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Readings:
• Spin book, Chapter 9
• Handouts on control flow analysis and slicing posted on 

course web page

CISC422/853: Formal Methods 
in Software Engineering: 

Computer-Aided Verification
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Where Do We Want to Be?

Software model checking: The Dream

Program
code

Formal 
specification

Checker

“Yes”

“No” + 
counter example
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How Could We Get There?
One class of approaches:

Automatic model extraction
• Bandera/Bogor (KSU)

• ModEx/Spin (JPL)

• Zing (MSR)

• Automatic abstraction refinement
° SLAM and SDV (MSR)

° Blast (Berkeley and EPFL)

° Magic (CMU)

To make this work, we need optimization!

Program
code

Formal 
specific

ation

Checker

“Yes”

“No” + 
counter 
example

Model
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Complexity and Optimization
Size of AS⊗A¬P
• R = # of reachable states in AS⊗A¬P

• R = RS· R¬P where 
° RS = # of reachable states in AS (typically: 109 … 1011)
° R¬P = # of reachable states in A¬P (typically: 1..4)

Size of AS
• RS =  RT1 · … · RTn ~    RT

n

Size of T
• RT = (# loc’s in T) · |dtype1| · … · |dtypem|    ~    (# loc’s in T) · |dtype|m

Thus,

• RS = ( (# loc’s in T) · |dtype|m )n
RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process
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Complexity and Optimization (Cont’d)
Size of AS⊗A¬P

• R = RS · R¬P = ( (# loc’s in T) · |dtype|m )n · R¬P 

Reduce R by

Reduce memory requirement by 
• reducing size of state vector and/or seen set

reducing
• # of processes n (exponentially)
• # of variables m 
• size of data type dtype
• size of process T
• size of specification P

reducing
• # of processes n (exponentially)
• # of variables m 
• size of data type dtype
• size of process T
• size of specification P

using
• partial order reduction
• statement merging
• abstraction

using
• partial order reduction
• statement merging
• abstraction

user

checker/user
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Outline

Reduce number of reachable states
• slicing
• partial order reduction & statement merging

Reduce memory requirement
• Reduce size of representation of state

° slicing
° compression

• Reduce size of representation of Seen Set
° bitstate hashing

CISC422/853, Winter 2009 Optimization 7

Slicing: Motivating Example
Consider program P:

1: INPUT(n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6:    sum := sum+i;
7:    prod := prod*i;
8:    i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

1: INPUT(n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6:    sum := sum+i;
7:    prod := prod*i;
8:    i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

Suppose we 
are interested 
in proving φ:

G(pc=10 ⇒ sum=∑n
i=1i)

Then, 
P satisfies φ

iff
P’ satisfies φ

1: INPUT (n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6:    sum := sum+i;
7:    prod := prod*i;
8:    i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

1: INPUT (n);
2: i := 1;
3: sum := 0;
4: prod := 1;
5: WHILE i ≤ n DO
6:    sum := sum+i;
7:    prod := prod*i;
8:    i := i+1
9: END
10: OUTPUT(sum);
11: OUTPUT(prod);

Program P’:

Statements in lines 4, 7, and 11 are irrelevant to value of sum in line 10!
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Wouldn’t it be nice, if …

… given 
• a program P and
• a line number n in P, 

we could compute and remove all statements 
in P that are irrelevant to the values of the 
variables in line n?

This could substantially reduce 
• the number of reachable states and 
• the memory requirement (fewer variables)

That’s what slicing does! Sort of.
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Definitions
Let P be a program

Definition: Slice
A slice S of P is an executable program that is obtained 
from P by deleting zero or more statements.

Definition: Slice
A slice S of P is an executable program that is obtained 
from P by deleting zero or more statements.

Definition: Slicing criterion
A slicing criterion consists of a pair (n, V) where n is a node in the 
control flow graph (CFG) of P and V is a subset of the variables in P

Definition: Slicing criterion
A slicing criterion consists of a pair (n, V) where n is a node in the 
control flow graph (CFG) of P and V is a subset of the variables in P

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed
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Definitions (Cont’d)

Definition: Minimal slice
A slice is called minimal, if no other slice for the same criterion contains 
fewer statements

Definition: Minimal slice
A slice is called minimal, if no other slice for the same criterion contains 
fewer statements

