
Topic 9: Optimization

Juergen Dingel
March, 2009

Readings:
• Spin book, Chapter 9
• Handouts on control flow analysis and slicing posted on

course web page

CISC422/853: Formal Methods
in Software Engineering:

Computer-Aided Verification

CISC422/853, Winter 2009 Optimization 2

Where Do We Want to Be?

Software model checking: The Dream

Program
code

Formal
specification

Checker

“Yes”

“No” +
counter example

CISC422/853, Winter 2009 Optimization 3

How Could We Get There?
One class of approaches:

Automatic model extraction
• Bandera/Bogor (KSU)

• ModEx/Spin (JPL)

• Zing (MSR)

• Automatic abstraction refinement
° SLAM and SDV (MSR)

° Blast (Berkeley and EPFL)

° Magic (CMU)

To make this work, we need optimization!

Program
code

Formal
specific

ation

Checker

“Yes”

“No” +
counter
example

Model

CISC422/853, Winter 2009 Optimization 4

Complexity and Optimization
Size of AS⊗A¬P
• R = # of reachable states in AS⊗A¬P

• R = RS· R¬P where
° RS = # of reachable states in AS (typically: 109 … 1011)
° R¬P = # of reachable states in A¬P (typically: 1..4)

Size of AS
• RS = RT1 · … · RTn ~ RT

n

Size of T
• RT = (# loc’s in T) · |dtype1| · … · |dtypem| ~ (# loc’s in T) · |dtype|m

Thus,

• RS = ((# loc’s in T) · |dtype|m)n
RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

CISC422/853, Winter 2009 Optimization 5

Complexity and Optimization (Cont’d)
Size of AS⊗A¬P

• R = RS · R¬P = ((# loc’s in T) · |dtype|m)n · R¬P

Reduce R by

Reduce memory requirement by
• reducing size of state vector and/or seen set

reducing
• # of processes n (exponentially)
• # of variables m
• size of data type dtype
• size of process T
• size of specification P

reducing
• # of processes n (exponentially)
• # of variables m
• size of data type dtype
• size of process T
• size of specification P

using
• partial order reduction
• statement merging
• abstraction

using
• partial order reduction
• statement merging
• abstraction

user

checker/user

CISC422/853, Winter 2009 Optimization 6

Outline

Reduce number of reachable states
• slicing
• partial order reduction & statement merging

Reduce memory requirement
• Reduce size of representation of state

° slicing
° compression

• Reduce size of representation of Seen Set
° bitstate hashing

CISC422/853, Winter 2009 Optimization 7

Slicing: Motivating Example
Consider program P:

1: INPUT(n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6: sum := sum+i;
7: prod := prod*i;
8: i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

1: INPUT(n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6: sum := sum+i;
7: prod := prod*i;
8: i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

Suppose we
are interested
in proving φ:

G(pc=10 ⇒ sum=∑n
i=1i)

Then,
P satisfies φ

iff
P’ satisfies φ

1: INPUT (n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6: sum := sum+i;
7: prod := prod*i;
8: i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

1: INPUT (n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6: sum := sum+i;
7: prod := prod*i;
8: i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

Program P’:

Statements in lines 4, 7, and 11 are irrelevant to value of sum in line 10!
CISC422/853, Winter 2009 Optimization 8

Wouldn’t it be nice, if …

… given
• a program P and
• a line number n in P,

we could compute and remove all statements
in P that are irrelevant to the values of the
variables in line n?

This could substantially reduce
• the number of reachable states and
• the memory requirement (fewer variables)

That’s what slicing does! Sort of.

CISC422/853, Winter 2009 Optimization 9

Definitions
Let P be a program

Definition: Slice
A slice S of P is an executable program that is obtained
from P by deleting zero or more statements.

Definition: Slice
A slice S of P is an executable program that is obtained
from P by deleting zero or more statements.

