CISC422/853: Formal Methods s

in Software Engineering:
Computer-Aided Verification

METHODS

Ene,

FORMAL 4
WPECIFICATION !
AND ANALFIIS QQ

CWITH Loms
oF prCTURESY w

s o

Topic 9: Optimization

Juergen Dingel
March, 2009

Readings:

» Spin book, Chapter 9

» Handouts on control flow analysis and slicing posted on

course web page

Where Do We Want to Be?

Software model checking: The Dream

Program
code

“yeasg”

Checker

Formal
specification “NO” +
=
counter example
CISC422/853, Winter 2009 Optimization 2

How Could We Get There?

One class of approaches:

= Automatic model extraction

« Bandera/Bogor (KSU)

¢ ModEx/Spin (JPL)

¢ Zing (MSR)

« Automatic abstraction refinement
° SLAM and SDV (MSR)
° Blast (Berkeley and EPFL)
° Magic (CMU)

Program
code

“Yes”

Formal
specific
ation

“NO” +
counter
example

To make this work, we need optimization!

CISC422/853, Winter 2009 Optimization

CISC422/853, Winter 2009 Optimization

Complexity and Optimization

Size of Aq®A
* R =# of reachable states in Aq®A
* R=Rg R ;where

° Rg =# of reachable states in Ag (typically: 109 ... 1011)
° R_p =# of reachable states in A (typically: 1..4)
Size of Ag
* Rg= Ry ... 'Ry, ~ R
Sizeof T
* Ry=(#loc'sinT) - |dtype,| - ... - |dtype,,| ~ (#loc’sinT) - |dtype|™
Thus,

Rg increases with

+ Rg= ((#loc’s in T) - |dtype|™)n * # of processes n (exponentially)
« # of variables m

* size of data types

* size of process

Complexity and Optimization (Cont’d)

» Size of Ag®A
« R=Rg-R=((#loc'sinT) - |dtype|”)" - R_,
= Reduce R by

reducing using
* # of processes n (exponentially) « partial order reduction
« # of variables m e statement merging
« size of data type dtype « abstraction
* size of process T checker/user
« size of specification P
user
» Reduce memory requirement by
» reducing size of state vector and/or seen set
CISC422/853, Winter 2009 Optimization 5

Outline

= Reduce number of reachable states

* slicing

 partial order reduction & statement merging
» Reduce memory requirement

» Reduce size of representation of state
° slicing
° compression

* Reduce size of representation of Seen Set
° bitstate hashing

CISC422/853, Winter 2009 Optimization

Slicing: Motivating Example

Consider program P: Program P’
Suppose we
1: INPUT(n); . 1: INPUT (n);
9t =1 are interested 2 0= 1:
3: sum :=0; in proving ¢: 3: sum :=0;
4: prod := 1;
5: WHILE i<n DO G(pc=10 = sum=x"._,i) 5: WHILE i <n DO
6: sum := sum-+i; 6: sum := sum-+i;
7: prod := prod*i; Then,
8: i:=i+l . 8: i:=i+l
9: END P Sat!SfleS 0 9: END
10: OUTPUT(sum); iff 10: OUTPUT(sum);
11: OUTPUT (prod); P’ satisfies ¢

Statements in lines 4, 7, and 11 are irrelevant to value of sum in line 10!

CISC422/853, Winter 2009 Optimization 7

Wouldn’t it be nice, if ...

= ... given
* aprogram P and
* aline number nin P,
we could compute and remove all statements
in P that are irrelevant to the values of the
variables in line n?
» This could substantially reduce
» the number of reachable states and
* the memory requirement (fewer variables)

» That's what slicing does! Sort of.

CISC422/853, Winter 2009 Optimization

Definitions

Let P be a program

Definition: Slice
A slice S of P is an executable program that is obtained
from P by deleting zero or more statements.

Definition: Slicing criterion
A slicing criterion consists of a pair (n, V) where n is a node in the
control flow graph (CFG) of P and V is a subset of the variables in P

Definition: Slice with respect to criterion

A slice S of P is called a slice wrt criterion (n, V), if it contains the

statement at node n and whenever P halts for a given input,

« S also halts for that input, and

« S computes the same values for the variables in V whenever the
statement corresponding to the node n is executed

CISC422/853, Winter 2009 Optimization

Definitions (Cont’d)

Definition: Minimal slice
A slice is called minimal, if no other slice for the same criterion contains
fewer statements

Theorem: Minimal slices
1. Minimal slices are not necessarily unique

2. The problem of determining whether a given slice is minimal is
undecidable

Proof:

1 Xpew 1= 1; 1 Xpew = 1

is minimal slice of 2: C;
3: output(Xpew);

