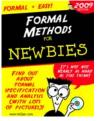
CISC422/853: Formal Methods in Software Engineering: Computer-Aided Verification



1

Topic 2: Modeling, or How to Describe Behaviour of Software Systems?

Juergen Dingel Jan, 2009

Spin Book:

- Appendix A (pages: 553 560)
- Chapter 6 (pages: 127 133)

CISC422/853, Winter 2009

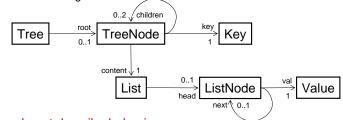
CISC853: Contents

- 1. A few words about concurrency
- Modeling: How to describe behaviour of a software system?
 finite automata
- 3. Intro to 2 software model checkers
 - Bogor (Santos group at Kansas State University)
 - ° Spin (G. Holzmann at JPL)
- 4. Model checking I
 - ° algorithms for basic exploration
- 5. Specifying: How to express properties of a software system?
 - ° assertions, invariants, safety and liveness properties
 - ° Linear temporal logic (LTL) and Buechi automata
- 6. Model checking II
 - ° algorithms for checking properties
- 7. Overview of Software Model Checking tools

CISC422/853, Winter 2009

Two Views On Software

- Static
 - Describe the structure of a single state (snap shot)
 - ° Which objects exist?
 - ° How are they related?
 - Example:
 - ° UML class diagrams

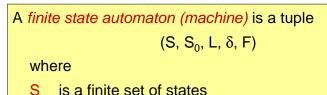


• They do not describe behaviour

Two Views On Software (Cont'd)

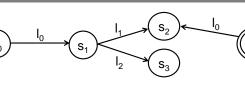
- Dynamic
 - Describe how the system evolves, that is, which executions it can exhibit
 - Could use
 - activity diagrams, sequence diagrams, collaboration diagrams, but they don't contain enough information for our purposes
 - ° Turing machines, but they contain too much information
 - Will use finite state automata

Finite State Automaton



- S_0 is a set of distinguished initial states with $S_0 \subseteq S$
- L is a finite set of labels
- δ is a set of transitions with δ⊆(S×L×S)
- **F** is a set of final states with $F \subseteq S$

CISC422/853, Winter 2009



Transitions

- System makes one step from one state to another
- Transitions can be enabled ...
 - transition (s_i, l, s_{i+1}) is enabled in state s_i,iff (s_i, l, s_{_{i+1}}) \in \delta
- ... or disabled
 - transition (s_i, I, s_{i+1}) is disabled in state s_i iff (s_i, I, s_{i+1}) \notin \delta
- Transition labels can contain information about, e.g.,
 - which process is carrying out the transition
 - how much time the transition is taking (Timed automata)
 - how likely it is that the transition is taken (probabilistic automata, Markov processes)
 - an instruction (e.g., guard, assignment, input, output)

CISC422/853, Winter 2009

Non-determinism

An FSA (S, S₀, L, δ , F) is *deterministic* iff $\forall s,s_1,s_2 \in S.$ $\forall I \in L.$

 $(s, l, s_1) \in \delta \land (s, l, s_2) \in \delta \Rightarrow s_1 = s_2$ An FSA is *non-deterministic* iff it's not deterministic.

- Non-determinism is useful to
 - model concurrent computations
 - $^{\circ}\;$ to abstract from particular scheduling policies
 - model incompletely specified inputs or environments
 - ° to abstract from particular inputs or environments

write test harnesses
 CISC422/853, Winter 2009

7

Runs and (Standard) Acceptance

A *run* (a.k.a., execution, trace) σ of an FSA (S, S₀, L, δ , F) is a possibly infinite sequence of transitions $(s_0, l_0, s_1)(s_1, l_1, s_2)(s_2, l_2, s_3)...$ such that $\forall 0 \le i < |\sigma|$. $(s_i, l_i, s_{i+1}) \in \delta$. An *\omega-run* is an infinite run.