Definition: Slicing criterion
A slicing criterion consists of a pair (n, V) where n is a node in the
control flow graph (CFG) of P and V is a subset of the variables in P

Definition: Slicing criterion
A slicing criterion consists of a pair (n, V) where n is a node in the
control flow graph (CFG) of P and V is a subset of the variables in P

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed
CISC422/853, Winter 2009 Optimization 10

Definitions (Cont’d)

Definition: Minimal slice
A slice is called minimal, if no other slice for the same criterion contains
fewer statements

Definition: Minimal slice
A slice is called minimal, if no other slice for the same criterion contains
fewer statements

Theorem: Minimal slices
1. Minimal slices are not necessarily unique
2. The problem of determining whether a given slice is minimal is

undecidable

Theorem: Minimal slices
1. Minimal slices are not necessarily unique
2. The problem of determining whether a given slice is minimal is

undecidable

Proof:
1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

is minimal slice of

iff C halts

CISC422/853, Winter 2009 Optimization 11

Slicing: Adjusting Expectations

Bad news:
• No general algorithm for computing minimal slices

The problem, intuitively:
• To compute minimal slices we’d have to be able to compute

at compile-time the values of variables at certain locations
• For programs with iteration or recursion this problem is as

difficult as the halting problem

Instead:
• Compute only a (hopefully very good) conservative

approximation to the minimal slice
° soundness: the output of our slicing procedure will be a slice
° no optimality: it may not be minimal

• Use ideas from a static (compile-time) analysis technique
called data flow analysis

CISC422/853, Winter 2009 Optimization 12

Important Notion 0: Control Flow
Graphs (CFGs)

Graphical representation of paths through the program
CGF(P) = (V, E) where
• V set of locations in P
• E ⊆ V× V, with (l1,l2)∈ E iff

“may be able to go from l1 to l2 in P”

Example:

Note: Some paths in CFG(P) may be infeasible,
i.e., feasiblePaths(P) ⊆ CFG(P)

CISC422/853, Winter 2009 Optimization 13

Important Notion 0: Control Flow
Graphs (CFGs) (Cont’d)

Cfg toCfg(Stmt s) {

switch (P) {

case “s ≡ x:=e ∈ Assign”:

Node n = new Node(x,e);

return new Cfg(n,n);

case “s ≡ s1;s2 ∈ Seq”:

Cfg cfg1 = toCfg(s1);

Cfg cfg2 = toCfg(s2);

link(cfg1.last, cfg2.first);

return new Cfg(cfg1.first, cfg2.last);

case “s ≡ if b then s1 else s2 ∈ Cond”:

…

case “s ≡ while b do s ∈ Cond”:

…

case …

} }

Cfg toCfg(Stmt s) {

switch (P) {

case “s ≡ x:=e ∈ Assign”:

Node n = new Node(x,e);

return new Cfg(n,n);

case “s ≡ s1;s2 ∈ Seq”:

Cfg cfg1 = toCfg(s1);

Cfg cfg2 = toCfg(s2);

link(cfg1.last, cfg2.first);

return new Cfg(cfg1.first, cfg2.last);

case “s ≡ if b then s1 else s2 ∈ Cond”:

…

case “s ≡ while b do s ∈ Cond”:

…

case …

} }

class Cfg {

Node first, last;

Cfg(Node f, Node l) {

first = f;

last = l

} }

class Cfg {

Node first, last;

Cfg(Node f, Node l) {

first = f;

last = l

} }

Compute CFG(P) by structural induction over P
Suppose:

S ::= x:=e | S;S | if b then S else S | while b do S | …

Code:

class Stmt {…}

class Assign extends Stmt {…}

class Seq extends Stmt {…}

Class Cond extends Stmt {…}

Class While extends Stmt {…}

…

class Stmt {…}

class Assign extends Stmt {…}

class Seq extends Stmt {…}

Class Cond extends Stmt {…}

Class While extends Stmt {…}

…

CISC422/853, Winter 2009 Optimization 14

Slicing Linear IMPerative (LIMP)
Programs

Suppose we want to slice the LIMP program P1 below
wrt criterion C = (6,{z}).

