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CISC422/853: Formal Methods 
in Software Engineering: 

Computer-Aided Verification
Topic 7: Specifying, or

How to Describe How the System Should (or Should 
Not) Behave

Readings: 
• Spin book: Chapter 4 (Defining Correctness Claims), 
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Outline

Formal specifications
Types of formal specifications:
• assertions
• invariants
• safety and liveness properties

How to express safety properties:
• FSAs, regular expressions, Never Claims

How to express liveness properties:
• progress labels, Buechi Automata, Never Claims, Linear 

Temporal Logic, Computation Tree Logic

How to manage the complexity of specifications:
• specification patterns
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(Formal) Specifications

What is a specification?
What is a formal specification?
Properties of good formal specifications?
• As precise and detailed as necessary, and as abstract (i.e., 

unconstraining) as possible
• Consistent
• Correct (internally, externally)

Why use formal specifications?
• Unambiguous
• Sometimes more succinct
• Amenable to automatic analysis
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Observables

“Atomic propositions” used in a specification
In BIR
• global and local variables (in their scope)
• existential (anonymous) thread program counter

Property.existsThread(t, loc5)

In PROMELA
• global and local variables 
• end-states, progress states, and accept states 

° needed for expression of liveness (progress) properties
° E.g., non-progress through reserved boolean variable np_  

(false in s iff at least one process is at a control flow state marked 
with a progress label)

° more on these later
• process ids through reserved variable _pid
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Types of Formal Specifications for 
Concurrent and Reactive Systems

Assertions
Invariants
Safety properties
Liveness properties
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Assertions
Express a property of observables at particular 
location
Most basic formal specification; already used by 
John von Neumann in 1947
In BIR and Promela: assert(b);
What kind of correctness claim does an assertion 
make, that is, what does it mean if there is
• no assertion violation?:

“No matter along which path control has reached the 
location of the assertion, the boolean expression in 
the assertion evaluates to true at that location”

• an assertion violation?:
“There is at least one execution such that the boolean

expression in the assertion does not evaluate to true 
at that location”

thread T() {

...

loc loc7: 

when b do {

...

assert(x>y);

...

}

...

}

thread T() {

...

loc loc7: 

when b do {

...

assert(x>y);

...

}

...

}

Example:

CISC422/853, Winter 2009                 Specifying 7

Example 1: Simple Race Condition

[Source: spinroot.com] CISC422/853, Winter 2009                 Specifying 8

Example 2: Checking Mutual Exclusion 
Using Assertions

Does protocol below ensure mutual exclusion and deadlock freedom?
How can we check this using Bogor or Spin?

system MuxTry {
boolean flag1;
boolean flag2;

thread T1 () {
loc loc0: 
do {flag1 := true;} goto loc2;

loc loc2:
when (!flag2) do {} goto loc3;

loc loc3:
do {} goto loc4;

loc loc4: 
do {flag1 := false;} goto loc0;
}

system MuxTry {
boolean flag1;
boolean flag2;

thread T1 () {
loc loc0: 
do {flag1 := true;} goto loc2;

loc loc2:
when (!flag2) do {} goto loc3;

loc loc3:
do {} goto loc4;

loc loc4: 
do {flag1 := false;} goto loc0;
}

thread T2 () {
loc loc0: 
do {flag2 := true;} goto loc2;

loc loc2: 
when (!flag1) do {} goto loc3;

loc loc3:
do {} goto loc4;

loc loc4:
do {flag2 := false;} goto loc0;
}

thread T2 () {
loc loc0: 
do {flag2 := true;} goto loc2;

loc loc2: 
when (!flag1) do {} goto loc3;

loc loc3:
do {} goto loc4;

loc loc4:
do {flag2 := false;} goto loc0;
}

critical regionscritical regions
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Example 2: Checking Mutual Exclusion 
Using Assertions (Cont’d)

system MuxTry {
boolean flag1;
boolean flag2;
int c;

thread T1 () {
loc loc0: 
do {flag1 := true;} goto loc2;

loc loc2:
when (!flag2) do {} goto loc3;

loc loc3:
do {c := c+1; assert(c==1);} 
goto loc4;

loc loc4: 
do {c := c-1; flag1 := false;} 
goto loc0;
}

system MuxTry {
boolean flag1;
boolean flag2;
int c;

thread T1 () {
loc loc0: 
do {flag1 := true;} goto loc2;

loc loc2:
when (!flag2) do {} goto loc3;

loc loc3:
do {c := c+1; assert(c==1);} 
goto loc4;

