CISC422/853: Formal Methods [IFEEN

in Software Engineering: NEWBIIES
Computer-Aided Verification et

AND ANALFIIS R
CWITH LOTT
aF FICTURESN =

s o

Topic 5: Model Checking, Part 1

Juergen Dingel
Feb, 2009
Readings: Spin book
» Chapter 11 (Using Spin)
» Chapter 8, pages 167-178 (Search Algorithms)

Outline

= The SumToN Example (Source: CIS842 @ KSU)

= Use this simple example to explain
» schedules
e computation trees

« 3 forms of exploration:
° random
° interactive
° exhaustive

CISC422/853, Winter 2009 Model Checking, Part 1 2

SumToN

system SumToN { ;
const PARAM {N=113}; active thread Thread2() {
typealias byte int wrap (0,255); loc locO:
when x != (byte)O do { t1 := x; }
byte x :=1; goto locl;
byte t1;
byte t2; loc loc1:
do{t2:=x;}
active thread Thread1() { goto loc2;
loc locO: oc loc:
when x != (byte)O do { t1 :=x; } .
goto loc1; do{x:=t1l+1t2;}
goto locO;
loc loc1: ¥
do{t2:=x;} .
goto loc2; active thread Thread0() {
loc locO:
loc loc2: do { assert (x != (byte)PARAM.N); }
do{x:=tl+1t2;} return;
goto locO; H
H b
CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 3

SumToN (Cont’d)

system SumToN { active thread Thread2() {
gsgesftilli:agRtnge{ir:\i :/rlai})'(0.255):i\ N Icg/i%?&!; (byte)0 do { t1 :=x; }
byte x :=1; N
E§I2 Ii declare a ‘byte’ to be an

integer with range 0..255

active thread Thread1() { that will ‘wrap around’ when

loc locO:

when x I= (byte)0 do { t1 := x; } || Operated on

goto locl;

3

loc locl:

do{t2:=x;} active thread ThreadO() {

goto loc2; loc locO:

do { assert (x != (byte)PARAM.N); }

loc loc2: return;

do{x:=t1+1t2;} 3}

goto locO; 3}

3

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@ KSuU 4




SumToN (Cont’d)

active thread Thread2() {

SumToN (Cont’d)

system SumToN {

const PARAM {N=11};

loc locO:

1

1
1
1
u

active thread Thread2() {

when x != (byte)O do { t1 :=x; }

CISC422/853, Winter 2009

Model Checking, Part 1

system SumToN {
const PARAM {N=11}; loc locO:
typealias byte int wrap (0,255); when x != (byte)O do { t1 :=x; }
goto loc1;
byte x :=1; :
e declare three byte-
sized variables
active thread Threadl1() {
loc locO: loc loc2:
when x != (byte)O do { t1 := x; } do{x:=tl+1t2;}
goto loc1; goto locO;
3
loc locl:
do{t2:=x;} active thread ThreadO() {
goto loc2; loc locO:
do { assert (x != (byte)PARAM.N); }
loc loc2: return;
do{x:=t1+1t2;} 3}
goto locO; }
H

Source: 842@KSU 5

typealias byte int wrap (0,255);
goto locl;
byte x := :
byte t1; 1 | loc loc1:
byte t2; . 1 do{t2:=x;}
1
f goto loc2;
active thread Threadl1() {, !
loc locO: \\ I loc loc2:
when x != (byte)0 do { t1 :=x; } K do{x:=tl1+1t2;}
goto loc1; \\ ! goto loc0;
N h 3
loc loc1: \\ H
do{t2:=x;} ead0() {
goto loc2; Each thread reads l
the value of x in t1, ['= (byte)PARAM.N); }
loc loc2:
do{x:=tl+1t2;} then t2, then sums
goto locO; tl and t2 to get a
3 new value for x

CISC422/853, Winter 2009

Model Checking, Part 1

Source: 842@KSU A

SumToN (Cont’d)

CISC422/853, Winter 2009

Model Checking, Part 1

SumToN

system SumToN {
const PARAM {N=11};
typealias byte int wrap (0,255);

byte x :=1;

byte t1;

arbitrarily interleaved

active threa
with all others from

loc locO:

goto loc1;

bytet2; o This transition can be

e X Threadl and Thread?2.
e This is how we check

active thread Thread2() {

loc locO:
when x != (byte)O do { t1 :=x; }
goto locl;

loc loc1:
do{t2:=x;}
goto loc2;

loc loc2:
do{x:=t1+1t2;}
goto locO;

bs

system SumToN { active thread Thread2() {
const PARAM {N=11}; loc locO:
typealias byte int wrap (0,255); when x != (byte)O do { t1 := x; }
byte x := 1; The “main” thread ock:
byte t1; asserts that x is not 1:
R equal to the value of N |25}
active thread Thread1() {
loc locO: loc loc2:
when x != (byte)Odo { t1 :=x; } do{x:=t1+1t2;}
goto loc1; \ goto locO;
o 3
loc locd: *
do{t2:=x;} * active thread Thread0() {
goto loc2; loc locO:
do { assert (x != (byte)PARAM.N); }
loc loc2: return;
do{x:=t1+1t2;} 3}
goto locO; 3}
b
Source: 842@KSU ;

CISC422/853, Winter 2009

Model Checking, Part 1

loc locl: 0 . .
do { t2 := Invariants (propertles active thread ThreadO() {
goto loc2;| that should always 1~ loc loco:
hold) S Oi assert ‘X 1= sb!tetPARAM.Nl' +
loc loc2: return;
do {x:= m; ¥ 3}
goto locO; I 3}
i
Source: 842@KSU 8




10° $ Question

Can the assertion in the SumToN example be
violated? If so, how?