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

What is a slice of P1 wrt C?
What did you do to compute it?
Is it minimal?

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed

CISC422/853, Winter 2009 Optimization 15

Important Notion 1: Directly Relevant
Variables

Intuition: Directly Relevant Variables R0
C(i)

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• We say that a variable v is directly relevant at i wrt C, if
the value of v right before execution of i may influence
the value of at least one variable in V at node n.

• Variable v is not directly relevant at i wrt C, if the value of
v right before execution of i can never influence the value
of any of the variables in V at node n.

Intuition: Directly Relevant Variables R0
C(i)

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• We say that a variable v is directly relevant at i wrt C, if
the value of v right before execution of i may influence
the value of at least one variable in V at node n.

• Variable v is not directly relevant at i wrt C, if the value of
v right before execution of i can never influence the value
of any of the variables in V at node n.

CISC422/853, Winter 2009 Optimization 16

Directly Relevant Variables
(Cont’d)

Let P be program with node i and C = (n, V).
x ∈ R0

C(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V“There is a data flow dependency
between x at node i and one of the

variables in V.”

CISC422/853, Winter 2009 Optimization 17

Important Notion 2: Directly Relevant
Statements

Intuition: Directly Relevant Statements S0
C

Given a program P with node i and a criterion C. The
statement at node i is directly relevant in P wrt C, if
• i is an assignment x := e and x is directly relevant at least
one successor of i wrt C.

Intuition: Directly Relevant Statements S0
C

Given a program P with node i and a criterion C. The
statement at node i is directly relevant in P wrt C, if
• i is an assignment x := e and x is directly relevant at least
one successor of i wrt C.

CISC422/853, Winter 2009 Optimization 18

Directly Relevant Statements Are All
We Need

Theorem:
Given a LIMP program P and a criterion C = (n, V), the set
of directly relevant statements S0

C together with n forms a
slice of P wrt. C

Theorem:
Given a LIMP program P and a criterion C = (n, V), the set
of directly relevant statements S0

C together with n forms a
slice of P wrt. C

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1:
2:
3:
4:
5:
6:

1:
2:
3:
4:
5:
6:

1:
2:
3:
4:
5:
6:

1:
2:
3:
4:
5:
6:

Program P1 R0
C(i) S0

C

C = (6, {z})

CISC422/853, Winter 2009 Optimization 19

Slicing Branching LIMP (BLIMP)
Programs

Suppose we want to slice the BLIMP program P2 below
wrt criterion C = (6,{z}).

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

What is a slice of P2 wrt C?
What did you do to compute it?
Is it minimal?

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
statement at node n and whenever P halts for a given input,
• S also halts for that input, and
• S computes the same values for the variables in V whenever the

statement corresponding to the node n is executed

CISC422/853, Winter 2009 Optimization 20

Important Notion 3: Relevant
Branching Statements

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly
relevant statement

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly
relevant statement

CISC422/853, Winter 2009 Optimization 21

Directly Relevant Variables:
Revised

Let P be program with node i and C = (n, V).
x ∈ R0

C(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

• p: i →*
CFG(P) j Æ j is test node b of relevant

branching statement
IF b THEN P1 ELSE P2 END or

IF b THEN P1 END
such that x is read in b

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: IF …x… THEN

k: y := …
k+1: y∈RC(k+1)

i: …
// x not assigned to

j: IF …x… THEN

k: y := …
k+1: y∈RC(k+1)

“p: i →*
CFG(P) condition node of

relevant branching statement and
value of x at i may determine truth of
condition”, i.e., “there is a control flow
dependency between x at node i and the
statements inside the branching statement” CISC422/853, Winter 2009 Optimization 22