3: output(Xney):

iff C halts

CISC422/853, Winter 2009 Optimization 10

Slicing: Adjusting Expectations

= Bad news:
« No general algorithm for computing minimal slices
= The problem, intuitively:
« To compute minimal slices we’d have to be able to compute
at compile-time the values of variables at certain locations
« For programs with iteration or recursion this problem is as
difficult as the halting problem
» |Instead:
« Compute only a (hopefully very good) conservative
approximation to the minimal slice
° soundness: the output of our slicing procedure will be a slice
° no optimality: it may not be minimal

« Use ideas from a static (compile-time) analysis technique

called data flow analysis
CISC422/853, Winter 2009 Optimization

Important Notion 0: Control Flow
Graphs (CFGs)
Graphical representation of paths through the program
CGF(P) = (V, E) where
* V set of locations in P
« E CVxV,with (I,,l,)€ E iff

“may be able to go from I, to |, in P” A=
= Example: _ ."'Ii
Ch= 1 a=h / L
2: o=l) o - .
3. while ¢ < o do 5: |_ end 14:1 ci=cta /I
4 ci= |
5 El]d: % I.. ai=a = .\i
[iH

(L= —
=0

ci=()

Note: Some paths in CFG(P) may be infeasible,
i.e., feasiblePaths(P) C CFG(P)

CISC422/853, Winter 2009 Optimization 12

Important Notion O: Control Flow Slicing Linear IMPerative (LIMP)
Graphs (CFGs) (Cont’'d) Programs

= Compute CFG(P) by structural induction over P Suppose we want to slice the LIMP program P, below
= Suppose: wrt criterion C = (6,{z}).

S ::= x:=e | S;S | if b then S else S | while b do S | .. — - - —

1: y = 0; Definition: Slice with respect to criterion
= Code: Cfg toCfg(Stmt s) { . . Aslice S of P is called a slice wrt criterion (n, V), if it contains the
switch (P) { 2: a:=1 statement at node n and whenever P halts for a given input,
class Cfg { case “s = x:=e € Assign”: 3: X = w+l; * S also halts for that input, and
Node first, last; Node n = new Node(x,e); 4: 7= 2 » S computes the same values for the variables in V whenever the
Cfg(Node £, Node 1) { return new Cfg(n,n); ’ e statement corresponding to the node n is executed
first = f; case “s = sl;s2 € Seq”: 5: Z ;= Xty;
1oe o & Cfg cfgl = toCfg(sl); 6: OUTPUT(2);
T} Cfg cfg2 = toCfg(s2); '
link(cfgl.last, cfg2.first);
class stmt {..} return new Cfg(cfgl.first, cfg2.last); i 1 2
class Assign extends Stmt {..} case “s = if b then sl else s2 € Cond”: What IS a slice of Pl wrt C .
class Seq extends Stmt {..} What did you do to compute it?
Class Cond extends Stmt {..} case “s = while b do s € Cond”: . ..
Class While extends Stmt {..} IS |t mlnlmalo
CISC422/853, Winter 2009 og} 1} CISC422/853, Winter 2009 Optimization 14
Important Notion 1: Directly Relevant Directly Relevant Variables
.] i
Variables (Cont'd) i
. . l // x not assigned to

Intuition: Directly Relevant Variables RO(i) Let P be program with node i and C = (n, V). n: xev
« Leti be node in the CFG of a program P and let x € RO(i) if either

C = (n, V) be a slicing criterion. P i—crge) N A “X flows into l P
« We say that a variable v is directly relevant at i wrt C, if some v &€ V along p, or e
the value of v right before execution of i may influence l i1’y not assigned to
the value of at least one variable in V at node n. T Viem Yo
q q 0 q q // v not assigned to
» Variable v is not directly relevant at i wrt C, if the value of . - vev
. . . . “There is a data flow dependency e S
v right before execution of i can never influence the value SEEER s e e A [e R el e
of any of the variables in V at node n. variables in V.”

CISC422/853, Winter 2009 Optimization 15 CISC422/853, Winter 2009 Optimization 16

Important Notion 2: Directly Relevant
Statements

Intuition: Directly Relevant Statements SO

Given a program P with node i and a criterion C. The
statement at node i is directly relevant in P wrt C, if

* i is an assignment x := e and x is directly relevant at least
one successor of i wrt C.

CISC422/853, Winter 2009 Optimization 17

Directly Relevant Statements Are All
We Need

Theorem:

Given a LIMP program P and a criterion C = (n, V), the set
of directly relevant statements S°. together with n forms a
slice of P wrt. C

Program P, RO (i) SO
1 y:=0; 1: 1

2: a:.=1; 2: 2

3: X 1= W+1; 3: 3

4: Z:=2; 4. 4

5: Z = X+y, 5: 5

6: OUTPUT(2); 6: 6

C=(6,{z}

CISC422/853, Winter 2009 Optimization 18

Slicing Branching LIMP (BLIMP)
Programs

Suppose we want to slice the BLIMP program P, below
wrt criterion C = (6,{z}).