= Answering this question requires us to reason
about possible schedules (i.e., orderings of
instruction execution)

= Let’s try to find schedules that cause the
assertion to be violated for various values of
N...

CISC422/853, Winter 2009 Model Checking, Part 1 9

SumToN Assertion Violation

active thread Threadk() {

loc locO:
k:0  when x != (byte)O do {
tl:=x; }
goto loc1;

k:1 locloci:
do{t2:=x;}
goto loc2;

k:2 loc loc2:
do{x:=t1+1t2;}
goto locO;

b
active thread Thread0() {
loc locO:

do { assert (x !=
(byte)PARAM.N); }
return;
3
3

CISC422/853, Winter 2009

Model Checking, Part 1

Violating schedule for N = 1:

(initial [0,0,0,x=1,t1=0,1t2=0]

state)

............

...that was easy!
Source: 842@KSU 10

SumToN Assertion Violation (Cont’d)

active thread Threadk() {

loc loco: 1st violating schedule for N = 2:
k:0  when x != (byte)0 do {
tl:=x; } (initial
oto loc1; initial
9 statey [0,0,0,x=1,t1=0,t2=0]
k:1 locloci:
do{t2:=x;} ~1:0—[0,1,0,x=1,t1=1,t2 =0]
goto loc2;
~1:1—[0,2,0,x=1,t1=1,12=1]
k:2 locloc2:
do{x:=tl+1t2;} ~1:2—[0,0,0,x=2,t1=1,t2=1]
gotoloco;

¥ ~0:0—[,0,0ix=2:tl=1,1t2=1]

............

active thread ThreadoQ) { | ) . R
0:0 Ioc loco: violation!
do { assert (x I=
(byte)PARAM.N); }
return;
b
by

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 11

SumToN Assertion Violation (Cont’d)

active thread Threadk() {

loc locO:
k:0  when x != (byte)0 do {
tl:=x; }
goto loc1;

k:1 locloci:
do{t2:=x;}
goto loc2;

k:2 locloc2:
do{x:=tl+1t2;}
goto locO;

T
active thread ThreadO() {
0:0 1oc loco:

do { assert (x !=
(byte)PARAM.N); }
return;
3
3

CISC422/853, Winter 2009

Model Checking, Part 1

2d violating schedule for N = 2:
(e [0,0,0,x=1,1t1=0,2=0]
~2:0—1[0,0,1,x=1,t1=1,t2=0]
~2:1—[0,0,2,x=1,t1=1,t2=1]
~2:2—[0,0,0,x=2,t1=1,t2=1]

............

Source: 842@KSU 12




SumToN Assertion Violation (Cont’d)

active thread Threadk() {

loc loco: 3" violating schedule for N = 2:
k:0  when x != (byte)0 do {
tl:=x; } (initial
oto loc1; Initial
’ state) [0,0,0,x=1,t1=0, t2=0]
k:1 locloci:
do{t2:=x;} ~1:0—[0,1,0,x=1,t1=1,t2 =0]
goto loc2;
~2:0—[0,1,1,x=1,t1=1,1t2=0]
k:2 loc loc2:
do{x:=tl+12;} ~2:1—[0,1,2,x=1,t1=1,t2=1]
goto locO;

¥ o—2:2—>[0,1,0,x:2tl:1t2:1]

active thread ThreadO() {
loc locO:
do { assert (x !=
(byte)PARAM.N); }
return;
b
¥

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 13

Computation Trees

We can think of the
possible schedules
(execution traces) as
forming a

; system state
computation tree .

0:0) . 200 e transition
. = e
R s %z o i@
. ¢ o o [ ° ° .

oy a9 @) 22y \20 (o9} _1_l£1_}_}_i_1_1_!
&2 FE| L \L=g]
9 060 0 8 00 0 008000000 0 0

choice points
(multiple enabled transitions)

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 14

Computation Trees (Cont’'d)

We can think of the

possible schedules

(execution traces) as First example
forming a trace (schedule)
computation tree...

00 @(20)
., ......... 10 °
w9 eg " a0 oy i 2y
L] [ ) [ ) .EJ [ ] ] L ] o

g glagie p/m wie oo )
@ ¢ & ¢ @ o ¢ ¢ & © & & & " O 0 0 0

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 15

Computation Trees (Cont’'d)

We can think of the

possible schedules

(execution traces) as Second example
forming a trace (schedule)
computation tree...

o @ 29
L flj L ]
FER ™ o0 . z0) oo a9
° ¢ e .l—lj . ° ) ®
il 20l o) zyad zo o7 zal e ‘am G zdesl ‘ay oo za
e 1) a1 19
e & & O .'.. ® ¢ © ¢ 9 & ¢ ¢ o O

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 16




Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree...

Third example
trace (schedule)

o) @-....20)
° 1_.0] ............. ....
w0z o) .z oz
)
e e e ° ® ° ® | ]

dat] R20) (L0 f2:4) (1] 13:0) _J_j_"l'_l_i_l_‘l“_".l_jﬂ"_ﬂ.’ﬂ!
oooo-..-tocotcotooo’

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 17

Computation Trees (Cont’d)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree...