Directly Relevant Statements Are All
We Need

Theorem:
Given a BLIMP program P and a criterion C = (n, V), the set
of directly relevant statements S0

C together with n form a
slice of P wrt. C

Theorem:
Given a BLIMP program P and a criterion C = (n, V), the set
of directly relevant statements S0

C together with n form a
slice of P wrt. C

1:
2:
3:
4:

5:
6:
7:

1:
2:
3:
4:

5:
6:
7:

1:
2:
3:
4:

5:
6:
7:

1:
2:
3:
4:

5:
6:
7:

Program P2 R0
C(i) S0

C ∪ BC

C = (6, {z})

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

and Relevant Branching Statements

CISC422/853, Winter 2009 Optimization 23

Slicing Imperative (IMP) Programs

Suppose we want to slice the IMP program P3 below wrt
criterion C = (8,{z}).

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: t := t+1
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: t := t+1
7: END;
8: OUTPUT(z);

What is a slice of P3 wrt C?
What did you do to compute it?
Is it minimal?

CISC422/853, Winter 2009 Optimization 24

Relevant Branching Statements
(Revised)

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly
relevant statement, or

• i is the test node of a iteration
WHILE b DO P END or REPEAT P UNTIL b

such that P contains at least one directly relevant
statement

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let
C = (n, V) be a slicing criterion.

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly
relevant statement, or

• i is the test node of a iteration
WHILE b DO P END or REPEAT P UNTIL b

such that P contains at least one directly relevant
statement

CISC422/853, Winter 2009 Optimization 25

Slicing Imperative (IMP) Programs
(Cont’d)

Suppose we want to slice the IMP programs P4 below wrt
criterion C = (8,{z}).

What is a slice of P4 wrt C?
What did you do to compute it?
Is it minimal?

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v
7: END;
8: OUTPUT(z);

• Now, one backward pass
over the program is not
enough anymore to
compute the slice!

• We may have to iterate:
Discover new dir. rel. var.

⇒ discover new dir. rel. stmt
⇒ discover new dir. rel.var.
⇒ and so on…

• Until …
… a fixed point is reached!

• Now, one backward pass
over the program is not
enough anymore to
compute the slice!

• We may have to iterate:
Discover new dir. rel. var.

⇒ discover new dir. rel. stmt
⇒ discover new dir. rel.var.
⇒ and so on…

• Until …
… a fixed point is reached!

CISC422/853, Winter 2009 Optimization 26

Slicing Imperative (IMP) Programs
(Cont’d)

Worst case:

0: WHILE b DO
1: x1 := x2;
2: x2 := x3;
3: x3 := x4;
… …
n-1: xn-1 := xn

n: END;
n+1: OUTPUT(x1);

0: WHILE b DO
1: x1 := x2;
2: x2 := x3;
3: x3 := x4;
… …
n-1: xn-1 := xn

n: END;
n+1: OUTPUT(x1);

O(nv × nn × ne)

CISC422/853, Winter 2009 Optimization 27

Divide Slicing Into Two Phases: Phase 1
1. Computation of B0

C and S0
C

Compute directly relevant variables R0
C, that is,

compute variables that may influence variables in
the criterion, or
tests in relevant branching statements,

while ignoring loops (back edges in the CFG)

Use R0
C to compute BC and S0

C

Needed: Single backwards pass over the program

CISC422/853, Winter 2009 Optimization 28

Divide Slicing Into Two Phases: Phase 2

2. Computation of B>0
C and S>0

C
Compute relevant variables R>0

C, that is,
compute variables that may influence variables in

the criterion, or
tests in relevant branching statements

while also considering loops (back edges in the CFG)