Theorem: Minimal slices
1. Minimal slices are not necessarily unique
2. The problem of determining whether a given slice is minimal is 

undecidable

Theorem: Minimal slices
1. Minimal slices are not necessarily unique
2. The problem of determining whether a given slice is minimal is 

undecidable

Proof: 
1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

1: xnew := 1;
2: C;
3: output(xnew);

is minimal slice of

iff C halts
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Slicing: Adjusting Expectations

Bad news:
• No general algorithm for computing minimal slices

The problem, intuitively:
• To compute minimal slices we’d have to be able to compute 

at compile-time the values of variables at certain locations
• For programs with iteration or recursion this problem is as 

difficult as the halting problem 

Instead:
• Compute only a (hopefully very good) conservative

approximation to the minimal slice 
° soundness: the output of our slicing procedure will be a slice
° no optimality: it may not be minimal

• Use ideas from a static (compile-time) analysis technique 
called data flow analysis
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Important Notion 0: Control Flow 
Graphs (CFGs)

Graphical representation of paths through the program
CGF(P) = (V, E) where 
• V set of locations in P
• E ⊆ V× V, with (l1,l2)∈ E iff

“may be able to go from l1 to l2 in P”

Example:

Note: Some paths in CFG(P) may be infeasible, 
i.e., feasiblePaths(P) ⊆ CFG(P)
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Important Notion 0: Control Flow 
Graphs (CFGs) (Cont’d)

Cfg toCfg(Stmt s) {

switch (P) {

case “s ≡ x:=e ∈ Assign”: 

Node n = new Node(x,e);

return new Cfg(n,n);

case “s ≡ s1;s2 ∈ Seq”:

Cfg cfg1 = toCfg(s1);

Cfg cfg2 = toCfg(s2);

link(cfg1.last, cfg2.first);

return new Cfg(cfg1.first, cfg2.last);

case “s ≡ if b then s1 else s2 ∈ Cond”:

…

case “s ≡ while b do s ∈ Cond”:

…

case …

}  }

Cfg toCfg(Stmt s) {

switch (P) {

case “s ≡ x:=e ∈ Assign”: 

Node n = new Node(x,e);

return new Cfg(n,n);

case “s ≡ s1;s2 ∈ Seq”:

Cfg cfg1 = toCfg(s1);

Cfg cfg2 = toCfg(s2);

link(cfg1.last, cfg2.first);

return new Cfg(cfg1.first, cfg2.last);

case “s ≡ if b then s1 else s2 ∈ Cond”:

…

case “s ≡ while b do s ∈ Cond”:

…

case …

}  }

class Cfg {

Node first, last;

Cfg(Node f, Node l) {

first = f; 

last = l

} }

class Cfg {

Node first, last;

Cfg(Node f, Node l) {

first = f; 

last = l

} }

Compute CFG(P) by structural induction over P
Suppose: 

S ::= x:=e | S;S | if b then S else S | while b do S | …

Code:

class Stmt {…} 

class Assign extends Stmt {…}

class Seq extends Stmt {…}

Class Cond extends Stmt {…}

Class While extends Stmt {…}

…

class Stmt {…} 

class Assign extends Stmt {…}

class Seq extends Stmt {…}

Class Cond extends Stmt {…}

Class While extends Stmt {…}

…
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Slicing Linear IMPerative (LIMP) 
Programs

Suppose we want to slice the LIMP program P1 below 
wrt criterion C = (6,{z}).

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

What is a slice of P1 wrt C? 
What did you do to compute it?
Is it minimal?

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed
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Important Notion 1: Directly Relevant 
Variables 

Intuition: Directly Relevant Variables R0
C(i)

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• We say that a variable v is directly relevant at i wrt C, if 
the value of v right before execution of i may  influence 
the value of at least one variable in V  at node n.

• Variable v is not directly relevant at i wrt C, if the value of 
v right before execution of i can never influence the value 
of any of the variables in V at node n.

Intuition: Directly Relevant Variables R0
C(i)

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• We say that a variable v is directly relevant at i wrt C, if 
the value of v right before execution of i may  influence 
the value of at least one variable in V  at node n.

• Variable v is not directly relevant at i wrt C, if the value of 
v right before execution of i can never influence the value 
of any of the variables in V at node n.
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Directly Relevant Variables 
(Cont’d)

Let P be program with node i and C = (n, V).
x ∈ R0

C(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V“There is a data flow dependency
between x at node i and one of the 

variables in V.”
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Important Notion 2: Directly Relevant 
Statements

Intuition: Directly Relevant Statements S0
C

Given a program P with node i and a criterion C. The 
statement at node i is directly relevant in P wrt C, if
• i is an assignment x := e and x is directly relevant at least       
one successor of i wrt C.