Fourth example
trace (schedule)

w @ 29

® .1_n| ]

) g ooz oo g -z
® ¢ e 1—ll. e e e

Lif (ze)  Aw) 2aa] (200 __J__I__Jaf_liwﬂs_‘!l 2] o] | Nz

1:2 1% 11 0]
C‘...Q..I.....'.I..

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU

Computation Trees, Formally

Given a FSA A, the computation tree T, of A is obtained
by
* syisrootof Tyfors, € A.S,
« “unwinding” the tree using A.d:
° for every sin T,, s’ is successor of siiff (s, I, ) € A.8 for some |

Example:

Observations:
* paths(T,) = runs(A)
* a state may occur more than once along a path in T,
* states w/o outgoing transitions in A are leaves in T,
* every path in T, is infinite iff transition relation A.$ is total

CISC422/853, Winter 2009 Model Checking, Part 1 19

Aside: Model Checking “On-the-Fly”

= |et

¢ D be representation of a system in input language of some
model checker MC

* iFSA, iFSA/computation tree corresponding to D
= Two kinds of model checkers:
* On-the-fly: MC computes iFSA, step-by-step during
exploration
° Examples: Spin, Bogor
* Not on-the-fly: MC computes iFSA, before it starts the
exploration
° Example: NuSMV

= What are the pros and cons of “on-the-fly” model
checking?

CISC422/853, Winter 2009 Model Checking, Part 1

20




Aside: Model Checking Symbolically

= Model checkers that are not on the fly, typically use a
sophisticated data structure called
Binary Decision Diagrams (BDDs)

to represent iFSA,

= BDDs represent iFSA, “symbolically” in a graph rather
than explicitly

= For many D, BDDs allow transition relation of iFSAj to
be represented very efficiently (through lots of sharing)

= SMV, Cadence SMV, and NuSMV:

« BDDs were first used for model checking in SMV (Symbolic
Model Verifier, developed at CMU)

* Cadence SMV: developed at Cadence Labs (for Windows)

« NuSMV: open-source effort by IRST (Trento, Italy) and CMU

CISC422/853, Winter 2009 Model Checking, Part 1 21

Random Simulation

In a random simulation,
Bogor randomly
chooses a branch at a

choice point
@ e
] 10) ®
s e oo 20 oo \uo 2y
13y
° [ ® [ ® [ ] e

ayf (z9) oy j2aiQa) {ze) _J_j_l__l _lE'I_I_JJ_I LTg _J

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU

22

Guided Simulation

In a guided simulation,
Bogor asks the user
which transition to take
at a choice point

o L0) .
o 20) o9) 29 oo el iz
[ [ ] [ e e ) ] ] L]

1) 20 10f 2alaal 20 @) 20) (eof ‘za) ol zaloe 2y e aa2)
13 1) 1) 10
e & @& & @& & & & & & & & & 0 & o o & 2

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 23

Exhaustive Exploration

= Both in random and interactive exploration, only one
path is explored at a time

= If during random and interactive exploration
« violation found, then system incorrect (due to soundness)
* no violation found, then ??

= Little better than a using a good debugger

= We really want exhaustive exploration:
« Using exhaustive exploration, all executions (schedules) of
the system are checked for violations. So, if
° violation found, then system incorrect (soundness)
° no violation found, then system correct (completeness)

CISC422/853, Winter 2009 Model Checking, Part 1

24




Exhaustive Exploration (Cont’d)

= Model checkers allow you to perform exhaustive
explorations

= Challenge: Exploration may take

° along time, because
- the system has lots of reachable states
- the system has lots of executions

° alot of memory, because

~ states contain lots of information (e.g., processes have lots of
variables, or variables range over complex data structures)

= Need safe optimizations (Topic 8)

= But before that, we discuss algorithms for exhaustive
exploration. All are based on DFS and BFS

= Using Bogor as example (Spin works similarly)

CISC422/853, Winter 2009 Model Checking, Part 1 25

Exhaustive Depth-first Search

Bogor can perform exhaustive

depth-first searches of a
system’s state-space

At choice points, Bogor
chooses an unexplored
transition and
remembers that it needs
to come back and explore

________ the others...
oo M@ 22]
» .ﬂl .
10 20 o0 " 20 g \a G
® [ [ [ ] HI [ ® Y ®

1l 20) 20 29G4 200 &9 20 oo 2y ol s 21 ool | 23
1 1 1 19
® @ & & & & @ @& © ©° o & » o & T o ¢ 0

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 26

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, ...

JLE] B o 2:0)
I R .
@ e o) —*.20 ool ae 2y
ot 1221
i @ [ ® ® 1 [} [} ® ®
D adleao) we) 2yl 2ol 08 20 0o @y mof 23 21 e 23
Qle ¢ ¢ ¢ ¢ ¢ 67 ¢ 66 0606 00 ¢ 0 ¢ ¢ o
" ... it continues on
with the siblings.
CISC422/853, Winter 2000 Model Checking, Part 1 Source: 842@KSU 27

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, ...

0:0],,..00 2:0
LT R 28]
Y o .
. Y 2:0] 0:0 ®, 2:0) 0:0 1:0 2:1]
e 11
[ ] ) ] ® [ o ® o

o 132 L:1) ) E]
’_9.0&....0..0.0..0!0
EEE ... it continues on

with the siblings.
CISC422/853, Winter 2009 0del Checking, Part 1 Source: 842@KSU 28




Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

When Bogor has finished
with one subtree, ...