Use R>0
C to compute B>0

C and S>0
C

Needed:
Fixed point iteration until R>0

C(i) stabilizes for all i
Iterated backwards pass over the program

CISC422/853, Winter 2009 Optimization 29

Important Notion 4:
Relevant Variables RC

>0

Let P be program with node i and C = (n, V).
x ∈ RC

>0(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

• p: i →*
CFG(P) j Æ j is test node of relevant

branching statement
IF b THEN P1 ELSE P2 END or

IF b THEN P1 END or

WHILE b DO P END or

REPEAT P UNTIL b
such that x is read in b

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

n: x∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: while …x… do

k: y := …
k+1: y∈RC(k+1)

i: …
// x not assigned to

j: while …x… do

k: y := …
k+1: y∈RC(k+1)

x ∈ R0
C(i)

CISC422/853, Winter 2009 Optimization 30

Important Notion 5: Relevant
Statements SC

>0

Definition: Relevant statements
Given a program P with node i and a criterion C.
The statement at node i is a relevant statement (i∈ SC

>0) iff
• i is an assignment to a variable that is relevant at a

successor of i
• i is a relevant branching statement (i ∈ BC)

Definition: Relevant statements
Given a program P with node i and a criterion C.
The statement at node i is a relevant statement (i∈ SC

>0) iff
• i is an assignment to a variable that is relevant at a

successor of i
• i is a relevant branching statement (i ∈ BC)

CISC422/853, Winter 2009 Optimization 31

Relevant Statements Are All We Need

Theorem:
Given a IMP program P and a criterion C = (n, V), the set of
relevant statements S>0

C forms a slice of P wrt. C

Theorem:
Given a IMP program P and a criterion C = (n, V), the set of
relevant statements S>0

C forms a slice of P wrt. C

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

Program P4 R0
C(i) S>0

C ∪ BC

C = (8, {z})

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v;
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v;
7: END;
8: OUTPUT(z);

1:
2:
3:
4:
5:
6:
7:
8:

1:
2:
3:
4:
5:
6:
7:
8:

R>0
C(i)

CISC422/853, Winter 2009 Optimization 32

Slicing As Data Flow Analysis

There are many data flow analyses
• live/dead variables
• reaching definitions
• alias analysis, …

All of them can be expressed in terms of data flow
equations, that is, equations that describe the relevant
information at each node
We now want to do the same for slicing
The need for a fixed point iteration (that allows the
relevant information to properly propagate) during
implementation will manifest itself in these equations
in that the equations will be mutually recursive!

CISC422/853, Winter 2009 Optimization 33

Directly Relevant Variables

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

v∈R0
C(i) iff

“v is criterion variable
and i is criterion node”

“v is criterion variable
and i is criterion node”

“v directly relevant at
successor j and not
assigned to in i”

i: y := … or i: x>3
j: … v …

“v directly relevant at
successor j and not
assigned to in i”

i: y := … or i: x>3
j: … v …

“v used in i and i defines
(assigns) variable directly
relevant at successor j”

i: x := … v …
j: … x …

“v used in i and i defines
(assigns) variable directly
relevant at successor j”

i: x := … v …
j: … x …

Case 1: Case 2: Case 3:

CISC422/853, Winter 2009 Optimization 34

Directly Relevant Statements

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

“Statement i is directly relevant at i if it defines (assigns) a
variable which is directly relevant at a successor of i”

1: w := 0;
2: if x=r then
3: y := y+1;

else
4: z := 0;
5: x := z+w;
6: output(x);

1: w := 0;
2: if x=r then
3: y := y+1;

else
4: z := 0;
5: x := z+w;
6: output(x);

Directly relevant variables
wrt (6, {x, y})

1: {y, z}
2: {z, w, y}
3: {z, w, y}

4: {w, y}
5: {z, w, y}
6: {x, y}

1: {y, z}
2: {z, w, y}
3: {z, w, y}

4: {w, y}
5: {z, w, y}
6: {x, y}

1: w := 0;
2:
3: y := y+1;

4: z := 0;
5: x := z+w;
6:

1: w := 0;
2:
3: y := y+1;

4: z := 0;
5: x := z+w;
6:

Directly relevant statements
wrt (6, {x, y})

Example:

CISC422/853, Winter 2009 Optimization 35

Relevant Branch Statements and
Relevant Variables

Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

“v is relevant at i wrt C if either
• v is directly relevant at i wrt C, or

v is directly relevant at i wrt (b, Use(b)) for some
relevant branch statement b”

notice change in
subscript here

CISC422/853, Winter 2009 Optimization 36

Relevant Statements

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

“A statement is relevant at i if either
• it is a relevant branching statement, or
• it defines a variable relevant at a successor j of i”

CISC422/853, Winter 2009 Optimization 37

Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

• A solution to this system of equations will be
• a fixed point, and
• a slice.

• The smallest solution will be
• the smallest fixed point, and
• an approximation of the minimal slice

• A solution to this system of equations will be
• a fixed point, and
• a slice.

• The smallest solution will be
• the smallest fixed point, and
• an approximation of the minimal slice

CISC422/853, Winter 2009 Optimization 38

Fixed Point Equations and How to
Solve Them

Example:
• Let G=(V,→) be graph with vertex m∈V
• Let Rm ⊆ V be the set of all vertices reachable from m

Describe reachability recursively:
• Let F be F : V → V such that F(X) = {m} ∪ X ∪ {n∈V | ∃o∈X. o→n}

Note:
• Rm is solution to

X = F(X)

i.e., Rm is fixed point of F.
Intuitively, “Rm is closed under F”.

• But, F has more than one fixed point! Which are the others?

So:
• Computing Rm is equivalent to finding the smallest fixed point of F

CISC422/853, Winter 2009 Optimization 39

Fixed Point Equations and How to
Solve Them (Cont’d)

Theorem:
Whenever

° F is a monotone function, i.e., X ⊆ F(X) for all X
° “Solution space” finite (in example, V is largest potential solution)

then,
° fixed point of F can be found through “fixed point” iteration

Back to example: What is correct initial value to compute Rm?

X0 = smallest value in solution space;

i = 0;

Repeat

i = i+1;

Xi = F(Xi-1)

until Xi = Xi-1;

output Xi;

X0 = smallest value in solution space;

i = 0;

Repeat

i = i+1;

Xi = F(Xi-1)

until Xi = Xi-1;

output Xi;

CISC422/853, Winter 2009 Optimization 40

Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

• Slice is smallest fixed point to this set
of equations

• Question:
Can use fixed point iteration to compute approximation

of minimal slice?
• Answer:

Yes, because
• all functions involved are monotone
• solution space is finite

• Slice is smallest fixed point to this set
of equations

• Question:
Can use fixed point iteration to compute approximation

of minimal slice?
• Answer:

Yes, because
• all functions involved are monotone
• solution space is finite

CISC422/853, Winter 2009 Optimization 41

Slicing
Algorithm

1. input program P and criterion C=(n, V)
2. RC

>0(n) := V and mark n as relevant
3. forall i ∈ CFG(P) with i ≠ n

1. RC
>0(i) := ∅ and mark i as not relevant

4. WL := predCFG(P)(n)
5. while WL ≠ ∅ do

1. i, WL := head(WL)
2. compute RC

>0(i) using RC
>0(j) for all j∈succCFG(P)(i):

case i of
skip or print: RC

>0(i) := RC
>0(i) ∪ U

j ∈ succ(i)
RC

>0(j)
assignment x:=e:

if x∈RC
>0(j) for at least one j∈succCFG(P)(i), then

RC
>0(i) := (RC

>0(i) – {x}) ∪ read(e)
mark i as relevant

else, RC
>0(i) := RC

>0(i) ∪ U
j ∈ succ(i)