loc loc4: 
do {c := c-1; flag1 := false;} 
goto loc0;
}

thread T2 () {
loc loc0: 
do {flag2 := true;} goto loc2;

loc loc2: 
when (!flag1) do {} goto loc3;

loc loc3: 
do {c := c+1; assert(c==1);} 
goto loc4;

loc loc4:
do {c := c-1; flag2 := false;} 
goto loc0;
}

thread T2 () {
loc loc0: 
do {flag2 := true;} goto loc2;

loc loc2: 
when (!flag1) do {} goto loc3;

loc loc3: 
do {c := c+1; assert(c==1);} 
goto loc4;

loc loc4:
do {c := c-1; flag2 := false;} 
goto loc0;
}

critical regionscritical regions

To check mutual exclusion, instrument protocol as follows:

What about deadlock freedom?
CISC422/853, Winter 2009                 Specifying 10

Assertions in Java 

Java 1.4 also supports assertions
What does it mean if a Java assertion is 
• violated?
• not violated?

What’s the difference between assertions in 
Bogor/Spin and Java?
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Invariants 

Express property of observables that holds at every 
location
What kind of correctness claim does an invariant 
make, that is, what does it mean if there is
• no invariant violation?: 

“At all locations along all executions of the system, the property 
holds”

• an invariant violation?:
“There is at least one location along an execution such that the 

property does not hold at that location”

How do invariants compare to 
• assertions? 
• “loop invariants” in Hoare Logic?
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Multiplication Example 

// assume parameters m and n
count := m;
output := 0;

// loop invariant: m * n == output + (count * n)
while (count > 0) do {

output := output + n;
count := count – 1;

}

// assume parameters m and n
count := m;
output := 0;

// loop invariant: m * n == output + (count * n)
while (count > 0) do {

output := output + n;
count := count – 1;

}

Consider a simple program with a loop invariant

[Source: CIS842 @ KSU]



CISC422/853, Winter 2009                 Specifying 13

Multiplication Example 

system Mult {
int m;
int n;
int count;
int output;

main thread Main () {
loc loc0: 

do {m := (int (0,255)) 5;
n := (int (0,255)) 4;
count := m;
output := (int (0,255)) 0;
start T1(); 

} return;
}

system Mult {
int m;
int n;
int count;
int output;

main thread Main () {
loc loc0: 

do {m := (int (0,255)) 5;
n := (int (0,255)) 4;
count := m;
output := (int (0,255)) 0;
start T1(); 

} return;
}

BIR Version:

thread T1 () {
loc loc0: 

when (count > 0)
do {output := output + n;

count := count - 1;} 
goto loc0;
when (count == 0) do {} 
return;

}

thread T1 () {
loc loc0: 

when (count > 0)
do {output := output + n;

count := count - 1;} 
goto loc0;
when (count == 0) do {} 
return;

}

Now, …how to program the 
check of the invariant?

Using two threads is unnatural, but the 
motivation will be clear in a moment…

Remember:
No interleaving between these two
assignments!

Remember:
No interleaving between these two
assignments!
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Checking Invariants

main thread Main ()
…
…

loc locAssert: 
do {assert (I);} 
return;

main thread Main ()
…
…

loc locAssert: 
do {assert (I);} 
return;

• To check invariant I on a 
program with the threads 

Main, T1, …, Tn
add an assertion of I as the 
last transition of Main:

• Why does this work?
• Model-checker will explore all possible interleavings
between Main and each Ti
• Thus, the assertion statement will get interleaved (on some 
trace) between every pair of execution steps of each Ti and 
thus checking the invariant on every state along every 
possible execution of T1, …, Tn

[Source: CIS842 @ KSU]
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Multiplication Example: Checking 
Invariants 

system Mult {
…
main thread Main () {

loc loc0: 
do {m := (int (0,255)) 5;

n := (int (0,255)) 4;
count := m;
output := (int (0,255)) 0;
start T1(); 

} 
goto loc1;

loc loc1:
do {assert (m*n == 

output+(count*n));}
return;

}

system Mult {
…
main thread Main () {

loc loc0: 
do {m := (int (0,255)) 5;

n := (int (0,255)) 4;
count := m;
output := (int (0,255)) 0;
start T1(); 

} 
goto loc1;

loc loc1:
do {assert (m*n == 

output+(count*n));}
return;

}

thread T1 () {
loc loc0: 

when (count > 0)  do {
output := output + n;
count := count - 1;

} 
goto loc0;
when (count == 0)  do {} 
return;

}

thread T1 () {
loc loc0: 

when (count > 0)  do {
output := output + n;
count := count - 1;

} 
goto loc0;
when (count == 0)  do {} 
return;

}

Assertion addedAssertion added
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Checking Invariants

assertion transition (loc1 in Main)

Initialization in MainInitialization in Main

After Main finishes, 
there are no other 
choice points along 
the tree path

After Main finishes, 
there are no other 
choice points along 
the tree path

T1 actionT1 action

In other words, there exists a path where we do 0 steps of T1 then 
check I, there exists a path where we do 1 step of T1 then check I, 
there exists a path where we do 2 steps of T1, then check I, etc.