0:0),,.nnne (2:0
, ............. pw o
‘ (] ° X ] ) ]

_,1_'1-_“1 _21@_]_! J_JJJJJIJLEIJ,J E';IEIJEJ

”..oo--oeo\o.-oooooo
AFAN "" : ... it continues on
with the siblings.

CISC422/853, Winter 2009 Model Checking, Part 1 29

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space

.. until the entire
computation tree is

covered.
....... S @— 29
’ ...... o .
o as galeFWa o a9 oz
¢ ¢ o & o o °
1) fz0)  (uof Sz (1 za ool 2ol (oof F t2s) (o] zajowo] 2 0:0] | 22

as
X

'K
)
.

o J
Q'Q"Qioo"ooc @ oo o0 o0
. b3 L e - Lt . e

" - % % an " a e ' =% e

- - N ] 1

Tooe e - Y y )

O - A Y E

.

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 30

Exhaustive Depth-first Search (Cont’d)

Bogor can perform exhaustive
depth-first searches of a
system’s state-space.

computation tree is

.. until the entire
covered.

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 31

DFS with Bogor

Resource - SumToN.bir - Eclipse Platform

Eile Edit Nawgate Search Project Run Window Help
'Ij HE S| '9;@«?;5'%::<:=v='.>
ﬁ 5. Navigator ] x
5 LR 4}@ system SumToN {

~ @ Foundations

const PARAM {

N = 1;
Bl .project 1
i SumToN.bir Undo
int wrap |
int wrap (-
int wrap |

main threa

loc locO Paste
_Iﬂ.ﬁ.'
| B2 outline i | E
|| B= Source | Symbol mple

| [ SumToN i}
| 4 Tasks (0 item User-guided simulation... 9% g B v x
~ PARAM Random simulation... T
= v |! |Descri urce |\n Folder Location
N=1 P! Model check... 2 I

% 1 int wrap (0, 255)

Configure Bogor...
t1 :int wrap (0, 255 -
t2 tint wrap (0, 255

~ Threado()

Input Methods 3

Tasks Bogor Status Bogor Counter Examples

CISC422/853, Winter 2009 Model Checking, Part T 32




Bogor Output

Resource - SumToN.bir - Eclipse Platform
File Edit WNavigate Search Project Run Window Help

|-BRa|a | ¢|wes

ﬁi %3 Navigator ~ x ||§#sumToN.bir xI

o system SumTol (

Bllc» alx s

[~ ®Foundations ‘-‘U;-‘EE liﬁlmﬂ t
Bl .project 3 E

& sumToN bir int wrap (0,255) x:
i sumToN.birbogor-t int wrap (0,255) tl;
int wrap (0,255) t2:

main thread ThreadO() {
loc locD: liwve (1}

&2 outline = Source |Symbol Table | Output | Counter-Example
= SumTolN
~ PARAM ﬁ =
N=1 System Transitions |Statas Matched Errors
x ¢ int wrap (0, 255) SumToN 2 3 V] 1
t1 :int wrap (0, 255
t2 tint wrap (0, 255
~ Threado() |
Tasks iBngnr Status : Bogor Counter Examples
CISC422/853, Winter 2000 Model Checking, Part 1 33

Bogor Counterexample Display

Resource - SumiloN.bir.bogor-trails - Eclipse Platform

Eile Edit MNavigate Search Project Run Window Help

[>-BRa (& 2| we=

5. Navigator « x || SumToN bir [@SumToN‘blr.bogor—tral\s X
@ 5 @] " &£ main thread ThreadO() {

loe loeO: live {}
~ & Foundations do {

) &

3 N x i= (int wrap (0,255)) 1;
-projec start Threadl():
G sumToN.bir start Threads2():

} goto locl;
G sumToN.bir.bogor-t
loc leocl: live {}
do { assert ((int) x !'= 1); }
return;
}

o= ;
&= Outline * SourceJSymbo\ Table|0utput ‘Counter—Example

Jefhomejrobby/Document : II—E 113 Em [0+

Threado.loco

~ Globals £

X

Hea—— W

Tasks |Bogor Status [Bogor Counter Examples

o

CISC422/853, Winter 2009 Model Checking, Part 1 34

DFS Basic Data Structures

State vector
 contains values of all variables and program counters for each
process
Depth-first stack
e contains states (or transitions) encountered down a certain path in
computation tree
Seen state set
 contains state vectors for all states that have been checked already
(seen) during depth-first search
Note
 values of these data structures shown in abstract manner only

 actual implementation of most model-checkers uses multiple clever
representations to obtain a highly optimized search algorithm

CISC422/853, Winter 2009 Model Checking, Part 1 35

SumToN State Vector Example

The state vector is the data structure corresponding to
the state (as previously discussed). It holds the value of
all variables as well as program counters for each
process, and represents a particular position in the
computation tree

09 ) 2:0)
] 1:0) o
o 29 e "z oo a9 ez
® ° ° oW ) ® (]
1a] 20] uof 211 20f (o9 \_DIJ_]_}_JJ_J_TJ_J_!
12 L1
ooooecooooo.oco e o o
example state with
details on the next slide
CISC422/853, Winter 2009 Model Checking, Part 1