RC
>0(j)

test node b of if b then C end, or if b then C1 else C2 end
RC

>0(i) := RC
>0(i) ∪ U

j ∈ succ(i)
RC

>0(j)
if at least one relevant statement in C, then
RC

>0(i) := RC
>0(i) ∪ read(b) and mark i as relevant

…

3. If Step 2) changed RC
>0(i), then WL := WL + predCFG(P)(i)

6. output relevant statements in P
CISC422/853, Winter 2009 Optimization 42

Closing Words on Slicing

Slicing has first been proposed in by Mark Weiser in 1979
Complexity: O(nv × nn × ne)
Sophisticated graph-based data structures (program
dependence graphs) have since been devised for the
implementation of slicers

CISC422/853, Winter 2009 Optimization 43

Closing Words on Slicing (Cont’d)

Many different versions and extensions of slicing have
since been proposed
• Backward slicing (as discussed):

° determine which statements may influence the criterion
° uses: e.g., debugging

• Forward slicing:
° determine which statements may be influenced by the criterion
° uses: e.g., impact analysis

• Dynamic slicing:
° take program input into account to increase precision of slice

• Slicing in the presence of:
° procedures/methods, inheritance, references and aliasing,

concurrency

CISC422/853, Winter 2009 Optimization 44

Closing Words on Slicing (Cont’d)

Slicing has found many applications in all areas in which
it’s useful to reduce program size
• E.g., program understanding, maintenance, analysis, debugging

Most advanced commercial software development tools
support some form of slicing (e.g., CodeSurfer from
Grammatech,
www.grammatech.com/products/codesurfer/index.html)

Spin also implements slicing

CISC422/853, Winter 2009 Optimization 45

More Optimizations to Come

Reduce size of state representation
• (Static) State compression

° Huffman encoding
° Collapse compression

Reduce size of representation of “seen set”
• Bit state hashing

Reduce size of state space
• Partial order reduction
• Statement merging

But, first: To something completely different

CISC422/853, Winter 2009 Optimization 46

Optimizations: Possible
Consequences

Consider depth-bounded search again:

⇒ search incomplete
⇒ may overlook bugs
⇒ analysis result may be a “false positive”

Definition: False positive analysis results
A “No violations found” analysis of system S is a false positive iff
S contains violations

Definition: False positive analysis results
A “No violations found” analysis of system S is a false positive iff
S contains violations

CISC422/853, Winter 2009 Optimization 47

Optimizations: Possible
Consequences (Cont’d)

Suppose the following iFSM

is abstracted to

⇒ S and M don’t satisfy the same properties (Examples?)
⇒ analysis of M reports violations that are not violations in S
⇒ analysis result of M may be a “false negative”

Definition: False negative analysis results
An analysis of system S returning “Violation found” with counter
example e is a false negative iff e does not constitute a violation

Definition: False negative analysis results
An analysis of system S returning “Violation found” with counter
example e is a false negative iff e does not constitute a violation

x=0, y=0 x=1, y=0 x=2, y=0 x=3, y=0 x=3, y=0 x=3, y=1x++ x++x++ y++x>2

x=‘small’, y=0 x=‘big’, y=0

x++
x>’small’

x=‘big’, y=0
y++x++

x=‘big’, y=1 M

S
“data

abstraction”

CISC422/853, Winter 2009 Optimization 48

Optimizations: Initial Summary

Precision
when used

w/ MC?

Reduce
size of
seen set

Reduce
size of
states

Reduce
size of
state
space

Partial
Order
Reduction

Bitstate
Hashing

State
Compres
sion

SlicingData
Abstraction

Depth-
bounded
Search

CISC422/853, Winter 2009 Optimization 49

Optimizations: Initial Summary (Cont’d)

incomplete
(false
positives
possible)

Precision
when used

w/ MC?

Reduce
size of
seen set

Reduce
size of
states

X

Reduce
size of
state
space

Partial
Order
Reduction

Bitstate
Hashing

State
Compres
sion

SlicingData
Abstraction

Depth-
bounded
Search

CISC422/853, Winter 2009 Optimization 50

Optimizations: Initial Summary (Cont’d)

lossy (false
negatives
possible)

incomplete
(false
positives
possible)

Precision
when used

w/ MC?