Intuition: Directly Relevant Statements S0
C

Given a program P with node i and a criterion C. The 
statement at node i is directly relevant in P wrt C, if
• i is an assignment x := e and x is directly relevant at least        
one successor of i wrt C.
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Directly Relevant Statements Are All 
We Need

Theorem: 
Given a LIMP program P and a criterion C = (n, V), the set 
of directly relevant statements S0

C together with n forms a 
slice of P wrt. C

Theorem: 
Given a LIMP program P and a criterion C = (n, V), the set 
of directly relevant statements S0

C together with n forms a 
slice of P wrt. C

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1: y := 0;
2: a := 1;
3: x := w+1;
4: z := 2;
5: z := x+y;
6: OUTPUT(z);

1:
2:
3:
4: 
5:
6:

1:
2:
3:
4: 
5:
6:

1:
2:
3:
4: 
5:
6:

1:
2:
3:
4: 
5:
6:

Program P1 R0
C(i) S0

C

C = (6, {z})
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Slicing Branching LIMP (BLIMP) 
Programs

Suppose we want to slice the BLIMP program P2 below 
wrt criterion C = (6,{z}).

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

What is a slice of P2 wrt C? 
What did you do to compute it?
Is it minimal?

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed

Definition: Slice with respect to criterion
A slice S of P is called a slice wrt criterion (n, V), if it contains the 
statement at node n and whenever P halts for a given input, 
• S also halts for that input, and
• S computes the same values for the variables in V whenever the 

statement corresponding to the node n is executed
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Important Notion 3: Relevant 
Branching Statements 

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or    IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly 
relevant statement

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or    IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly 
relevant statement
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Directly Relevant Variables: 
Revised

Let P be program with node i and C = (n, V).
x ∈ R0

C(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

• p: i →*
CFG(P) j Æ j is test node b of relevant 

branching statement 
IF b THEN P1 ELSE P2  END or 

IF b THEN P1 END
such that x is read in b

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: IF …x… THEN

k:      y := …
k+1:  y∈RC(k+1)

i: …
// x not assigned to

j: IF …x… THEN

k:      y := …
k+1:  y∈RC(k+1)

“p: i →*
CFG(P) condition node of 

relevant branching statement and 
value of x at i may determine truth of 
condition”, i.e., “there is a control flow 
dependency between x at node i and the 
statements inside the branching statement” CISC422/853, Winter 2009 Optimization 22

Directly Relevant Statements Are All 
We Need   

Theorem: 
Given a BLIMP program P and a criterion C = (n, V), the set 
of directly relevant statements S0

C together with n form a 
slice of P wrt. C

Theorem: 
Given a BLIMP program P and a criterion C = (n, V), the set 
of directly relevant statements S0

C together with n form a 
slice of P wrt. C

1:
2:
3:
4: 

5:
6:
7:

1:
2:
3:
4: 

5:
6:
7:

1:
2:
3:
4: 

5:
6:
7:

1:
2:
3:
4: 

5:
6:
7:

Program P2 R0
C(i) S0

C  ∪ BC

C = (6, {z})

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

1: x := 1;
2: IF x>0 THEN
3: z := 1;
4: w := 2

ELSE
5: z := z+y
6: END;
7: OUTPUT(z);

and Relevant Branching Statements
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Slicing Imperative (IMP) Programs

Suppose we want to slice the IMP program P3 below wrt
criterion C = (8,{z}).

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: t := t+1
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: t := t+1
7: END;
8: OUTPUT(z);

What is a slice of P3 wrt C? 
What did you do to compute it?
Is it minimal?
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Relevant Branching Statements 
(Revised) 

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or   IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly 
relevant statement, or 

• i is the test node of a iteration
WHILE b DO P END or   REPEAT P UNTIL b

such that P contains at least one directly relevant 
statement

Definition: Relevant Branching Statements BC

• Let i be node in the CFG of a program P and let   
C = (n, V) be a slicing criterion. 