SumToN State Vector Example

SumToN Assertion Violation

; active thread Threadk() { i i
{N=1} i O o loc loco: Violating schedule for N = 2
: : ’ _ e : when x !'= (byte)0 do {
typealias byte int wrap (0,25 ...program ;V:t?)nl())(c!l—' (byte)Odo {t1 :=x; } tl :=x; } goto locl;
2 initial
byte x := 1; counters for . (initia _ _ _
byte t1; each threa loc loc1: AT values) [0,0,0,x=1,t1=0,12=0]
byte t2; . s e, do{t2:=x; o o %% . _ _ _
vt B gotg loc2: x: ¥ goto loc2; ~1:0—[0,1,0,x=1,t1=1,t2 =0]
[ Tos ooz | loc loc2: ~2:0—[0,1,1,x=1,1t1=1,t2=0]
When X 1= (by =X; } TWIX =TT ki2 do{x:=tl+t2}
goto loci; goto loco; 3 goto loco; —~2:1—[0,1,2,x=1,t1=1,t12=1]
1}
: 3 2:2 0,1,0,x=2,t1=1,t12=1
I%:olzct:l.z. =x:} f active thread ThreadO() { . [~ [ ]
goto loc2; 0:0 I%COI(ECO: ~00—[,10,x=2,t1=1,12=1]
loc loc2: return; assert (x!= . F e w
do{x:=tl+1t2;} T ret(l?t}’nt_e)PARAMN)l 3
y 9o toce: b 3 ' ...recall state vectors leading
3 to violation of assertion
Example State Vector: [0,0,2,1,1,1]
CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 37 CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 38
Bogor Output Depth-First Stack
Resource - SumToN.bir - Eclipse Platform Depth-first Stack I
Eile Edit Navigate Search Project Run Window Help [E—
_Ej_-.a_: ‘E*kv_}i«?_éé“kzz drw JR— m.ﬂl 53] . =
ﬁﬁ‘ 25, Navigator ~ x| §#sumTon.bir x | }ﬂl"““ﬂ &) X 9 L5 ) =1
ET T System SumTol { . & . ¢ aa ‘e . > -
[~ @Foundations wﬁ'ﬁ: T‘f‘lmn f T E L T TV | o E]_L__I'H Ly E‘J!‘.‘.‘lgﬂ ) Nz
B .project } E ¢ # 2 e 8 8 e e e 8RS S Ee ¢
il SUMTON.bir SER 1 0% ! L] W OI oF M LA g ] 1 JLL!

int wrap (0,255) x;
§i SumToN.bir bogor-t int wrap (0,255) tl:
int wrap (0,255) t2;

main thread Threadd() {
a1 loc locO: live (}
| I
o= :
&= Outline Source | Symbol Table  Output | Counter-Example
= SumTolN
S
< pana |
N=1 System Transitions :]Statas —=Matchad !Errurs
w

X ¢ int wrap (0, 255)
t1 :int wrap (0, 255
t2 :int wrap (0, 2585
~ Threado()

7 p— Tasks 3Bogcr Status Bogor Counter *** number Of states explored
up to when error is found

CISC422/853, WINMer Zuuy—___ MIOdel CNECKMg, Part L

SumToMN 2 =3 u0 E
Fasmsmaman
.
.

.,
..

= The depth-first stack serves two purposes:

« When search comes to end of a path (or a state that has been
seen before) and backtrack, the top of stack tells us where to
backtrack to

« If an error is encountered, the current contents of stack gives
the computation path that leads to the error (counter example)

CISC422/853, Winter 2009 Model Checking, Part 1 40




Depth-First Stack (Cont’'d)

Violating schedule

forN=2 1. Stack of State Vectors |
o @ 20
@ i10) [0,0,0,1,0,0]
L 20) o) 1_1].3'—"’ {[0,1,0,1,1,0]
> 1 ~ *— @ ‘l0,1,1,1,1,0]
Ly 200 wof 21 20) e 20 00) ey} e
2:2} 2iyy [0,1,2,1,1,1]
® o 6 & ¢ © 6 0 o 00 Qo
[0,1,0,2,1,1]

[-.1,0,2,1,1]

The depth-first stack can be implemented to hold
= state vectors (straight-forward implementation)

CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU

a1

Depth-First Stack (Cont’'d)

Stack of Transitions

o 110 [1:0] ]
L9 20) 00) _1,.""2’ [2:0]
° * [ * ‘ I

w20 Lo a0 28 oo a9 o) s_; [2:1]
oooooooooo- [2:2]

[0:0]

The depth-first stack can be implemented to hold

= transitions (requires less space, but harder to
implement)
CISC422/853, Winter 2009

Model Checking, Part 1 Source: 842@KSU 42

Depth-first Stack of Transitions

= Generating a new state s, requires analyzer to
execute a transition t on current state s:
Shew = EXecute(t, S)
= Since analyzer is not holding states in the stack,

« if it needs to back-track and return to a previously
encountered state s it needs to be able to “undo” a
transition t

prev?
Sprey = UNdo(t, s)

* when providing variable values as diagnostic information for
an error path, the analyzer needs a “simulation mode” where
choice points are decided by the stacked transitions

CISC422/853, Winter 2009 Model Checking, Part 1

Depth-first Stack of Transitions
(Cont'd)
= Since analyzer is not holding states in the stack,