1: X:=1: Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the
2. IF x>0 THEN statement at node n and whenever P halts for a given input,
3: Z =]_; « S also halts for that input, and
. . « S computes the same values for the variables in V whenever the
4: w:=2 : .
statement corresponding to the node n is executed

ELSE
5: zZ:=z+y
6: END;
7. OUTPUT(2);

What is a slice of P, wrt C?
What did you do to compute it?
Is it minimal?

CISC422/853, Winter 2009 Optimization 19

Important Notion 3: Relevant
Branching Statements

Definition: Relevant Branching Statements B
* Letibe node in the CFG of a program P and let
C =(n, V) be a slicing criterion.
* iis arelevant branching statement in P wrt C iff
* i is the test node of a conditional
IFb THEN P, END or IFbTHEN P, ELSE P, END

such that either P, or P, contain at least one directly
relevant statement

CISC422/853, Winter 2009 Optimization 20

Directly Relevant Variables: Directly Relevant Statements Are All

Revised E We Need
i i l // x not assigned to
Let P be program with node i and C = (n, V). n: xeV and Relevant Branching Statements
x € RO(i) if either = Theorem:
o priey” n A “x flows into” - _ . ' o
P Somf:f/"z V alond o, or ~__ l /1 x not assigned to Given a BLIMP program P and a criterion C = (n, V), the set
o S gp. By =X of directly relevant statements S°. together with n form a
* Pii—"crop] A s test node b of relevant l e eTe slice of P wrt. C
branching statement kivi= .y.. Program P, R0-0) 5. UB.
IF b THEN P, ELSE P, END or l /1 v not assigned to 1: 5 = 1 1
IF b THEN P, END n: veV 2 IF x>0 THEN 2 2:
such that x is read in b - 3: 7:=1; 3 3
“p: i —"cegp) cONdition node of l 11 x not assigned to 4 w:=2 4 4:
relevant bran.chlng statemgnt and j: IF ..x... THEN ELSE
value of x at i may determine truth of 5: Z:=z+y 5 =
condition”, i.e., “there is a control flow \ . . '
dependency between x at node i and the k: yi= .. 6: END; 6 6:
ciscazzid Statements inside the branching statement” k+1: yeR.(k+1) d7 OUTPUT(2); 7: 7:

Slicing Imperative (IMP) Programs Relevant Branching Statements

(Revised)
Suppose we want to slice the IMP program P; below wrt Definition: Relevant Branching Statements B
criterion C = (8,{z}). « Leti be node in the CFG of a program P and let
1 W = U+3; C =(n, V) be a slicing criterion.
2: viEL « iis a relevant branching statement in P wrt C iff
j WHILE\;V??EO * i is the test node of a conditional
5 2=y IFb THEN P, END or IF b THEN P, ELSE P, END
6: t:=t+1 such that either P, or P, contain at least one directly
7: END; relevant statement, or
8: OUTPUT(2); * i is the test node of a iteration
What is a slice of P, wrt C? WHILE b DO P END or REPEAT P UNTIL b
What did you do to compute it? such that P contains at least one directly relevant
statement

Is it minimal?

CISC422/853, Winter 2009 Optimization 23 CISC422/853, Winter 2009 Optimization 24

Slicing Imperative (IMP) Programs
(Cont'd)
Suppose we want to slice the IMP programs P, below wrt
criterion C = (8,{z}).

« Now, one backward pass
- BS U over the program is not
~ w=d, enough anymore to
. Azl v BY compute the slice!
. y=X * We may have to iterate:
ok Z=Y Discover new dir. rel. var.
6: Gl 5= AR = discover new dir. rel. stmt
& END; = discover new dir. rel.var.
8: OUTPUT(2), = and soon...
What is a slice of P, wrt C? * Until ...
... a fixed point is reached!

What did you do to compute it?
Is it minimal?

CISC422/853, Winter 2009 Optimization 25

Slicing Imperative (IMP) Programs

(Cont’'d)
Worst case:
0: WHILE b DO = O(n, X N, x N,
1: X; 1= Xy,
2: Xy 1= Xg;
& X3 1= Xy
n-1: Xn1 = X,
n: END;
n+l: OUTPUT(X,);

CISC422/853, Winter 2009 Optimization 26

Divide Slicing Into Two Phases: Phase 1

1. Computation of B% and S°:

= Compute directly relevant variables R, that is,

compute variables that may influence variables in
= the criterion, or
= tests in relevant branching statements,

while ignoring loops (back edges in the CFG)
= Use RO to compute B, and S°
= Needed: Single backwards pass over the program