[Source: CIS842 @ KSU]
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Checking Invariants 
in Spinmtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore() {

do
:: sem!p -> sem?v

od
}

active [5] proctype user() {

do
:: sem?p -> count++;

/* critical section */

count--;

sem!v

od
}

mtype = { p, v };

chan sem = [0] of { mtype };

byte count;

active proctype semaphore() {

do
:: sem!p -> sem?v

od
}

active [5] proctype user() {

do
:: sem?p -> count++;

/* critical section */

count--;

sem!v

od
}

active proctype invariant() {
assert(count <= 1)

}

assert(count<=1)

terminateinstantiate

Increase in number of states: x 3

active proctype invariant() {
do :: assert(count <= 1) od

}
instantiate assert(count<=1)

Increase in number of states: x 1
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Assertions and Invariants
Assume location l in t can be characterized by pt at l.  
• Then, checking for assertion q at l in t is equivalent to checking the   

invariant pt at l -> q

• pt at l is also called filter
• “Assertions are invariants with 

non-trivial filters”

thread t() {
...
loc loci: do {assert(q); ... }
...

}  
main thread Main() {

loc loc0: do {...         
start t();}

return;
}  

thread t() {
...
loc loci: do {assert(q); ... }
...

}  
main thread Main() {

loc loc0: do {...         
start t();}

return;
}  

thread t() {
...
loc loci: do {assert(q); ... }
...

}  
main thread Main() {

loc loc0: do {...         
start t();}

goto loc1;
loc loc1: 

do {assert(pt at loci) -> q);}
return;

}  

thread t() {
...
loc loci: do {assert(q); ... }
...

}  
main thread Main() {

loc loc0: do {...         
start t();}

goto loc1;
loc loc1: 

do {assert(pt at loci) -> q);}
return;

}  
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Safety and Liveness: Informally

Consider the mutual exclusion problem again:

proctype T1() {

do
::  // non-critical region

// entry protocol

// critical region

// exit protocol

od;

proctype T1() {

do
::  // non-critical region

// entry protocol

// critical region

// exit protocol

od;

proctype T2() {

do
::  // non-critical region

// entry protocol

// critical region

// exit protocol

od;

proctype T2() {

do
::  // non-critical region

// entry protocol

// critical region

// exit protocol

od;

Req1: “Both processes are never in their critical region at the same time”
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Safety and Liveness: Informally 
(Cont’d)

A trivial solution?!

proctype T1() {

do
::  // non-critical region

(false); // entry protocol

// critical region

skip; // exit protocol

od;

proctype T1() {

do
::  // non-critical region

(false); // entry protocol

// critical region

skip; // exit protocol

od;

proctype T2() {

do
::  // non-critical region

(false); // entry protocol

// critical region

skip; // exit protocol

od;

proctype T2() {

do
::  // non-critical region

(false); // entry protocol

// critical region

skip; // exit protocol

od;

Req1: “Both processes are never in their critical region at 
the same time”
Req2: “After starting its entry protocol, a process 
will always eventually be allowed into its critical region”

√

X

SafetySafety

LivenessLiveness
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Safety and Liveness: Informally 
(Cont’d)   

Intuitively:
“something bad never happens”

Examples:
“x is always positive”
“The system never deadlocks”
“The elevator will always be 
between the first and third floor”
“The system will terminate after 
10 steps”

Intuitively:
“something bad never happens”

Examples:
“x is always positive”
“The system never deadlocks”
“The elevator will always be 
between the first and third floor”
“The system will terminate after 
10 steps”

Intuitively:
“something good eventually 
happens”

Examples:
“x will eventually be positive”
“The system will terminate”
“After pressing the request 
button, the elevator will 
eventually appear”

Intuitively:
“something good eventually 
happens”

Examples:
“x will eventually be positive”
“The system will terminate”
“After pressing the request 
button, the elevator will 
eventually appear”