« if it needs to back-track and return to a previously encountered
state s it needs to be able “undo” a transition t

S,y = UNdO(t, S)

prev?

prev

Stack of transitions |

[1:0] | pop, Sy = undo(1:0,s;)
[2:0] § pop, s; = undo(2:0,s,)
[2:1] || pop, S, = undo(2:1,s;)

e
.
[
Rl

current state s; || “

CISC422/853, Winter 2009 Model Checking, Part 1




Depth-first Stack of Transitions
(Cont'd)
= Since analyzer is not holding states in the stack,

e when providing variable values as diagnostic information for an
error path, analyzer needs a simulation mode where choice points
are decided by the stacked transitions

Stack of transitions
leading to error state

[1:0] || s, = execute(1:0,s)

[2:0] | s, = execute(2:0,s,)

® n@ 20 [2:1]1 | s, = execute(2:1,s,)
1.

g o t1d ] [2:2] _ )
0 I Q‘.}:& s, = execute(2:2,s3)

.
-
-
.

® P s I . ) @ ® Y —

-ooo.SZ e & 8 8..0 6 20 & 5 0 & o
S3 l """ -,_B
CISC422/853, Winter 2009 odel Checking, Part 1 Source: 842@KSU 45

Depth-First Stack of Transitions
(Cont'd)
= Many model-checkers (including SPIN and Bogor)
implement a depth-first stack of transitions

= This reduces amount of required memory and meshes
well with its other space optimizations (e.g., bit-state
hashing — discussed in Topic 8)

CISC422/853, Winter 2009 Model Checking, Part 1 46

Seen State Set

= There may be more than one path to a given state

= |f a state is reached for a second time, there is no
need to check s again (or any of the children of s in
the computation tree)

= Seen State Set:

« used to avoid exploring/checking a part of the computation
tree that is identical to a part that has already been explored
before

* in Bogor: implemented as hash table

CISC422/853, Winter 2009 Model Checking, Part 1 47

Revisiting Via A Different Path

active thread Threadk() { o
loc loco: State Vectors in Fragment
k:0  when x != (byte)0 do { :
S A of Computation Tree
loc locl:
kil do{t2:=x;}
goto loc2; [0,0,0,1,0,0]
loc loc2:
k:i2 do{x:=tl+t2;} 1:0 2:0
goto locO;
3
active thread Threado() { [0.1,0.1.10] [0.0,1,1,1.0]
0:0 loc locO:
: do {
assert (x I= 2:0 1:0
(byte)PARAM.N); }
return;
3 [0,1,11,10 = 1[0,1,1,1,1,0]
} !
No need to explore subtree rooted at this state,
CISC422/853, Winter 2009 Model Check because it is identical to one previously explored




Computation Tree as Graph

active thread Threadk() {
loc locO:
k:0  when x != (byte)0 do {
tl := x; } goto loc1;

loc locl:
kil do{t2:=x;}
goto loc2;

loc loc2:
k:2 do{x:=tl+1t2;}
goto locO;
3

active thread ThreadO() {
loc locO:
0:0 do{
assert (x !=
(byte)PARAM.N); }
return;
3
3

CISC422/853, Winter 2009 Model Checking, Part 1

Sometimes we view the
computation tree as a graph

[0,0,0,1,0,0]

1:0 2:0

[0,1,0,1,1,0] [0,0,1,1,1,0]

2:0 1:0
[0,1,1,1,1,0] @ rrrnrnnanas, E

(re)visiting a node that has been

...sharing a node corresponds to | ''''' 3
seen before. 49

Seen State Set

active thread Threadk() { .
loc loco: Computation Tree |  Seen Set
k:0  when x != (byte)0 do {
tl := x; } goto loc1; [0'0'0’1’0,0] t6,0,0,1,0,0]
loc loc1: [0,1,0,1,1,0]
kil do{t2:=x;} [0,1,1,1,1,0]
goto loc2; ..,
_ 1:0 2:0 R
loc loc2: %
k:2 do{x:=tl+1t2;} "
e [0,1,0110]  [0,0,1,1,1,0] :
active thread ThreadO() { . i :
loc locO: 2:0 1:0 .
0:0 do{ H
assert (x I= N
(byte)PARAM.N); } [0,1,1,1,1,0] [0,1,1,1,1,0]
return; A o
} ‘.‘. .-"“‘

CISC422/853, Winter 2009

When Bogor gets to this state, it checks
the Seen Set and finds it already has been checked, so it

Model Chec backtracks from this point

Non-Terminating Systems

= Let S be a finite state machine
¢ Due to the use of the Seen Set, checking S will always

eventually terminate

¢ Even if S has non-terminating executions (Why?)

= Example: Consider the
system on the right...

1. Does execution of the
system terminate?

2. How many states does it
have?

3. Does an exhaustive
analysis of the state-space
of the system terminate?

CISC422/853, Winter 2009 Model Checking, Part 1

system Loops
boolean x;

active thread Threadl() {
loc locO: do { x :=Ix; }
goto locO;

}

active thread Thread2() {
loc locO: do { x :=Ix; }
goto locO;
}
}

Finite is not Enough

= So, the analysis of every BIR or PROMELA program
will always terminate...