A accepting run of an FSA (S, S₀, L, δ , F) is a finite run (s₀, l₀, s₁)(s₁, l₁, s₂)(s₂, l₂, s₃)...(s_{n-1}, l_{n-1},s_n) such that s₀∈S₀ and s_n∈F.

"An accepting run is a run that ends in a final state"

At this point, accepting runs are always finite!

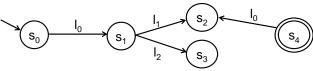
Reachable States

The *reachable states* (a.k.a., state space) of an FSA A is the set of all states along every run of A from an initial state.

"All states s to which there is a path from $s_0 \in S_0$ to s"

Example:

The FSA



9

stronger acceptance

condition

has reachable states $\{s_0, s_1, s_2, s_3\}$

CISC422/853, Winter 2009

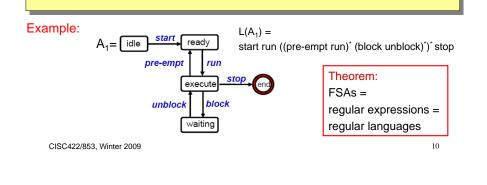
Asynchronous Composition

The asynchronous composition of 2 FSAs A and B is an FSA A||B such that A||B = (S, S₀, L, δ , F) where S is the Cartesian product $A.S \times B.S$ S_0 is { $(a_0, b_0) \in S \mid a_0 \in A.S_0 \land b_0 \in B.S_0$ } L is the union $A \perp \cup B \perp$ δ is {((a_1 , b), I, (a_2 , b)) $\in S \times L \times S \mid (a_1$, I, a_2) $\in A$. δ } \cup {((a, b₁), I, (a, b₂)) \in S×L×S | (b₁, I, b₂) \in B. δ } F is $\{(s_1, s_2) \in S \mid s_1 \in A.F \lor s_2 \in B.F\}$ where A.S denotes the set of states of FSA A etc. ∧ would result In a

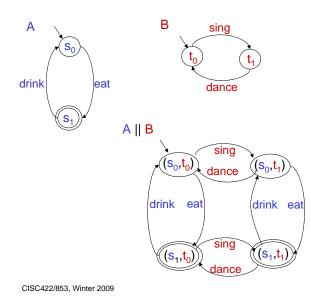
Words and Languages

A *word* w of an FSA A is the sequence of labels $I_0I_1I_2 \dots I_n$ of an accepting run $(s_0, I_0, s_1)(s_1, I_1, s_2)(s_2, I_2, s_3)\dots(s_{n-1}, I_{n-1}, s_n)$ of A.

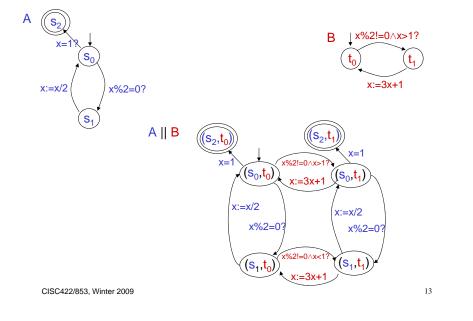
The *language* L(A) of an FSA A is the set of words of A: $L(A) = \{ w \mid w \text{ is word of } A \}$



Example: Asynchronous Composition (1)



Example: Asynchronous Composition (2)



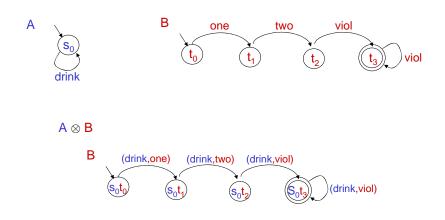
Asynchronous Composition (Cont'd)

- Form of parallel composition that allows each process to move completely independently of other processes
- Models our intuition about parallel or distributed processes executing at different speeds
- Introduces possibility of unfair executions, that is, executions in which, after some finite amount time, a process not executed anymore (e.g., P₁ P₂ P₁ P₂ P₁ P₁ P₁ P₁...)
 - Only infinite executions can be unfair (more on fairness later)
- Related concepts:
 - asynchronous communication:
 - $^\circ\,$ process can send w/o having to block until a matching receive is executed
 - E.g., communication channel is implemented as a buffer
 - ° Examples: Unix sockets, email
 - asynchronous circuits CISC422/853, Winter 2009