• i is a relevant branching statement in P wrt C iff
• i is the test node of a conditional

IF b THEN P1 END or   IF b THEN P1 ELSE P2 END
such that either P1 or P2 contain at least one directly 
relevant statement, or 

• i is the test node of a iteration
WHILE b DO P END or   REPEAT P UNTIL b

such that P contains at least one directly relevant 
statement
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Slicing Imperative (IMP) Programs 
(Cont’d)

Suppose we want to slice the IMP programs P4 below wrt
criterion C = (8,{z}).

What is a slice of P4 wrt C?
What did you do to compute it?
Is it minimal?

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v
7: END;
8: OUTPUT(z);

• Now, one backward pass 
over the program is not 
enough anymore to 
compute the slice!

• We may have to iterate:
Discover new dir. rel. var.

⇒ discover new dir. rel. stmt
⇒ discover new dir. rel.var.
⇒ and so on…

• Until …
… a fixed point is reached!

• Now, one backward pass 
over the program is not 
enough anymore to 
compute the slice!

• We may have to iterate:
Discover new dir. rel. var.

⇒ discover new dir. rel. stmt
⇒ discover new dir. rel.var.
⇒ and so on…

• Until …
… a fixed point is reached!
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Slicing Imperative (IMP) Programs 
(Cont’d)

Worst case:

0: WHILE b DO
1: x1 := x2;
2: x2 := x3;
3: x3 := x4;
… …
n-1: xn-1 := xn

n: END;
n+1: OUTPUT(x1);

0: WHILE b DO
1: x1 := x2;
2: x2 := x3;
3: x3 := x4;
… …
n-1: xn-1 := xn

n: END;
n+1: OUTPUT(x1);

O(nv × nn × ne)
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Divide Slicing Into Two Phases: Phase 1
1. Computation of  B0

C and  S0
C 

Compute directly relevant variables R0
C, that is, 

compute variables that may influence variables in 
the criterion, or
tests in relevant branching statements,  

while ignoring loops (back edges in the CFG)

Use R0
C to compute BC and S0

C

Needed: Single backwards pass over the program
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Divide Slicing Into Two Phases: Phase 2

2. Computation of B>0
C and  S>0

C
Compute relevant variables R>0

C, that is, 
compute variables that may influence variables in 

the criterion, or 
tests in relevant branching statements 

while also considering loops (back edges in the CFG)

Use R>0
C to compute B>0

C and S>0
C

Needed: 
Fixed point iteration until R>0

C(i) stabilizes for all i
Iterated backwards pass over the program
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Important Notion 4: 
Relevant Variables RC

>0

Let P be program with node i and C = (n, V).
x ∈ RC

>0(i) if either
• p: i→*

CFG(P) n Æ “x flows into”
some v ∈ V along p, or

• p: i →*
CFG(P) j Æ j is test node of relevant 

branching statement 
IF b THEN P1 ELSE P2  END or 

IF b THEN P1 END or

WHILE b DO P END or

REPEAT P UNTIL b
such that x is read in b

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

n:  x∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i:  …
// x not assigned to

j:  y := …x…
// y not assigned to

k: v := …y…
// v not assigned to

n: v∈V

i: …
// x not assigned to

j: while …x… do 

k:      y := …
k+1:  y∈RC(k+1)

i: …
// x not assigned to

j: while …x… do 

k:      y := …
k+1:  y∈RC(k+1)

x ∈ R0
C(i)
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Important Notion 5: Relevant 
Statements SC

>0

Definition: Relevant statements
Given a program P with node i and a criterion C. 
The statement at node i is a relevant statement (i∈ SC

>0) iff
• i is an assignment to a variable that is relevant at a 

successor of i
• i is a relevant branching statement (i ∈ BC)

Definition: Relevant statements
Given a program P with node i and a criterion C. 
The statement at node i is a relevant statement (i∈ SC

>0) iff
• i is an assignment to a variable that is relevant at a 

successor of i
• i is a relevant branching statement (i ∈ BC)
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Relevant Statements Are All We Need   

Theorem: 
Given a IMP program P and a criterion C = (n, V), the set of 
relevant statements S>0

C forms a slice of P wrt. C

Theorem: 
Given a IMP program P and a criterion C = (n, V), the set of 
relevant statements S>0

C forms a slice of P wrt. C

1: 
2: 
3: 
4: 
5: 
6:
7:
8: 

1: 
2: 
3: 
4: 
5: 
6:
7:
8: 

1:
2:
3:
4: 
5:
6:
7:
8:

1:
2:
3:
4: 
5:
6:
7:
8:

Program P4 R0
C(i) S>0

C  ∪ BC

C = (8, {z})