Safety Liveness

• Terms due to Leslie Lamport
• What about assertions and invariants?
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Safety and Liveness: Formally 

P is a safety property iff for every trace  
t=s0s1s2... 

we have 
t∉P ⇒ ∃i. ∀t’. s0s1s2...sit’∉P

P is a safety property iff for every trace  
t=s0s1s2... 

we have 
t∉P ⇒ ∃i. ∀t’. s0s1s2...sit’∉P

P is a liveness property iff for every trace 
t=s0s1s2...

we have 
∀i. ∃t’. s0s1s2...sit’∈P

P is a liveness property iff for every trace 
t=s0s1s2...

we have 
∀i. ∃t’. s0s1s2...sit’∈P

“Once the ‘bad thing’
has occurred, there’s 
no recovering from it”

“Once the ‘bad thing’
has occurred, there’s 
no recovering from it”

“It is always possible 
for the ‘good thing’

to happen”

“It is always possible 
for the ‘good thing’

to happen”

“Every property can be expressed as the 
conjunction of a safety property and a 
liveness property” [Alpern & Schneider, 1985]

“Every property can be expressed as the 
conjunction of a safety property and a 
liveness property” [Alpern & Schneider, 1985]

“Safety and liveness
are fundamental 

notions”

“Safety and liveness
are fundamental 

notions”

CISC422/853, Winter 2009                 Specifying 23

P is a safety property iff for every trace  
t=s0s1s2... 

we have 
t∉P ⇒ ∃i. ∀t’. s0s1s2...sit’∉P

P is a safety property iff for every trace  
t=s0s1s2... 

we have 
t∉P ⇒ ∃i. ∀t’. s0s1s2...sit’∉P

P is a liveness property iff for every trace 
t=s0s1s2...

we have 
∀i. ∃t’. s0s1s2...sit’∈P

P is a liveness property iff for every trace 
t=s0s1s2...

we have 
∀i. ∃t’. s0s1s2...sit’∈P

Safety and Liveness: Formally (Cont’d)

Let P be a liveness property and 
t=s0s1s2... be a trace violating P, 
that is, t ∉ P. Then, 
∀i. ∃t’. s0s1s2...sit’ ∈ P

Let P be a liveness property and 
t=s0s1s2... be a trace violating P, 
that is, t ∉ P. Then, 
∀i. ∃t’. s0s1s2...sit’ ∈ P

Let P be safety property and 
t=s0s1s2... be a trace violating P, 
that is, t ∉ P. Then,  
∃i. ∀t’. s0s1s2...sit’ ∉ P

Let P be safety property and 
t=s0s1s2... be a trace violating P, 
that is, t ∉ P. Then,  
∃i. ∀t’. s0s1s2...sit’ ∉ P

“Safety properties are
finitely refutable, i.e.,
counter examples will 

be finite”

“Safety properties are
finitely refutable, i.e.,
counter examples will 

be finite”

“Liveness properties 
are not finitely 
refutable, i.e.,

counter examples 
will be infinite”

“Liveness properties 
are not finitely 
refutable, i.e.,

counter examples 
will be infinite”
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Safety and Liveness: More Examples
Req 1: “A use of a variable must be preceded by a 
declaration”
Req 2: “When a file is opened, it must subsequently be 
closed”
Req 3: “You cannot shift from ‘drive’ to ‘reverse’
without passing through ‘neutral’ ”
Req 4: “No pair of adjacent dining philosophers can be 
eating at the same time”
Req 5: “Never two processes in their critical region at 
the same time”
Req 6: “Every philosopher will always eat eventually”

Which requirements are safety properties and which are liveness properties?
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Safety, Liveness, and Run-time 
Monitoring

⇒ Any property that a run-time monitor can check is a 
safety property

Intrumented
Program IP

Intrumented
Program IP

Monitor for φMonitor for φ

… s2s1s0

“T caused IP to
exhibit a trace 
t violating φ”

“T did not cause
IP to exhibit a 
trace violating φ”

Program PProgram P

Theorem: Every property over finite traces is a 
safety property

Theorem: Every property over finite traces is a 
safety property

Test suite TTest suite T Test harnessTest harness
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How to Express Safety and Liveness
Properties? 