Synchronous Composition

 $\begin{array}{ll} \mbox{The synchronous composition} \mbox{ of } 2 \ \mbox{FSAs A and B is an FSA} \\ A \otimes B \ \mbox{such that } A \otimes B = (S, \ S_0, \ L, \ \delta, \ F) \\ \mbox{where} \\ \mbox{S} & \mbox{is } A.S \times B.S \\ \mbox{S}_0 & \mbox{is } \{ (a_0, \ b_0) \in S \mid a_0 \in A.S_0 \land b_0 \in B.S_0 \} \\ \mbox{L} & \mbox{is } A.L \times B.L \\ \mbox{\delta} & \mbox{is } \{ ((s,t), \ (l_1, l_2), \ (s', t')) \in S \times L \times S \mid \\ & \ (s, \ l_1, \ s') \in A.\delta \land (t, \ l_2, \ t') \in B.\delta \} \\ \mbox{F} & \mbox{is } \{ (s_1, \ s_2) \in S \mid s_1 \in A.F \lor \ s_2 \in B.F \} \\ \end{array}$

Example: Synchronous Composition



Synchronous Composition (Cont'd)

- Form of parallel composition in which all processes have to move in lockstep
- Models our intuition about the execution of processes being controlled by a global clock
- Related concepts:
 - synchronous communication:
 - process executing a send blocks until receiving process executes a matching receive
 - E.g., communication buffer is filled to capacity
 - ° Examples: telephone, rendezvous
 - synchronous circuits

Synchronous Composition (Cont'o	
---------------------------------	--

- Useful for "monitoring", that is, the continuous observation (and checking) of one process by another
- Later, we will see how a property φ can be expressed with an automaton A_φ
- Then, A_ω is the monitor process
- For example, B (from before) is monitor process for "# of 'drinks > 2"

Observation:

For any process P, P \otimes A ϕ has an accepting run iff P can satisfy ϕ iff P can violate $\neg \phi$

CISC422/853, Winter 2009

18

Interpreted FSAs (iFSAs)

Previously,

CISC422/853. Winter 2009

- · states and labels could be anything
- Now,
 - states: uniquely describes particular "snapshot" during execution
 - ° values of all global variables in S, and
 - ° for all threads t,
 - value of program counter of t, and
- State may have to contain more info, but for us, this suffices
- · labels: may describe how to get from one state to the next
 - ° statements (e.g., "y:=0;x:=x+y"), or

values of local variables of t

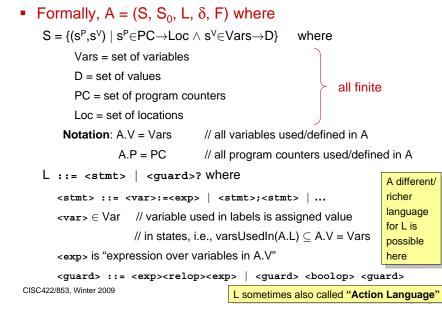
- $^{\circ}~$ guards (e.g., "x \geq 4", "x even")
- rest (i.e., initial and final states and transition relation): as before

CISC422/853, Winter 2009

19

17

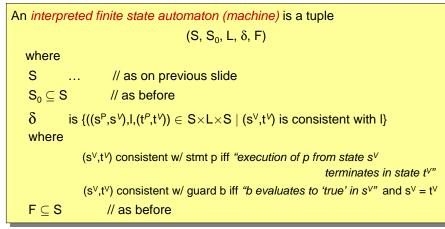
Interpreted FSAs (iFSAs) (Cont'd)



Interpreted FSAs (iFSAs) (Cont'd)

