for assertion violation, if necessarycheck for assertion violation, if necessary

states on current pathstates on current path

How does the algorithm have to be
modified to check for deadlock?

explore successor stateexplore successor state

CISC422/853, Winter 2009 Model Checking, Part 1 56

Error Trace Length

Model-check SumToN with N = 5
From Bogor’s output, can see that execution trace that
violates assertion was found and that trace is 395
steps long
• Having to reason about how assertion can be violated along a

trace of 395 steps is quite painful!
• You have previously discovered a much shorter violating trace

using Bogor’s simulation mode.
• Does this mean that the Bogor analyzer is not very useful?

° Not at all!!

We will see now how to tell Bogor to search for shorter
violating traces (as well as minimal length violating
traces)

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 1 57

Error Trace Length

In general, a system may have many different traces
that lead to the same property violation

Because Bogor does a depth-first search (instead of a bread-first
search), first violating trace found is usually not of minimal length

property
violations

property
violations

first property
violation found
by Bogor

first property
violation found
by Bogor

GREEN shows portion of
statespace covered by Bogor
before first violation found

GREEN shows portion of
statespace covered by Bogor
before first violation found

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 1 58

Setting Bogor’s Depth Bound

Users can set a bound on the depth of Bogor’s search
(i.e., number of entries in Bogor’s depth-first stack)

Choose the “Configure Bogor” option, then Add/Edit to set the value for
the ISearcher.maxDepth attribute.

CISC422/853, Winter 2009 Model Checking, Part 1 59

Setting Bogor’s Depth Bound

This is often useful…
• …after a counterexample has been found and you

want to see if a shorter one exists
° look at Bogor’s output to see the size, then rerun Bogor

with an appropriate depth bound (i.e., one smaller than the
size of the counter-example).

• …before a counterexample has been found and
Bogor is taking too long or is running out of memory

CISC422/853, Winter 2009 Model Checking, Part 1 60

Setting Bogor’s Depth Bound (Cont’d)

Be careful!
• when search is bounded, Bogor will not explore parts of state

space
• unexplored part may contain property violations
• If a bounded search does not find any violations, then

° no violations in parts that got searched
° but may have violations in unsearched parts

⇒ A depth-bounded search may be incomplete!

Bogor displays “Max depth reached!!!” whenever
depth bound is reached and analysis may be
incomplete

CISC422/853, Winter 2009 Model Checking, Part 1 61

For Example

Checking SumToN with N = 5

CISC422/853, Winter 2009 Model Checking, Part 1 62

Depth-
bound of 4

Depth-
bound of 4

Bounded Depth-first Search
When analyzing a system and given a depth bound as a command-

line argument, Bogor will backtrack when that depth is reached

ISearcher.maxDepth = 4

Errors at depth
greater than bound
are not detected.

Errors at depth
greater than bound
are not detected.

GREEN shows
portion of
statespace covered
by Bogor before
first violation found

GREEN shows
portion of
statespace covered
by Bogor before
first violation found

property
violations

property
violations

CISC422/853, Winter 2009 Model Checking, Part 1 63

When analyzing a system and given a depth bound as a command-
line argument, Bogor will backtrack when that depth is reached

Bounded Depth-first Search (Cont’d)

Depth-
bound of 2

Depth-
bound of 2

GREEN shows portion
of statespace covered
by Bogor before first
violation found

GREEN shows portion
of statespace covered
by Bogor before first
violation found

Errors at depth greater than
bound are not detected.

Errors at depth greater than
bound are not detected.

In this case, Bogor
reports that no
violations were found.

In this case, Bogor
reports that no
violations were found.

ISearcher.maxDepth = 2
CISC422/853, Winter 2009 Model Checking, Part 1 64

Depth-Bounded DFS

Advantages: ?
Disadvantages: ?

CISC422/853, Winter 2009 Model Checking, Part 1 65

Finding the Shortest Counter Example

Using Bounded DFS
• in Bogor:

° start with high bound that finds error
° successively lower the bound until no error

• in Spin:
° Run verifier with option –i or –l:

pan.exe –i or pan.exe –l

Using ?

CISC422/853, Winter 2009 Model Checking, Part 1 66

Yes, Breadth First Search!

How to make Bogor and Spin use BFS
• in Bogor:

° write routine and plug it in
° modular architecture of Bogor makes this easy

• in Spin:
° compile verifier with –DBFS option:

gcc –DBFS –o pan pan.c

Easy to implement
What’re the advantages of BFS over DFS?
What’re the disadvantages?