Safety
• assertions and invariants
• FSAs
• Regular Expressions
• Never Claims

Liveness
• progress labels 
• Buechi automata
• Never Claims

Linear Temporal Logic (LTL)
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FSAs for Safety Properties
S = “Every file is opened before reading, writing, or closing”

¬S = “A read, write, or close happened before an open” (violation)

open

close,
read,
write

closeAS

open, read, 
write, close

read,
write,
open

open

close,
read,
write

closeA¬S

open, read, 
write,close

read,
write,
open

what we want
to happen

what we don’t
want to 
happen

Model checkers look 
for violations, so they 
typically expect 
violations of the 
safety property to be 
specified

Model checkers look 
for violations, so they 
typically expect 
violations of the 
safety property to be 
specified
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Specifying Safety Properties in Bogor

What’s the property specified here?
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Observables, Again

Alphabet Σ contains the “observables”, i.e., the atomic 
propositions over which the specification is phrased
Checker must be able to determine whether or not an 
observable is true in a given state
• may be able to determine directly (e.g., variable values)

° E.g., x>3 or  np_ in Spin

• if not, helper variables and assignments must be used. E.g.: 
° fileOpen := true;
° count number of processes in critical region

In Bogor: 
• Observable: Values of variables and program counters
• Not observable: e.g., ids of enabled threads
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Regular Expressions (Recap)
Let Σ be the alphabet
Regular expressions over Σ are built as follows:
• Every a∈Σ is a regular expression over Σ
• If e, e1, e2 are regular expressions over Σ, then 

° e1 ; e2 concatenation/sequencing
° e1 | e2 choice/disjunction
° e* reflexive and transitive closure/iteration with 0
° (e) grouping
° e? option
° e+ transitive closure/iteration without 0
° . any symbol/don’t care
° [e1, e2, ...] union/multiple disjunction
° [- e1, e2, ...] complement/exclusion

also are regular expressions over Σ

Every regular expression e over Σ defines a set of words over Σ, 
that is, L(e) ⊆ Σ*

derived
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Regular Expressions

Theorem:
For every FSA A, there exists a regular expression eA, 
such that L(A) = L(eA).
For every regular expression e, there exists an FSA Ae, 
such that L(e) = L(Ae).

Theorem:
For every FSA A, there exists a regular expression eA, 
such that L(A) = L(eA).
For every regular expression e, there exists an FSA Ae, 
such that L(e) = L(Ae).

⇒FSAs and regular expressions can be used 
interchangeably

⇒So, if FSAs can be used to express safety properties, 
then regular expressions can, too
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Regular Expressions (Cont’d)

Example:
• Let open, close ∈ Σ
• positive:

° “Every open is immediately followed by a close”

° ( [- open]* (open close)? )*
• negative:

° “At least one open is not immediately followed by a close”
° (.)* open ([- close] (.)*)?
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Never Claims: FSAs in Spin

Used in Spin to express violations of 
• safety properties, and 
• liveness properties (more on this later)

For the moment, we can think of a Never Claim as 
• a Promela program that defines an FSA
• expressing how a safety property can be violated, that is, the 

negation of a safety property
never {

do
:: (x!=13)
:: (x==13) -> break
od;

accept_s: do
:: (true)
od

}

x!=13

x==13
true

acceptance 
cycle

acceptance
label

“x is never equal to 13”
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Never Claims

NC executed synchronously (remember?) with system

Matching a never claim NC:
• A run t matches NC, if t causes NC to

° be fully executed, that is, the outermost “}” of the claim to be 
reached, or

° reach an acceptance cycle

• NC specifies behaviours that should never occur. So, if run t 
matches NC, we have found a violation!

Not matching a never claim NC:
• If the run t does not match NC, then t is ok, because it does not 

exhibit the violating behaviour described by NC

• Note that if run t causes the NC to “get stuck” (i.e., NC has no 
enabled transition and t is not done), then t does not match NC

More on 
this later!

More on 
this later!
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Never Claims (Cont’d)

never {
do
:: open -> do

:: close -> break
:: else -> skip
od

:: else -> break
od

accept: do
:: true -> skip
od

}

open

close
read,
write

closeA’¬S

open, read, 
write,close

read,
write,
open

never {
do
:: open -> do

:: close -> break
:: else -> skip
od

:: else -> break
od

}

There’s an implicit acceptance cycle at the 
end of every never claim.  So, the following 
two claims are equivalent:

“access operations are used in proper order”
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Never Claims (Cont’d)
Can contain all of Promela’s control-flow constructs
• e.g., if, do, goto, etc

Should be side-effect free (not change the state of the system being 
analyzed), that is, should only contain expression statements
Can be non-deterministic

never {

do

:: (true)

:: (x==13) -> break

od;

}

never {

do

:: (x!=13)

:: (x==13) -> break

od;