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v;
7: END;
8: OUTPUT(z);

1: w := u+3;
2: v := 1;
3: WHILE w>0 DO
4: y := x;
5: z := y;
6: w := w+v;
7: END;
8: OUTPUT(z);

1: 
2: 
3: 
4: 
5: 
6:
7:
8:

1: 
2: 
3: 
4: 
5: 
6:
7:
8:

R>0
C(i)
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Slicing As Data Flow Analysis

There are many data flow analyses 
• live/dead variables
• reaching definitions
• alias analysis, …

All of them can be expressed in terms of data flow 
equations, that is, equations that describe the relevant 
information at each node
We now want to do the same for slicing
The need for a fixed point iteration (that allows the 
relevant information to properly propagate) during  
implementation will manifest itself in these equations 
in that the equations will be mutually recursive!
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Directly Relevant Variables

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

v∈R0
C(i) iff

“v is criterion variable
and i is criterion node”

“v is criterion variable
and i is criterion node”

“v directly relevant at 
successor j and not
assigned to in i”

i:   y := … or  i: x>3
j:   … v …

“v directly relevant at 
successor j and not
assigned to in i”

i:   y := … or  i: x>3
j:   … v …

“v used in i and i defines
(assigns) variable directly 
relevant at successor j”

i:   x := … v …
j:   … x …

“v used in i and i defines
(assigns) variable directly 
relevant at successor j”

i:   x := … v …
j:   … x …

Case 1: Case 2: Case 3:
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Directly Relevant Statements

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

“Statement i is directly relevant at i if it defines (assigns) a 
variable which is directly relevant at a successor of i”

1:  w := 0;
2:  if x=r then
3:      y := y+1;

else
4:      z := 0;
5:  x := z+w;
6:  output(x);

1:  w := 0;
2:  if x=r then
3:      y := y+1;

else
4:      z := 0;
5:  x := z+w;
6:  output(x);

Directly relevant variables 
wrt (6, {x, y})

1:   {y, z}
2:   {z, w, y}
3:   {z, w, y}    

4:   {w, y}    
5:   {z, w, y}
6:   {x, y}

1:   {y, z}
2:   {z, w, y}
3:   {z, w, y}    

4:   {w, y}    
5:   {z, w, y}
6:   {x, y}

1:   w := 0;
2:   
3:      y := y+1;

4:      z := 0;
5:  x := z+w;
6:  

1:   w := 0;
2:   
3:      y := y+1;

4:      z := 0;
5:  x := z+w;
6:  

Directly relevant statements 
wrt (6, {x, y})

Example:
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Relevant Branch Statements and 
Relevant Variables

Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

“v is relevant at i wrt C if either
• v is directly relevant at i wrt C, or

v is directly relevant at i wrt (b, Use(b)) for some 
relevant branch statement b”

notice change in 
subscript here
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Relevant Statements

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

“A statement is relevant at i if either
• it is a relevant branching statement, or
• it defines a variable relevant at a successor j of i”
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Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

• A solution to this system of equations will be 
• a fixed point, and
• a slice.

• The smallest solution will be 
• the smallest fixed point, and
• an approximation of the minimal slice 

• A solution to this system of equations will be 
• a fixed point, and
• a slice.

• The smallest solution will be 
• the smallest fixed point, and
• an approximation of the minimal slice 

CISC422/853, Winter 2009 Optimization 38

Fixed Point Equations and How to 
Solve Them 

Example:
• Let G=(V,→) be graph with vertex m∈V
• Let Rm ⊆ V be the set of all vertices reachable from m

Describe reachability recursively:
• Let F be F : V → V such that F(X) = {m} ∪ X ∪ {n∈V | ∃o∈X. o→n}

Note:
• Rm is solution to 

X = F(X)

i.e., Rm is fixed point of F.
Intuitively, “Rm is closed under F”.

• But, F has more than one fixed point! Which are the others?

So:
• Computing Rm is equivalent to finding the smallest fixed point of F
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Fixed Point Equations and How to 
Solve Them (Cont’d) 

Theorem:
Whenever

° F is a monotone function, i.e., X ⊆ F(X) for all X
° “Solution space” finite (in example, V is largest potential solution)

then, 
° fixed point of F can be found through “fixed point” iteration

Back to example: What is correct initial value to compute Rm?