CISC422/853, Winter 2009 Optimization 27

Divide Slicing Into Two Phases: Phase 2

2. Computation of B*°- and S0
= Compute relevant variables R>9, that is,
compute variables that may influence variables in
= the criterion, or
= tests in relevant branching statements
while also considering loops (back edges in the CFG)
= Use R*0. to compute B>. and S0
= Needed:
= Fixed point iteration until R>°(i) stabilizes for all i
= |terated backwards pass over the program

CISC422/853, Winter 2009 Optimization 28

Important Notion 4:
Relevant Variables R.™°
Let P be program with node i and C = (n, V).
x € R(i) if either

* p: i%*CFG(“ .. ot
x € ROL(i)
some v GLWUHQ—F,_UIC—‘ \

* pri—="cegp) A is test node of relevant
branching statement
IF b THEN P, ELSE P, END or
IF b THEN P, END or
WHILE b DO P END or
REPEAT P UNTIL b
such that x is read in b \

CISC422/853, Winter 2009 Optimization

Important Notion 5: Relevant
Statements S.>°

i:
l /1 x not assigned to
n: xev

Se— xS

/I x not assigned to
y = X
/'y not assigned to
SVE=RIRY
// v not assigned to

s vev

Definition: Relevant statements
Given a program P with node i and a criterion C.
The statement at node i is a relevant statement (ic S->°) iff

* i is an assignment to a variable that is relevant at a
successor of i
* i is a relevant branching statement (i € B.)

i

l // x not assigned to

j: while ..x... do
k: yi=..
k+1: yeR.(k+1)

CISC422/853, Winter 2009 Optimization 30

Relevant Statements Are All We Need

Theorem:

Given a IMP program P and a criterion C = (n, V), the set of
relevant statements S0 forms a slice of P wrt. C

Program P, RO()) R>0(i) S0, U B,

1 W = U+3; 1: 1: 1

2: vi=1; 2: 2: 2:

3: WHILE w>0 DO 3: 3: 3:

4: y =X 4: 4: 4:

5: Z:=Yy,; 5: 5: 54

6: W = W+V; 6: 6: 6:

7 END; 7 7 7

8: OUTPUT(2); 8: 8: 8:
C=(81{z})

CISC422/853, Winter 2009 Optimization

31

Slicing As Data Flow Analysis

= There are many data flow analyses
« live/dead variables
« reaching definitions
 alias analysis, ...

= All of them can be expressed in terms of data flow
equations, that is, equations that describe the relevant
information at each node

= We now want to do the same for slicing

= The need for a fixed point iteration (that allows the
relevant information to properly propagate) during
implementation will manifest itself in these equations
in that the equations will be mutually recursive!

CISC422/853, Winter 2009 Optimization 32

Directly Relevant Variables

Definition 1: Directly Relevant Variables R%(i)
V, if i=n
RG) = [{v |34 +cra iA (v e RY(G) Av & Def(i))
V(v € Use(3) A Def(i) N RA(5) # 0)}, otherwise

veRO. (i) iff
Case 1: Case 2: Case 3:
“v is criterion variable “v directly relevant at | | “v used iniand i defines
and i is criterion node” | | successor j and not (assigns) variable directly
assigned to in i” relevant at successor j”
i y:=..or i:x>3 i XI=..V..
o v o X
CISC422/853, Winter 2009 Optimization 33

Directly Relevant Statements

Definition 2: Directly Relevant Statements SO
S8 = {i|3ji—crgiA Def(i) N RA() #= 0}

“Statement i is directly relevant at i if it defines (assigns) a
variable which is directly relevant at a successor of i’

Example: Directly relevant variables Directly relevant statements
wrt (6, {x, y}) wrt (6, {x, y})
1. w:=0; 1. {y,z} 1. w:=0;
2: if x=r then 2: {z,w,Vy} 2:
3. yi=y+l; 3 {z,w,y} 3. yi=y+l;
else
4. z:=0; 4: {w, y} 4. z:=0;
5. x:=z+w; 5. {z,w, vy} 5: x:=z+w;
6: output(x); 6: {X, vy} 6:
CISC422/853, Winter 2009 Optimization 34

Relevant Branch Statements and
Relevant Variables

Definition 3: Relevant Branch Statements B

Bgo = {b| b is branch statement and
has at least one node i € S3° in its scope}

Definition 4: Relevant Variables R

BZ() = RE@) U Useng Bguep()

“v is relevant at i wrt C if either
« v is directly relevant at i wrt C, or

notice change in
subscript here
v is directly relevant at i wrt (b, Use(b)) for some

relevant branch statement b”

CISC422/853, Winter 2009 Optimization 35

Relevant Statements

Definition 5: Relevant Statements S.>°
Sz° = BgU({i|3ii—cra i A Def(3) N RZO() # 8}

“A statement is relevant at i if either
« it is a relevant branching statement, or
« it defines a variable relevant at a successor j of i”