}

never {

do

:: (x==13) -> break

:: (true)

od;

}

All of these can be used to check that “x is never 13”!
Why?
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Expressing Liveness Properties

Want to say that something good always eventually happens, 
i.e., that system always eventually makes some progress

Violation: Execution along which eventually no more 
progress (towards the good thing) is made

3 possibilities to express liveness property in Spin:
1. using progress labels (for simple liveness properties)

2. using Buechi Automata (for simple and complex liveness properties)

3. using Linear Temporal Logic (LTL) (for simple and complex liveness
properties)

• Assumption: system has only infinite executions (possibly 
use “stutter extension”)
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1. Using Progress Labels
Simple idea: label certain states as “good”, i.e., as progress states
• e.g., Philosopher1.eating

Claim with respect to system S and progress state s:
• From all reachable states in S, eventually s will always 
be reached
⇒ s occurs infinitely often along all executions of S

Violation:
• There is an execution in S along which s occurs only 
finitely many times
⇒ There is a run in S that’s either 

1) finite, or 
2) ending in a cycle not containing s 

(non-progress cycle) 

If we add self-loops to all states 
with no outgoing arcs (stutter extension), 
1) can be reduced to 2)
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Stutter Extension 

Goal: When detecting non-progress cycles, don’t 
want to have to distinguish between finite and 
infinite execution
Solution:
• Let M be an iFSA
• We define “stutter extension” of M

stutter(M) = (M.S, M.S0, L’, δ’, M.F) 

where
L’ = M.L ∪ {“idle”}
δ’ = M.δ ∪ {(s, “idle”, s) | s∈ M.S Æ s has no outgoing transitions}

• And then use stutter(M) to look for non-progress cycles
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Non-Progress Cycles in Spin

compile verifier with –DNP and run it with –l:
$ gcc –DNP –o pan pan.c

$ ./pan -l 

or select
“Non-Progress Cycles”
in “Basic Verification Options”
in xspin
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2. Using Buechi Automata

Progress labels alone are not enough to express more 
complicated liveness properties such as
• S = “The first open is always eventually followed by a close”

Violation:
• ¬S = “The first open is never followed by a close”

• Ok, but: 
open readω ∉ L(A¬S)

because only finite words can be accepted by FSA
→ need to change acceptance condition of FSA

open close

¬ close

¬ open

A¬S

. 
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ω−Acceptance

An accepting ω-run of an FSA A is an ω-run
σ = (s0, l0, s1)(s1, l1, s2)(s2, l2, s3)…(si-1, li−1,si)…

of A such that 
∃ sf∈A.F. “sf occurs infinitely often in σ”.

An accepting ω-run of an FSA A is an ω-run
σ = (s0, l0, s1)(s1, l1, s2)(s2, l2, s3)…(si-1, li−1,si)…

of A such that 
∃ sf∈A.F. “sf occurs infinitely often in σ”.

Example:

A = accepting ω−run of A:
idle (ready execute)ω

ω−word of A:
start run (pre-empt run)ω

ω−regular language Lω(A) of A:
start run ((pre-empt run) + 

(block unblock))ω
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Buechi Automata

Buechi automata are sometimes also called ω-
automata

An Buechi automaton is a FSA with ω-acceptance.An Buechi automaton is a FSA with ω-acceptance.
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Buechi Automata for Liveness: 
Example 2

Let’s try another liveness property
• S2 = “Every open is always eventually followed by a close”

Violation:
• ¬S2 = “At least one open is never followed by a close”

Used to overread initial 
occurrences of ‘open’ that 
are followed by a close

open close

¬ close

.
A¬S2 . 

For example:
open [- close]ω ⊆ Lω(A¬S2

)
open close open [- close]ω ⊆ Lω(A¬S2

)
Note: other solutions are possible! Which?
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Buechi Automata for Liveness: 
Example 2 (Cont’d)

Let’s try another liveness property
• S2 = “Every open is always eventually followed by a close”

Violation:
• ¬S2 = “At least one open is never followed by a close”

Why doesn’t A’ capture ¬S2?

open close

¬ close

¬ open

A’
. 
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Buechi
Automata as 
Never Claims 
Never claims are Buechi automata!