X0 = smallest value in solution space;

i = 0;

Repeat

i = i+1;

Xi = F(Xi-1)

until Xi = Xi-1;

output Xi;

X0 = smallest value in solution space;

i = 0;

Repeat

i = i+1;

Xi = F(Xi-1)

until Xi = Xi-1;

output Xi;
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Definition 3: Relevant Branch Statements BC
Definition 3: Relevant Branch Statements BC

Definition 1: Directly Relevant Variables R0
C(i)Definition 1: Directly Relevant Variables R0

C(i)

Definition 2: Directly Relevant Statements S0
C

Definition 2: Directly Relevant Statements S0
C

Definition 4: Relevant Variables RC
>0Definition 4: Relevant Variables RC

>0

Definition 5: Relevant Statements SC
>0Definition 5: Relevant Statements SC

>0

• Slice is smallest fixed point to this set
of equations 

• Question: 
Can use fixed point iteration to compute approximation 

of minimal slice?
• Answer:

Yes, because 
• all functions involved are monotone
• solution space is finite

• Slice is smallest fixed point to this set
of equations 

• Question: 
Can use fixed point iteration to compute approximation 

of minimal slice?
• Answer:

Yes, because 
• all functions involved are monotone
• solution space is finite
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Slicing 
Algorithm

1. input program P and criterion C=(n, V)
2. RC

>0(n) := V and mark n as relevant
3. forall i ∈ CFG(P) with i ≠ n 

1. RC
>0(i) := ∅ and mark i as not relevant

4. WL := predCFG(P)(n)
5. while WL ≠ ∅ do

1.   i, WL := head(WL)
2. compute RC

>0(i) using RC
>0(j) for all j∈succCFG(P)(i):

case i of
skip or print: RC

>0(i) := RC
>0(i) ∪ U

j ∈ succ(i)
RC

>0(j)
assignment x:=e: 

if x∈RC
>0(j) for at least one j∈succCFG(P)(i), then

RC
>0(i) := (RC

>0(i) – {x}) ∪ read(e) 
mark i as relevant

else, RC
>0(i) := RC

>0(i) ∪ U
j ∈ succ(i)

RC
>0(j)

test node b of if b then C end, or if b then C1 else C2 end
RC

>0(i) := RC
>0(i) ∪ U

j ∈ succ(i)
RC

>0(j)
if at least one relevant statement in C, then 
RC

>0(i) := RC
>0(i) ∪ read(b) and mark i as relevant

…

3. If Step 2) changed RC
>0(i), then WL := WL + predCFG(P)(i)

6. output relevant statements in P
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Closing Words on Slicing 

Slicing has first been proposed in by Mark Weiser in 1979
Complexity: O(nv × nn × ne)
Sophisticated graph-based data structures (program 
dependence graphs) have since been devised for the 
implementation of slicers 
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Closing Words on Slicing (Cont’d)

Many different versions and extensions of slicing have 
since been proposed
• Backward slicing (as discussed): 

° determine which statements may influence the criterion
° uses: e.g., debugging

• Forward slicing: 
° determine which statements may be influenced by the criterion
° uses: e.g., impact analysis

• Dynamic slicing: 
° take program input into account to increase precision of slice

• Slicing in the presence of:
° procedures/methods, inheritance, references and aliasing, 

concurrency
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Closing Words on Slicing (Cont’d)

Slicing has found many applications in all areas in which 
it’s useful to reduce program size
• E.g., program understanding, maintenance, analysis, debugging

Most advanced commercial software development tools 
support some form of slicing (e.g., CodeSurfer from 
Grammatech, 
www.grammatech.com/products/codesurfer/index.html)

Spin also implements slicing
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More Optimizations to Come

Reduce size of state representation
• (Static) State compression

° Huffman encoding
° Collapse compression

Reduce size of representation of “seen set”
• Bit state hashing

Reduce size of state space
• Partial order reduction
• Statement merging

But, first: To something completely different
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Optimizations: Possible 
Consequences

Consider depth-bounded search again:

⇒ search incomplete
⇒ may overlook bugs
⇒ analysis result may be a “false positive”

Definition: False positive analysis results
A “No violations found” analysis of system S is a false positive iff
S contains violations

Definition: False positive analysis results
A “No violations found” analysis of system S is a false positive iff
S contains violations
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Optimizations: Possible 
Consequences (Cont’d)

Suppose the following iFSM

is abstracted to 

⇒ S and M don’t satisfy the same properties (Examples?)
⇒ analysis of M reports violations that are not violations in S
⇒ analysis result of M may be a “false negative”