CISC422/853, Winter 2009 Optimization 36

CISC422/853, Winter 2009

Definition 1: Directly Relevant Variables R%(i)
R(G) = [

v,
{v| 3j.i —org i A (v € RQ(G) Av & Def(i))

e The smallest solution will be

* the smallest fixed point, and

If i=n
V(v € Use(i) A Def(i) N RQ(5) #)}, otherwise
Die A solution to this system of equations will be
« a fixed point, and
‘of *aslice.
I

Fixed Point Equations and How to

Solve Them
Example:

* Let G=(V,—) be graph with vertex meV

e LetR,, CV be the set of all vertices reachable from m

Describe reachability recursively:
e LetFbeF:V — Vsuchthat F(X) ={m} U X U {neV | JoeX. o—n}
= Note:
* R, is solution to
X =F(X)
 an approximation of the minimal slice ie., R, is fixed point of F.
c \tJ = Mg\t U UbeBe 1 1 se(n) Intuitively, “R,, is closed under F”.
Definition 5: Relevant Statements S0 » But, F has more than one fixed point! Which are the others?
829 = BpU{i|3ji—erg i ADef(i) N BZO0G) £ 6} " s
c = b CFG J RC * Computing R,, is equivalent to finding the smallest fixed point of F
~WINter 2009 OpTmIZaton 3 CISC422/853, Winter 2009 Optimization 38
Fixed Point Equations and How to Definition 1: Directly Relevant Variables R%(i)
Solve Them (Cont’'d)
* Theorem:
Whenever
° Fis a monotone function, i.e., X C F(X) for all X

° “Solution space” finite (in example, V is largest potential solution)
then,

X, =

° fixed point of F can be found through “fixed point” iteration
i =

smallest value in solution space;
= 0;

Repeat
i i+l;
X = F(X;,)
until X; = X; ;5
output X;;

Optimization

= Back to example: What is correct initial value to compute R,,?

39

v,
500 = { @135 ominge

if i=n
Be) Ao g Der@)
» Slice is smallest fixed point to this set

% 4 AN

of equations
e Question:

k.

Can use fixed point iteration to compute approximation
of minimal slice?
* Answer:

Yes, because

U
S

« all functions involved are monotone
« solution space is finite

Tter 2009

Optumization

Bo U {i| 3ji —cra i A Def(@) N RZ"(5) # @}

a0

1. input program P and criterion C=(n, V)
2. R:>0(n) :=V and mark n as relevant

3. foralli € CFG(P) withi#n
1. RC™(i) := 0 and mark i as not relevant
. WL = predeegpy(n)
5. whileWL =0 do
1. i, WL := head(WL)
2. compute Rc™0(i) using Rc™0(j) for all jesuccergpyi):
case i of
skip or print: R.0(i) := R0(i) U UJ
assignment x : =e:
if xeR:0()) for at least one jesuccerg (i), then
Rc™(0) := (Re™() — {x}) U read(e)
mark i as relevant
= else, Re™() := R™() U Ul e SmchmG)
testnode b of if b then C end,orif b then Cl else C2 end
R = R VU . . R0
if at least one relevant statement in C, then
R:™(i) := R.™(i) U read(b) and mark i as relevant

Slicing

Rc0)

€ succ(i)

3. If Step 2) changed R:>9(i), then WL := WL + predeege)(i)

6. output relevant statements in P
CISC422/853, Winter 2009 Optimization

Algorithm

41

Closing Words on Slicing

= Slicing has first been proposed in by Mark Weiser in 1979

= Complexity: O(n, x n, x n,)
» Sophisticated graph-based data structures (program

dependence graphs) have since been devised for the
implementation of slicers

CISC422/853, Winter 2009

Optimization 42

Closing Words on Slicing (Cont’d)

» Many different versions and extensions of slicing have
since been proposed

» Backward slicing (as discussed):
° determine which statements may influence the criterion
° uses: e.g., debugging

» Forward slicing:
° determine which statements may be influenced by the criterion
° uses: e.g., impact analysis

» Dynamic slicing:
° take program input into account to increase precision of slice

* Slicing in the presence of:

° procedures/methods, inheritance, references and aliasing,
concurrency

CISC422/853, Winter 2009 Optimization

43

Closing Words on Slicing (Cont’d)

= Slicing has found many applications in all areas in which
it's useful to reduce program size
» E.g., program understanding, maintenance, analysis, debugging
» Most advanced commercial software development tools
support some form of slicing (e.g., CodeSurfer from

Grammatech,
www.grammatech.com/products/codesurfer/index.html)

= Spin also implements slicing

CISC422/853, Winter 2009 Optimization

44

More Optimizations to Come

= Reduce size of state representation
e (Static) State compression
° Huffman encoding
° Collapse compression
= Reduce size of representation of “seen set”
« Bit state hashing
* Reduce size of state space
« Partial order reduction
e Statement merging

= But, first: To something completely different

45

CISC422/853, Winter 2009 Optimization

Optimizations: Possible

Consequences
= Consider depth-bounded search again:

[T B B BN R A B R N A A S W

x
=- search incomplete
= may overlook bugs
= analysis result may be a “false positive”

Definition: False positive analysis results
A “No violations found” analysis of system S is a false positive iff

S contains violations

46

CISC422/853, Winter 2009 Optimization

Optimizations: Possible
Consequences (Cont’'d)
= Suppose the following iFSM

X+ X++ X++ x> +
— x=0,y=0 — x=1,y=0 — x=2,y=0 — x=3,y=0 —> x=3,y=0 —/ x=3,y=1
“data

abstraction”

is abstracted to

X++
X++ . x>'small’ ++ .
— x='small’, y=0 —> x='big’, y=0 — x='big’, y=0"—> x='big’, y=1

=- S and M don't satisfy the same properties (Examples?)
= analysis of M reports violations that are not violations in S

= analysis result of M may be a “false negative”

i

Definition: False negative analysis results

An analysis of system S returning “Violation found” with counter
example e is a false negative iff e does not constitute a violation

CISC422/853, Winter 2009 Optimization

47

Optimizations: Initial Summary

State Bitstate | Partial

Depth- Data
Slicing | Compres | Hashing | Order

bounded Abstraction .
Search sion

Reduction

Reduce

size of
state

space

Reduce
size of

states

Reduce
size of
seen set

Precision
when used
w/ MC?

48

CISC422/853, Winter 2009 Optimization

Optimizations: Initial Summary (Cont’'d)

Optimizations: Initial Summary (Cont’'d)

Depth- Data State Bitstate | Partial
bounded . Slicing | Compres | Hashing | Order
Abstraction . .
Search sion Reduction
Reduce
size of X
state
space
Reduce
size of
states
Reduce
size of
seen set
Precision incomplete
when used (fal;g
5 positives
w/ MC* possible)
CISC422/853, Winter 2009 Optimization 49

Depth- Data State Bitstgte Partial
bounded) Slicing | Compres | Hashing | Order
Abstraction i)
Search sion Reduction
Reduce
size of X X
state
space
Reduce
size of X
states
Reduce
size of
seen set
Precision Lr;;:lzr:plete lossy (false
when used " negatives
positives .
w/ MC? possible) possible)
CISC422/853, Winter 2009 Optimization 50

Optimizations: Initial Summary (Cont’'d)

Depth- Data State Bitstate | Partial
bounded . Slicing | Compres | Hashing | Order
Abstraction . .
Search sion Reduction
Reduce
size of X X X
state
space
Reduce
size of X X
states
Reduce
size of
seen set
Precision |(rf1;:|::1plete lossy (false
when used positives negatives precise
w/ MC? possible) possible)
CISC422/853, Winter 2009 Optimization 51

State Compression

FE

Algo used in compression programs
for zip gz Jjpeg .mpeg .

Static Compression (3)

target

CISC42

= static Huffman compression
= first find the relative frequency of byte values in state

vectors (using experiments)
= predefine a dictionary for the Huffman encoding

= most frequently occurring values get the shortest bit-codes
= bytes are then stored with variable length bit-sequences

Eg. [00 [121% [1 89 [26% |00010
12 |72% |00 21 [21% | o001
FF |53% |010 a1 |19% | ooooood
62 [31% | o0n 93 [18% | 0000010
28 |29% 00001 03 |17% | 0000011
source 000303 1262000000 1293 000089 8912121293 21 21

10000011 0000011 001 0111 1 1001 0000010
11 00010 00010 001 001 001 OOODO10 ODO11 DOO11

TheoRuys SV#7 Organisation of the State Space

(72 bits)

(20 bytes = 160 bits)

13

State Compression (Cont’'d)

Collapse Compression (1)

* (Observation
= number of distinct system states grows very fast
= despite the fact that each process and each data object can
typically reach only a small number of distinct states
= explosion of the number of reachable states is caused by the
large number of ways in which local states of individual

State Compression (Cont’'d)

R
Collapse Compression (2)

* Possible organisation of components
= global component: all global data

= one component for each process, recording its control state
together with the state of all its local vaniables