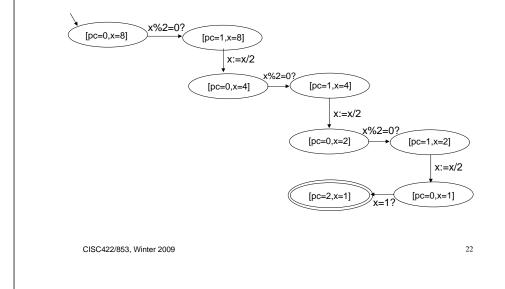
- But, now need to make sure that
 - 1. Labels are consistent with states:

Definition of $(s,l,t) \in \delta$ can't ignore label I anymore



Interpreted FSAs (iFSAs) (Cont'd)

• Example: iFSA for 3n+1 problem with x=8 initially



Translating FSAs into iFSAs

- Let
 - FSA A = (S, S₀, L, δ , F)
- // L is some standard action language

- Vars = varsIn(A.L)
- D some finite domain ٠
- // variables used in labels in A // e.g., D = { $i \in \mathbb{N}$ | $i \le 100$ }
- We can compute the corresponding iFSA

$$\begin{array}{l} \mbox{int}_{Vars,D}(A) = (S', S'_0, L, \delta', F') \mbox{ where } \\ S' = \mbox{int}_{Vars,D}(S) \\ S'_0 = \mbox{int}_{Vars,D}(S_0) \\ \delta' = \{((\mbox{pc}_A = \mbox{s}, \mbox{s}^{\vee}), \mbox{I}, \mbox{(pc}_A = \mbox{t}, \mbox{t}^{\vee})) \ | \ (s, \mbox{I}, \mbox{t}) \in \delta \\ s^{\vee} \in Vars \rightarrow \\ t^{\vee} \in Vars \rightarrow \end{array}$$

Λ D ∧ DΛ

(s^V, t^V) consistent with I}

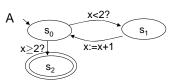
$F' = int_{Vars,D}(F)$

where

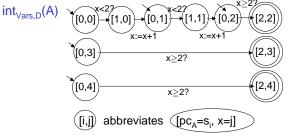
 $int_{Vars,D}(S) = \{(pc_A = s, s^{V}) \mid s \in S \land s^{V} \in Vars \rightarrow D\}$ CISC422/853, Winter 2009

Translating FSAs into iFSAs (Cont'd)

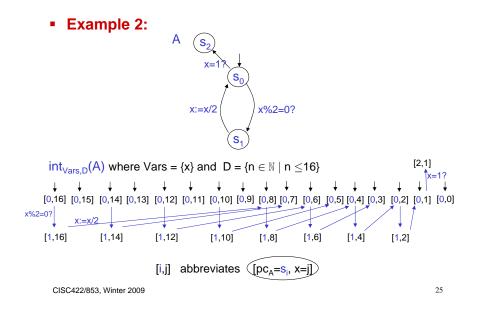
Example 1:



Let $D = \{0, 1, 2, 3, 4\}$ and $Vars = \{x\}$



Translating FSAs into iFSAs (Cont'd)



Interpreted FSAs (iFSAs) (Cont'd)

Need to make sure that

2) Composition operations result in consistent states:

"In state (s,t), variable assignment of s must not conflict with that of t"

The asynchronous composition of 2 FSAs A and B is an FSA A B such that A B = (S, s ₀ , L, δ , F)			
where			
S is {(($(s^{P}, s^{V}), (t^{P}, t^{V})$) $\in A.S \times B.S \mid s^{V}, t^{V}$ don't conflict}			
// unchanged			
<u> </u>			
where s^{V} , t^{V} don't conflict iff			
	// A and B agree on shared vars		
where s^{v} , t^{v} don't conflict iff	// A and B agree on shared vars // A and B use different program		
where s^{V} , t^{V} don't conflict iff • $\forall x \in (A.V \cap B.V)$. $s^{V}(x) = t^{V}(x)$ and	0		

Interpreted FSAs (iFSAs) (Cont'd)

Need to make sure that

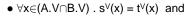
2) Composition operations result in consistent states:

"In state (s,t), variable assignment of s must not conflict with that of t"

The synchronous composition of 2 FSAs A and B is an FSA A \otimes B such that A \otimes B = (S, s_0, L, $\delta,$ F) where

- S is {((s^{P}, s^{V}), (t^{P}, t^{V})) $\in A.S \times B.S \mid s^{V}, t^{V}$ don't conflict}
- ... // unchanged

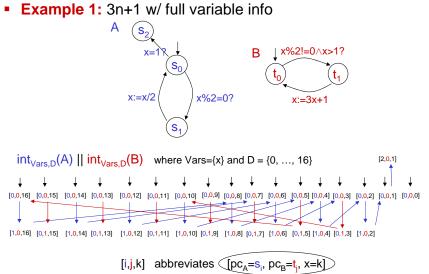
where $s^{\vee}\!\!,\,t^{\vee}$ don't conflict iff

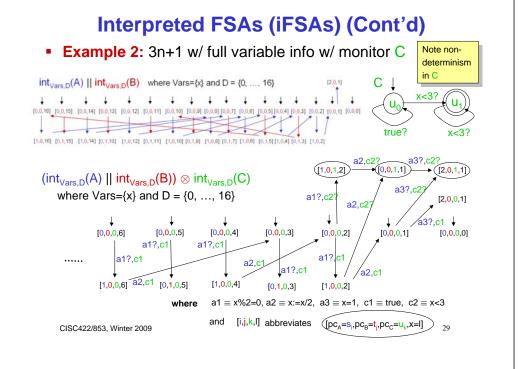


 $\bullet \ \mathsf{A}.\mathsf{P} {\cap} \mathsf{B}.\mathsf{P} = \emptyset$

27

Interpreted FSAs (iFSAs) (Cont'd)





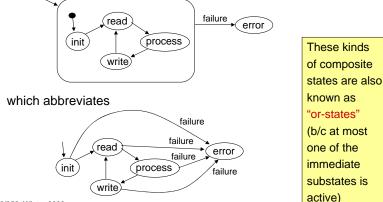
FSAs and iFSAs: Notes

- Note
 - Typically, FSA used for representation, but
 - analysis always done on iFSA
- Given FSA A, corresponding iFSA int(A) computed either
 - · before analysis
 - during analysis (on the fly)
 - This is what the "Semantics Engine" in the Spin Textbook does [Hol04, Chapter 7]

CISC422/853, Winter 2009

FSAs: Extensions

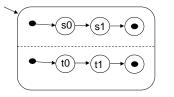
- Another notational abbreviation: Composite (hierarchical) states
 - With sequential substates: E.g.,



CISC422/853, Winter 2009

FSAs: Extensions (Cont'd)

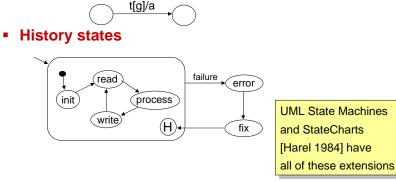
- Another notational abbreviation: Composite (hierarchical) states
 - · With sequential substates
 - With concurrent substates (orthogonal regions)



These kinds of composite states are also known as "and-states" (b/c, all immediate Substates are active)

FSAs: Extensions (Cont'd)

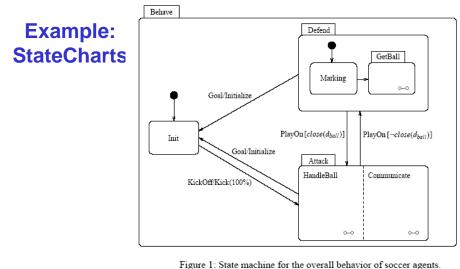
- Another notational abbreviation: Composite (hierarchical) states w/ sequential & concurrent substates
- Transition labeled with trigger t, guard g and action a



CISC422/853. Winter 2009

Alternatives to FSAs

- Process algebras:
 - Calculus of Communicating Systems (CCS) [Milner, 1980]
 - Communicating Sequential Processes (CSP) [Hoare, 1985]
 - Lotos (Language of Temporal Ordering Specifications) [1989]
 - Estelle [1986]
- Petri nets [Petri, 1960]



// coffee machine

// professor

F. Stolzenburg. From the Specification of Multiagent Systems by Statecharts to their Formal Analysis by Model Checking. Fachberichte INFORMATIK. Universitaet Koblenz, Germany. June 2001.