Remember: run t is accepted/ 
matched by never claim NC, if t 
causes NC 
• to end in an acceptance cycle, or

• to be fully executed (implicit 
acceptance cycle)

Example:
• S2 = “Every open is always eventually

followed by a close”
• word w ∈ Lω(A¬S2) iff w matches NC¬S2

NC¬S2

never {

init_s0:

if

:: (open) -> goto accept_s1

:: (true) -> goto init_s0

fi;

accept_s1:

if

:: (!close) -> goto accept_s1

fi;

}

NC¬S2

never {

init_s0:

if

:: (open) -> goto accept_s1

:: (true) -> goto init_s0

fi;

accept_s1:

if

:: (!close) -> goto accept_s1

fi;

}

A¬S

open close

¬ close

.
A¬S2

. 
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Temporal Logic

Temporal logic = 

propositional logic

+ 

temporal operators

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

• e.g., “always”, “eventually”, 
“after”, “until”

• to capture properties of
sequences of states, e.g.,

• ¬ (x=13) is always true
• whenever “request”, then 

eventually “granted”

• e.g., “always”, “eventually”, 
“after”, “until”

• to capture properties of
sequences of states, e.g.,

• ¬ (x=13) is always true
• whenever “request”, then 

eventually “granted”
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3. Using Linear Temporal Logic (LTL)

Linear Temporal logic (LTL) = 

propositional logic

+ 

temporal operators

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

• G Φ “always Φ”
• F Φ “eventually Φ”
• X Φ “Φ in next state”
• Φ1 U Φ2 “Φ1 until Φ2”

• G Φ “always Φ”
• F Φ “eventually Φ”
• X Φ “Φ in next state”
• Φ1 U Φ2 “Φ1 until Φ2”

Examples:
• G x != 13
• G (request → F granted)
• !access U locked

M ² G x!=13 iff
“x!13 in every state in every run of M”

M M



CISC422/853, Winter 2009                 Specifying 49

Linear Temporal Logic (LTL) (Cont’d)

Syntax
φ ::= p ∈ AP | // atomic proposition (e.g., “x==0”, “reqGranted”)

¬φ | φ Æ φ | φ Ç φ | φ → φ | φ ↔ φ |
Xφ | Gφ | Fφ | φ U φ

where AP is set of “atomic propositions”

Semantic intuition
Xφ “φ in next state”

Gφ “always/globally φ”

Fφ “eventually/finally φ

φ1 U φ2 “φ1 until φ2”

...

...

...

...

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

φ

φ

φ

φ1φ1φ1φ1φ1φ1φ2

Note Spin uses
[]φ instead of Gφ

<>φ instead of Fφ

Note Spin uses
[]φ instead of Gφ

<>φ instead of Fφ
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Linear Temporal Logic: Examples 1
G x!=13
• “Along all runs, in all states, the value x is not equal to 13

¬F(phil1eats Æ phil2eats)
• “Along all runs, it is not the case both philosophers eat at the same 

time”

G(pc1=loc1 → G pc1=loc1)
• “Along all runs of S, in every state, whenever pc1=loc1, then 

pc1=loc1 in all future states”

G(gear=reverse → X(gear=reverse Ç gear=neutral))
• “Along all runs of S, in every state, whenever the gear is in reverse, 

then in the next state it will either still be in reverse or in neutral”

(F DB_updated) → (¬ DB_read U DB_updated) 
• “If the DB will be updated at some point in the future, then don’t read 

it until then

CISC422/853, Winter 2009                 Specifying 51

Formal Semantics of LTL 

We now want to define precisely when an LTL 
formula φ holds for some iFSA M
Problem: LTL formulas are interpreted over 
infinite runs not finite ones
Solution:
• Let M be an iFSA
• We define “stutter extension” of M

stutter(M) = (M.S, M.S0, L’, δ’, M.F) 

where
L’ = M.L ∪ {“idle”}
δ’ = M.δ ∪ {(s, “idle”, s) | s has no outgoing transitions in M}

• And interpret LTL formulas over Lω(stutter(M))

As beforeAs before

CISC422/853, Winter 2009                 Specifying 52

Formal Semantics of LTL
Let M be iFSA, φ be LTL formula

M ² φ iff ∀r∈Lω(stutter(M)). r ² φ

where
r ² p iff eval(s0,p) = true
r ² φ1 Æ φ2 iff r ² φ1 and r ² φ2

…

r ² Xφ iff r1²φ
r ² Gφ iff ∀i≥0. ri ² φ
r ² Fφ iff ∃i≥0. ri ² φ
r ² φ1 U φ2 iff ∃i≥0. r

i
² φ

2
and ∀0≤k<i. r

k
² φ

1
where

r is assumed to be of the form s0s1s2... and 
ri = sisi+1si+2 ... for all i≥0 and 
eval: M.S×AP → {true, false} 