T e

GL A descriptor for global data
components can be combined. L/f pror o 9 \l full descriptors are
= replicating a complete description of all local components is F—J\ Jt stored and index number
therefore an inherently wasteful technique P2 "“[-descriptor for process 2 | \ F{E) S
sv: all desriptors together
form the original,
each Ix(c) has a length
of (al most) 4 bytes uncompressed state
ciscap |_TheoRuys SV#7 Organisation of the State Space 14 Ciscay - EO NS ESVETS SOrgension o the St Spacs 15
H) H)
State Compression (Cont’'d) State Compression (Cont’'d)
Fh 1§ 1
Collapse Compression (3) Collapse Compression (4)
+ Example: = Huffman encoding and collapse compression can even
_ . _ . be combined:
Given the following tables with partial components: = first perform a training run, which does not need to be
globals 1 P2 complete (t_e_g_ using bitstate hashlpg) _
01 [00 01 3689 60 1230 40 01 [D0 T 11 | NELEEE = gather statistics on the state descriptors, i.e. the frequency
02|12 38 4524 91 3020 B0 02(1233 45 02 |48 23 3426 18 of the distinct Components
03 |2184 822378 63 54 12 03|7863 23 03|78 237326 18
0431 00 20 56 23 91 80 22 = yse the statistics to build a custom Huffman dictionary for
054923 24 801234 26 18
06[7023 110153012378 the components
again, assigning the most frequently occumng values the
globals P1 P2 P3 -
shortest bit-codes.
Now the state: 7923119153912378 123845 7923782619 1238 = use the Huffman indices in the final verification run
is represented by: 06 02 03 02
ciscs|_TheoRuys SV# Organisation of the State Space 16 cisca| TheoRuys SV# Organisation of the State Space 17

State Compression (Cont’'d)

R
Collapse Compression (s)

* Collapse compression

= typically reduces the memory requirements for the state
table to 20% of the non-compressed version

= running time may be multiplicated by a factor three
= SPIN: -DCOLLAPSE

* Collapse + Huffman encoeding
= slightly better than “standard” collapse compression
= put notably slower {(one third)

CISC4| TheoRuys SV# Organisation of the State Space 18

[Holzmann ¥357]

Bitstate Hashing (v

n = # states

* SUppPOSE. N == M
= [f hagh function is appropriate: no hash collizgions
= ztoring the full state descriptors is not nesded

* Bitstate hashing: not storing the full state descriptors of
visited states, but only storing a bit per state.
= SNSUre. N << m
= no collizion resclution!

= different state descriptors may be mapped upon the same
bit address: successors will not be explored

m = size of memory

Consequences?

Theo Ruys SV 27 Organisation of the State Space =

CISC422/853, Winter 2009

Optimization

58

+ Bit-state hashing

I3 The hash table only
(cont.) 1 / holds bits: O or 1.
0
1
1
0 If hash(s) = nand h[n] == 1.
0 / SPIM concludes that s has
n @ o already been visited.
0
1
0
0]
[T| * states are not stored explicitly
(1] * lookup is fost due to hash function
h-111 + memory needed: hash table {only)
o hash table
@-if'tg Thursday 11-Apr-2002 Thea £. Ruys - SPIM Beginners" Tuterial 76
Unéresit ! Fierudn
CISC422/853, Winter 2009 Optimization 59

Fa

Bitstate Hashing (3)

Assumptions: ~~~ are not always realistic

= one hash collision leads in average to the omission of only
one successor state

= reachability graph is well connected

pm=(1—£)x,,,(l—ﬂ)x(l—"—_1) P, = chance of no state collision
m m m

i
= nl - ; / To achieve a high probability

=0 of no collision: 2m == n?
-l

Al 0 _Ei atn-1) a?

_m — .r:i)m — - 2m dﬂ

= [=€ =g
=0 Major disadvantage of single bitstate
hashing, is the waste of memory, when one
wants to achieve a p__ very close to 1.
Theo Ruys SW# Organisation of the State Space 26

CISC422/853, Winter 2009

Optimization

60

e
Bitstate Hashing (4)
* Multiple Hashing Multiple Hashing -
A . Example with k=3 - -
= single bit array -%
= k independent hash functions »/0]
= a state s is considered to be already %
visited, iff all k bit positions in the hy(s) — [
bitstate are occupied 7]
[i]
[Wolper & Leroy 1993] h,(s) ik
= klarge [0]
i i i [i]
- I:?ltstate anay_ will fill up too quickly hy(s) o
— time consuming [
. o
k small Orly wh =
- huge bitstate array is needed in bafh, ()1 && M
order to achieve high coverage rates i;a[rus]H, s . %
‘we conclude that s has —
already been visited. ba
TheoRuys SV#7 Organisation of the State Space 27
CISC422/853, Winter 2009 Optimization 61

53
Bitstate Hashing (5)

/ T e, * Fixed P = 108
/ "'"-.._. - -
4 ;’I T Tremue * Varying size of
fs . memaory.
A I " 70 MBvie at

£ mm=" e When k is increasing,
Ee T 730 MBy1e the bitstate array will
= fill up too quickly.
=
: N * Note that k=20 is only
‘54 - 500 MByle ap iate when pnm
o < 104

l—t * For current hardware

: o configurations, k=30
seems more
appropriate.