CISC422/853, Winter 2009

Let

34

$P \equiv \overline{coin.coffee.publish.P}$

• The (synchronous) parallel composition of C and P is

 $P \mid C \equiv \overline{coin.coffee.publish.P} \mid coin.\overline{coffee.C}$

 Using the equational laws of CCS we can deduce that P | C is an infinite publishing machine:

Example: CCS

 $P \mid C = \tau.\tau.publish.(P \mid C) = publish.(P \mid C)$

- CCS neatly captures basic notions of concurrency, e.g.,
 - · communication, synchronization, input, output, observability

and the rules that govern it, e.g.,

 $C \equiv coin.coffee.C$

• P|Q = Q|P

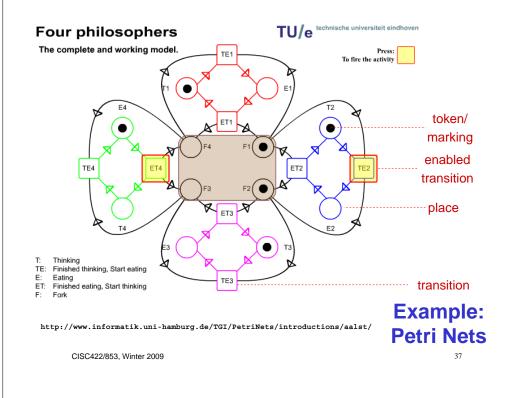
•
$$a.P \mid \overline{a.Q} = \tau.(P \mid Q) = P \mid Q$$

•
$$a.P | b.Q = a.(P | b.Q) + b.(a.P | Q)$$

CISC422/853, Winter 2009

33

CISC422/853, Winter 2009



Simple Petri Nets

A Simple Petri Net is a tuple				
$N = (P, M_0, T, pre, post, M_F)$				
where				
Р	is a finite set of places			
$M_0\subseteqP$	is the initial marking			
Т	is a finite set of transitions	;		
pre: $T \rightarrow 2^{P}$	defines the pre-set of eac	h transition		
post: $T \rightarrow 2^{P}$	defines the post-set of eac	ch transition		
$M_F\subseteqP$	is the final marking	/ a bit non-standard		

CISC422/853, Winter 2009

38

Simple Petri Nets (Cont'd)

Let N = (P, M₀, T, pre, post, M_F) and t be a transition in N (i.e., $t \in T$) and M be a marking in N (i.e., M \subseteq P)

• We say t is enabled in M iff

 $pre(t) \subseteq M$

- If t enabled in M, then firing t in M creates new marking M' = (M\pre(t)) ∪ post(t)
- Execution of N consists of repeated firings of enabled transitions from initial marking until final marking is reached

So, simple Petri nets seem similar to FSAs...

Simple Petri Nets as FSAs

 \Rightarrow One-to-one correspondence between accepting runs in FSA_N

and executions in simple Petri net N

Caveat: There is a whole lot more to Petri nets than what we've

Modeling Behaviour of Systems

- Where are we?
 - We've decided to use FSAs to model the behaviour of software systems
 - Have seen:
 - ° Two types of parallel composition
 - ° Uninterpreted vs interpreted
 - ° Extensions
 - $^\circ~$ Some of the alternatives (e.g., Process algebra, Petri nets)
- What's next?
 - But, to be able to feed FSAs into a model checker, we need to be able to express FSAs textually in some language
 - Also, it would be nice if that language was as high-level (userfriendly) as possible.
 - 2 examples for modeling languages based on FSAs:
 - ° BIR (used by Bogor model checker)

° Promela (used by Spin model checker) CISC422/853, Winter 2009