Reduce
size of
seen set

X
Reduce
size of
states

XX

Reduce
size of
state
space

Partial
Order
Reduction

Bitstate
Hashing

State
Compres
sion

SlicingData
Abstraction

Depth-
bounded
Search

CISC422/853, Winter 2009 Optimization 51

Optimizations: Initial Summary (Cont’d)

precise
lossy (false
negatives
possible)

incomplete
(false
positives
possible)

Precision
when used

w/ MC?

Reduce
size of
seen set

XX
Reduce
size of
states

XXX

Reduce
size of
state
space

Partial
Order
Reduction

Bitstate
Hashing

State
Compres
sion

SlicingData
Abstraction

Depth-
bounded
Search

CISC422/853, Winter 2009 Optimization 52

State Compression

CISC422/853, Winter 2009 Optimization 53

State Compression (Cont’d)

CISC422/853, Winter 2009 Optimization 54

State Compression (Cont’d)

CISC422/853, Winter 2009 Optimization 55

State Compression (Cont’d)

CISC422/853, Winter 2009 Optimization 56

State Compression (Cont’d)

CISC422/853, Winter 2009 Optimization 57

State Compression (Cont’d)

CISC422/853, Winter 2009 Optimization 58

n = # states
m = size of memory

Consequences?

CISC422/853, Winter 2009 Optimization 59 CISC422/853, Winter 2009 Optimization 60

CISC422/853, Winter 2009 Optimization 61 CISC422/853, Winter 2009 Optimization 62

CISC422/853, Winter 2009 Optimization 63 CISC422/853, Winter 2009 Optimization 64

CISC422/853, Winter 2009 Optimization 65

Control and Data Dependence

DataControlIndepg=g*2

DataIndepControlg=g+2

ControlIndepIndepy=1

IndepControlIndepx=1

g=g*2g=g+2y=1x=1

Runs that differ only in the order of independent
actions can be considered equivalent

Runs that differ only in the order of independent
actions can be considered equivalent

CISC422/853, Winter 2009 Optimization 66

CISC422/853, Winter 2009 Optimization 67 CISC422/853, Winter 2009 Optimization 68

Independent Transitions
Two transitions are independent at state s if
• both are enabled at s
• the execution of neither can disable the other
• the combined effect of both transitions is independent of the

relative order of execution

Two transitions are strongly independent if they are
independent at every state where both are enabled
Spin (and other model checkers) use a syntactic
condition checkable at compile-time to conservatively
approximate strongly independent transitions
• no overhead at run-time
• reduction preserves all safety and liveness properties
• even this conservative reduction can still lead to an

exponential reduction in the size of the reachable state space

CISC422/853, Winter 2009 Optimization 69 CISC422/853, Winter 2009 Optimization 70

Partial Order Reduction May Cause
Incompleteness

POR not compatible with
• LTL’s next time operator X
• rendezvous message passing and weak fairness
• a small set of language constructs in some cases such as

_last, enabled, remote references

Spin’s analysis will be sound, but may be incomplete
in these cases
Spin will automatically detect incompatibility and either
issue a warning or abort search

CISC422/853, Winter 2009 Optimization 71

E.g., when x, y, z
are process-local

E.g., when x, y, z
are process-local

CISC422/853, Winter 2009 Optimization 72

Optimizations: Final Summary

precise
(except for
LTL w/ X)

lossy (false
positives
possible)

preciseprecise
lossy (false
negatives
possible)

incomplete
(false
positives
possible)

Precision
when used

w/ MC?

X
Reduce
size of
seen set

XXX
Reduce
size of
states

XXXX

Reduce
size of
state
space

Partial
Order
Reduction

Bitstate
Hashing

State
Compres
sion

SlicingData
Abstraction

Depth-
bounded
Search