a 0 an an S0 &l

MNumber of hash functions (k)
Fig. 5. Fixed 38 comrage (pom = 1077 and varying size of memory
TheoRuys SV# Organisation of the State Space 28
CISC422/853, Winter 2009 Optimization 62

partial order reduction

« full asynchronous interleaving of process actions is
sometimes redundant

byte a, by

active proctype A()
{

a=2;,0
}

active proctype B()
{

b=3;0
}

the final result is the same,
no mattar which path is followad

CISC422/853, Winter 2009 Optimization 63

partial order reduction
a slightly larger example

T2

[0-0.0]
::-J/ \\ y=1

x=1
local wariables: m ’
Sy e f"9“2/ = \ e

| - \./

g=g*2 g=g+2

six runs:

x=1;g=g+2;y=1;g=g%2 m m
x=1;y=1;g=g+2;g=g*2

®=1;¥=1;g=g"2;g=g+2

y=1l;g=g*2;x=1;g=g+2

y=1;x=1;g=g"2; g=g+2

y=l;x=1;g=g+2;g=g*2

CISC422/853, Winter 2009 Optimization 64

Control and Data Dependence

x=1 y=1 g=g+2 | g=g*2

x=1 Indep | Control | Indep
y=1 | Indep Indep | Control
g=g+2 | Control | Indep Data

g=g*2 | Indep | Control| Data

Runs that differ only in the order of independent
actions can be considered equivalent

CISC422/853, Winter 2009 Optimization 65

partial order reduction

x=1l 3 g=g*2
¥=1 & g=g+2

independent pairs:
et ‘o
x=1 y=1

2 groups of 3 equivalent runs each: y=1 =x=1

’"1”':;?'1""" ooo [
g=g*2

x=1;y=1;g=g+2;g=g*2 x=1
y=1 g=g+2

y=1;x=1;g=g+2;g=g*2
= E|me. eEn

:n-\:l.:x;-l;g-g“:;g-g+2 g=g+2

T
y=1;x=1;g=g*2;g=g+2 m . .

y=1;g=g*2;x=1;g=g+2

CISC422/853, Winter 2009 Optimization 66

slightly reduced reduction

4 groups of equivalent runs:

this state can no
‘ m longer be eliminated
1
x=1;g=g+2;y=1;g=g"2 = L=

B me erm
>< y=1 =x=1 g=g*2

Y=1l;®X=1;g=g+2;g=g"2
e, ..

x=1

x=1;y=1;g=g"2; g=g+2 y=1" 979%2

< e @ orm

y=1l;x=1;g=g"2;g=g+2

g=g+2

y=1;g=g*2;x=1;g=g+2

CISC422/853, Winter 2009 Optimization 67

Independent Transitions

= Two transitions are independent at state s if
* both are enabled at s
 the execution of neither can disable the other
« the combined effect of both transitions is independent of the
relative order of execution
= Two transitions are strongly independent if they are
independent at every state where both are enabled

= Spin (and other model checkers) use a syntactic
condition checkable at compile-time to conservatively
approximate strongly independent transitions
¢ no overhead at run-time
< reduction preserves all safety and liveness properties

* even this conservative reduction can still lead to an

exponential reduction in the size of the reachable state space
CISC422/853, Winter 2009 Optimization 68

Leader Election in Uni-Directional Ring
(Dolev, Kinwe & Rodeh)

effect of partial
order reduction

S Ly
By -

Search With Static Reduction

1 L) I
2 4 N}
MNumber of Processes in Ring

Dining Philosphers (Dijkstra)

CISC422/853, Winter 2009 Optimization

69

Partial Order Reduction May Cause
Incompleteness

= POR not compatible with
e LTL’s next time operator X
¢ rendezvous message passing and weak fairness

« asmall set of language constructs in some cases such as
_last, enabled, remote references

= Spin’s analysis will be sound, but may be incomplete
in these cases

= Spin will automatically detect incompatibility and either
issue a warning or abort search

CISC422/853, Winter 2009 Optimization 70

statement merging (default mode)

E.g.,whenx,y, z
are process-local
a sequence of unconditiecnally
safe, non-blocking, transitions:
x = 1;
X = Y+Z;
predictably produces a non-interleaved
run of states in the glehkal graph

the intermediate states in such sub-graphs
are redundant and can ke omitted

we can accomplish that effect by merging
gequences of uncenditionally safe transitlions
inte a single transition (similar te d_step)

savings in memory and time

default in spin
{can be disabled with spin -a -o3 .}

CISC422/853, Winter 2009 Optimization

71

Optimizations: Final Summary

Depth- Data. State Bitstate | Partial
bounded Abstraction Slicing | Compres | Hashing | Order
Search sion Reduction
Reduce
size of X X X X
state
space
Reduce
size of X X X
states
Reduce
size of X
seen set
Precision I(?;Z r:plete lossy (false lossy (false | precise
when used I negatives precise precise positives (except for
positives
w/ MC? possible) possible) possible) LTL w/ X)
CISC422/853, Winter 2009 Optimization 72