= ... but it may take a really long time to do so

= So, state spaces should not only be finite, but also
“small enough” for the exploration to be feasible

= State Explosion Problem: Size of state space grows
exponentially with the number of parallel processes

= Beware of systems with

CISC422/853, Winter 2009

large numbers of parallel processes
variables ranging over large domains
(e.g., int, long)

variables ranging over large, complex data

large numbers of variables
Model Checking, Part 1

too many states;
analysis takes too
much time

states too large;
analysis requires too
much spacesy




Bogor Output Bogor Output (Cont’d)
' Resource - SumToN bir - Eclipse Platform Running a model-check of SumToN with N = 5:
Elle Edit WNavigate Search Project RBun Window Help
[-HE S & |7||% e Depth in computation tree (i.e., transition stack) where assertion violation was
H ez Navigater  »  x || B sumTonbir x| found (i.e., number of steps in error trace)
@ = system SumToM { .
'~ G# Foundations const PARAM { : : :
gé .p,:;t "4 size of Seen Set I [Time: 4817 ms, Depth: 395] Error found: Assertion failed
@S“mTDN'b" int wrap (0,255) x: H
@ sumToNbibogord | int vzap Egiiiii S # generated states that Transitions: 38174, States: 15276, Matched States: 22899,
s neead Taresio (G were found to be already Max Depth: 1921, Errors found: 19
- — loc locd: live (1§ in the Seen Set Total memory before search: 329,240 bytes (0.31 Mb)
B2 outlin T Ca.unter—Exam - . | Total memory after search: 4,327,968 bytes (4.13 Mb)
= SumToN — : : : = Total search time: 4897 ms (0:0:4)
= PARAM i : & = States count: 15276
Nt: 1 - zystimN Tzransititms :tatas I:atchad Elrrurs Matched states count: 22899
X Nt wrap " umTol .
t1 :int wrap (0, 255 Max de.pth 1921
t2 :int wrap (0, 2585 o
< Theado) [l A ] Deepest stack depth :
7 — Tasks Bogor Status Bogor Counter Examples reached during Search
CISC422/853, WInter Zuuy VIOTET CTTECKING, Part L 53 CISC422/853, Winter 2009 Model Checking, Part 1 54
Checking for Assertion
checkAssertions(Ag) { Violations Error Trace Length
forallsee So L | set of states already explored || .
SEEN 1= {J eeseemersensprresinY - MOde|-CheCk SumToN Wlth N=5
S SN PPPPT EUTTEELLLEELLLLL LR states on current path ’ .
stack := [s,] ] = From Bogor’s output, can see that execution trace that
DFS(s,) . . .
) S ————— violates assertion was found and that trace is 395
.................... (possibly “on-the-fly™) Steps Iong
DFS(S) { e . . .
wis')—{enable B pick one of the transitions to explore || « Having to reason about how assertion can be violated along a
T et trace of 395 steps is quite painful!
forallainws {* ounes Check for assertion violation, if necessary || . . . .
if a=assert(p) && leval(p,s) then "] . Yqu have prevpusly (_ilscovered a much shorter violating trace
print(“violation”, s+stack) | ...eceeeseeetttt calculate the successor state || using Bogor’s simulation mode.
s := exeaute(a, 5) -+ S ————— « Does this mean that the Bogor analyzer is not very useful?
if s’ not in seen { ................ ° Not at a"”
See::(:z s:enk)-!- 1 explore successor state || = We will see now how to tell Bogor to search for shorter
push(s’, stack) ~  L...eesesen _ _ e _ _
DFS(s)) - How does the algorithm have to be violating traces (as well as minimal length violating
pop(stack) modified to check for deadlock? traces)
1} Source: 842@KSU 55 CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 56




Error Trace Length Setting Bogor’s Depth Bound

= In general, a system may have many different traces = Users can set a bound on the depth of Bogor’s search
that lead to the same property violation (i.e., number of entries in Bogor’s depth-first stack)
GREEN shows portion of
statespace covered by Bogor —~py———
! . . £~ Bogor Configuration
before first violation found
first property ________________ . Ke : : - I Value : : : I
. . ‘. """ L 2 edu. ksu,cis. projects, bogor . module. Taction Taker edu.ksu.cis. projects, bogor, module, Def aultAction T aker
violation found | .- . edu.ksu.cis, projects,bogor . module. IBackkrackingInfoFactory  edu.ksu,cis, projects bogor . module, backtrack, Def aultBacktrac. ..
by Bogor Lot edu,ksu,cis. projects, bogor, module, IExpEvaluator edu.ksu.cis. projects, bogor module, Def aultExpEvaluator
S B P - x - e e Y edu. ksu,cis, projects, bogor . module. ISchedulingStrategist edu.ksu,cis, projects, bogor . madule, Def aultSchedulingStrategist
. 71 "~.,. w n = ol ki3 Dt Bjects ogom Module ASearshor ssssessenaanan edurka cisvprojedhs, bogor mmeduleBefalisearchors sessenannay, .
%, :' H ‘. E edu.ksu,cis, projects,bogor . module. ISearcher . maxDepth 2000 H
“ 1 fea, ve s o { e o projer ks, bogor medetes e archer smaxErrorse = = = - P AR EsEssEsEEEEsEEsEsEEsEsEEsEAREsEEsEsEEEEEEEREAREEEE
_‘_\‘Q * = e & @ o * s a9 ""’., - K,. s e x‘ . edu.ksu,cis,projects, bogor module, IStakeFactary edu. ksu,cis, projects,bogor . module., state, Def aulkStateFactory
_' 3 ’_3;_ "~.., 'o.' ,o" edu.ksu.cis. projects, bogor . module, IStateManager edu.ksu.cis. projects, bogor . module. Def aultStateManager
F Y :'x "t ‘e, ‘.‘° edu. ksu,cis, projects,bogor . module. ITransformer edu.ksu.cis. projects, bogor . module, Def ault Transformer
propert adu.ksu.cis.projects.bogor . module. IvalueFactary adu.ksu.cis.projects. bogar . madule. value. Def aultvalueF actary
violations I
= Because Bogor does a depth-first search (instead of a bread-first Choose the “Configure Bogor” option, then Add/Edit to set the value for
search), first violating trace found is usually not of minimal length the ISearcher.maxDepth attribute.
CISC422/853, Winter 2009 Model Checking, Part 1 Source: 842@KSU 57 CISC422/853, Winter 2009 Model Checking, Part 1 58