Definition: False negative analysis results
An analysis of system S returning “Violation found” with counter 
example e is a false negative iff e does not constitute a violation

Definition: False negative analysis results
An analysis of system S returning “Violation found” with counter 
example e is a false negative iff e does not constitute a violation

x=0, y=0 x=1, y=0 x=2, y=0 x=3, y=0 x=3, y=0 x=3, y=1x++ x++x++ y++x>2

x=‘small’, y=0 x=‘big’, y=0

x++
x>’small’

x=‘big’, y=0
y++x++

x=‘big’, y=1 M

S
“data 

abstraction”
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Optimizations: Initial Summary

Precision 
when used 

w/ MC?

Reduce 
size of 
seen set

Reduce 
size of 
states

Reduce 
size of 
state 
space

Partial 
Order 
Reduction

Bitstate
Hashing

State 
Compres
sion

SlicingData 
Abstraction

Depth-
bounded 
Search



CISC422/853, Winter 2009 Optimization 49

Optimizations: Initial Summary (Cont’d)

incomplete 
(false 
positives 
possible)

Precision 
when used 

w/ MC?

Reduce 
size of 
seen set

Reduce 
size of 
states

X

Reduce 
size of 
state 
space

Partial 
Order 
Reduction

Bitstate
Hashing

State 
Compres
sion

SlicingData 
Abstraction

Depth-
bounded 
Search
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Optimizations: Initial Summary (Cont’d)

lossy (false 
negatives 
possible)

incomplete 
(false 
positives 
possible)

Precision 
when used 

w/ MC?

Reduce 
size of 
seen set

X
Reduce 
size of 
states

XX

Reduce 
size of 
state 
space

Partial 
Order 
Reduction

Bitstate
Hashing

State 
Compres
sion

SlicingData 
Abstraction

Depth-
bounded 
Search
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Optimizations: Initial Summary (Cont’d)

precise
lossy (false 
negatives 
possible)

incomplete 
(false 
positives 
possible)

Precision 
when used 

w/ MC?

Reduce 
size of 
seen set

XX
Reduce 
size of 
states

XXX

Reduce 
size of 
state 
space

Partial 
Order 
Reduction

Bitstate
Hashing

State 
Compres
sion

SlicingData 
Abstraction

Depth-
bounded 
Search
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State Compression
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State Compression (Cont’d)
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State Compression (Cont’d)
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State Compression (Cont’d)
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State Compression (Cont’d)
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State Compression (Cont’d)
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n = # states
m = size of memory

Consequences?
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Control and Data Dependence

DataControlIndepg=g*2

DataIndepControlg=g+2

ControlIndepIndepy=1

IndepControlIndepx=1

g=g*2g=g+2y=1x=1

Runs that differ only in the order of independent 
actions can be considered equivalent

Runs that differ only in the order of independent 
actions can be considered equivalent
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Independent Transitions
Two transitions are independent at state s if
• both are enabled at s
• the execution of neither can disable the other 
• the combined effect of both transitions is independent of the 

relative order of execution

Two transitions are strongly independent if they are 
independent at every state where both are enabled
Spin (and other model checkers) use a syntactic 
condition checkable at compile-time to conservatively 
approximate strongly independent transitions
• no overhead at run-time
• reduction preserves all safety and liveness properties
• even this conservative reduction can still lead to an 

exponential reduction in the size of the reachable state space
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Partial Order Reduction May Cause 
Incompleteness

POR not compatible with
• LTL’s next time operator X
• rendezvous message passing and weak fairness
• a small set of language constructs in some cases such as 

_last, enabled, remote references

Spin’s analysis will be sound, but may be incomplete
in these cases
Spin will automatically detect incompatibility and either 
issue a warning or abort search
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E.g., when x, y, z 
are process-local

E.g., when x, y, z 
are process-local
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Optimizations: Final Summary

precise 
(except for 
LTL w/ X)

lossy (false 
positives 
possible)

preciseprecise
lossy (false 
negatives 
possible)

incomplete 
(false 
positives 
possible)

Precision 
when used 

w/ MC?

X
Reduce 
size of 
seen set

XXX
Reduce 
size of 
states

XXXX

Reduce 
size of 
state 
space

Partial 
Order 
Reduction

Bitstate
Hashing

State 
Compres
sion

SlicingData 
Abstraction

Depth-
bounded 
Search