Setting Bogor’s Depth Bound Setting Bogor’s Depth Bound (Cont’'d)

= This is often useful... = Be careful!
- ...after a counterexample has been found and you . \;v;:cnesearch is bounded, Bogor will not explore parts of state

want to see if a shorter one exists

° look at Bogor’s output to see the size, then rerun Bogor
with an appropriate depth bound (i.e., one smaller than the
size of the counter-example).

¢ unexplored part may contain property violations

« If a bounded search does not find any violations, then
° no violations in parts that got searched

° but may have violations in unsearched parts
* ...before a counterexample has been found and

. . . . = A depth-bounded search may be incomplete!
Bogor is taking too long or is running out of memory

= Bogor displays “Max depth reached!!"” whenever
depth bound is reached and analysis may be
incomplete

CISC422/853, Winter 2009 Model Checking, Part 1 59 CISC422/853, Winter 2009 Model Checking, Part 1 60




For Example

Checking SumToN with N =5

— Bogor Status v x
System Transitions States Matched Max. Depth Errors Time Status | A
SumToN 38174 15276 22899 1921 19 0:0:4 Done
SumTolN 25 2% a 25 1 0:0:0 Done
SumToN 25 26 a 25 1 0:0:0 Done
SumToN 123 63 (38 [ 0 0:0:0 Done
SumToM 123 83 61 [ 0 0:0:0 Done
SumToN 39 23 17 3 0 0:0:0 Done
SumTolN 39 23 17 3 0 0:0:0 Done
SumToN 463 225 239 12 1 0:0:0 Done
T Ogeessssssnnns Bgrsssnnnnnn 1gpensssannnns qpemsssssannns FECEETTLLD ppgEassnnnnnn -
SumTol 2% 135 142 0 1 0:0:0 Done 3|
SumToN 275 134 142 9 0 0:0:0 Done (!
-------------------------------------------------------------------------------------------------------------
Tasks | Problems | Bogor Status

CISC422/853, Winter 2009 Model Checking, Part 1 61

Bounded Depth-first Search

When analyzing a system and given a depth bound as a command-
line argument, Bogor will backtrack when that depth is reached

GREEN shows

Depth- portion of
bound of 4 statespace covered
H by Bogor before

first violation found

--------- ®
......
...... ! .
P 2
» o
K ]
pes o PEE S
Pe & “l‘ P
[ 2 s o X. e e ° .
X
.
: .
& A K at e,
s o . Fr N
£ oA il s R .
s % & & % .
& s 4 Yo,
.
@ 00 OO O ¢ & o0 .9 e)Ke e e Ko
; ' ! 1 .". "'. 834 L-.
seescesseenieiiocueenibeliodsec hobdeddeninelinide tamplode sl emvteltiionhioee
: .

X “property |
violations
., Errors at depth

*., greater than bound

ISearcher.maxDepth = 4
CISCA422/853, Winter 2009 are not detected.

oz

Bounded Depth-first Search (Cont’'d)

When analyzing a system and given a depth bound as a command-
line argument, Bogor will backtrack when that depth is reached

GREEN shows portion

Depth- In this case, Bogor
boEn dof2 I reports that no of statespace covered
violations were found. by Bogor before first

: violation found

.

;
e - S—
............
P S S L - T
: i
:

N
©0000600000000000000000000000000000000000000000000000000000000000000000

[ ) ) * ® o [} [ ]

.
)

.

.

.

L ]

L ]

@

()

L ]

‘e
=)

L ]

28

X

)

)

e
=
—==e

Errors at depth greater than I

ISearcher.maxDepth = 2
cisca22/853, winter 20 ound are not detected. 63

05

Depth-Bounded DFS

= Advantages: ?
= Disadvantages: ?

CISC422/853, Winter 2009 Model Checking, Part 1 64




Finding the Shortest Counter Example Yes, Breadth First Search!

= Using Bounded DFS = How to make Bogor and Spin use BFS
e in Bogor: e in Bogor:
° start with high bound that finds error ° write routine and plug it in
° successively lower the bound until no error ° modular architecture of Bogor makes this easy
e in Spin: e in Spin:
° Run verifier with option —i or —I: ° compile verifier with -DBFS option:
pan.exe -i Or pan.exe -1 gcc -DBFS -o pan pan.c
= Using ? = Easy to implement

= What're the advantages of BFS over DFS?
= What're the disadvantages?

CISC422/853, Winter 2009 Model Checking, Part 1 65 CISC422/853, Winter 2009 Model Checking, Part 1