Note implicit universal 
quantification over
all paths

Note implicit universal 
quantification over
all paths

For every state s and 
every atomic proposition
p, we have a way of 
determining if p holds in s

For every state s and 
every atomic proposition
p, we have a way of 
determining if p holds in s
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LTL Equivalences

all propositional equivalences, e.g., ¬¬φ ↔ φ

¬Gφ ↔ F¬φ

¬Fφ ↔ G¬φ

Gφ ↔ φ Æ X G φ

Fφ ↔ φ Ç X Fφ

φ1 U φ2 ↔ φ2 Ç (φ1 Æ X(φ1 U φ2))

true U φ ↔ Fφ

G and F are duals

use X to “unroll”
G, F, and U

F is special case of U
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Linear Temporal Logic: Examples 2
(X X open) → (X X X X close)
• “Along all runs, if there’s an ‘open’ in the second state, then there is a  

‘close’ in the fourth state”

G (open → F close)
• “Along all runs, it must always be the case that an ‘open’ is eventually 

followed by a ‘close’”

FG p
• “Along all runs, it must eventually be the case that p always holds”
• Example of a run satisfying/violating the specification?

GF p
• “Along all runs, it must always be the case that eventually p holds”, aka, “p 

holds infinitely often”
• Example of a run satisfying/violating the specification?

G((rainStart Æ ¬rainEnd Æ F rainEnd) → (roofClosed U rainEnd))
• “Once the rain has started, the roof remains closed until the rain ends”
• “The roof is always closed while it rains”
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LTL Notes

Just like Buechi Automata, LTL can be used to 
express both 
• safety properties, e.g., G x!=13, and 
• liveness properties, e.g., F x=0

Invented by Prior (1960’s) 
First used to reason about concurrent systems by Amir 
Pnueli (Turing Award Winner)
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LTL Notes (Cont’d)

LTL’s universal path quantification 
• An LTL formula is implicitly universally quantified over all paths of 

the system:
M ² φ iff ∀r∈Lω(stutter(M)). r ² φ

• How do you express that there exists a path satisfying a certain 
property φ? Hint: Remember Assignment 1!

Never Claims versus LTL
• Never Claims (= Buechi Automata) are strictly more expressive:

° Anything expressible in LTL can be expressed with a Never Claim
° Not everything expressible with a Never Claim is expressible in LTL
qExample: e may be received after an even # of transitions and e is never 

received after an odd # of transitions

true e

¬e . 
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LTL and Buechi Automata

Theorem: For any LTL formula φ, there exists a Buechi automaton 
Aφ that accepts those runs for which φ is satisfied, i.e.,

∀φ. ∃Aφ. L(Aφ) = {r | r ² φ}

Theorem: For any LTL formula φ, there exists a Buechi automaton 
Aφ that accepts those runs for which φ is satisfied, i.e.,

∀φ. ∃Aφ. L(Aφ) = {r | r ² φ}

Examples: The LTL formula
1.  G p corresponds to which Buechi automaton?
2.  FG p corresponds to the Buechi automaton:

3.  GF ¬p (¬p holds infinitely often) corresponds to Buechi automaton:
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LTL and Spin

Can use Spin to generate Buechi automaton (Never 
Claim) corresponding to a given LTL formula:

[Source: spinroot.com]
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LTL and Spin (Cont’d)
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LTL and Spin (Cont’d)
xspin has LTL property manager
• edit, store, load LTL properties
• view them as never claims

Checking system S wrt LTL formula φ in Spin
(“Does S satisfy φ?”): 
• Spin computes NC¬φ, i.e., Never Claim of negation of φ
• Spin explores state space of S⊗NC¬φ, i.e., the synchronous 

composition of S with NC¬φ

• If S⊗NC¬φ has run ending in acceptance cycle, then
° “Violation!”
° S can exhibit behaviour violating φ and output counter example

• If S⊗NC¬φ has no run ending in acceptance cycle, then
° “No violation!”
° S cannot exhibit behaviour violating φ
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Summary
(Formal) Specifications 
Types of formal specifications
• assertions
• invariants
• safety and liveness properties

How to express safety properties
• FSAs and regular expressions
• Never Claims
• LTL

How to express liveness properties
• progress labels
• Buechi Automata and Never-Claims
• LTL

how to check them
using Bogor and Spin

how to check them
using Bogor and Spin

how to check them
using Spin

how to check them
using Spin
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Summary (Cont’d)
Bogor
• checks for violations of safety properties expressed using
assertions, invariants, or FSAs (expressed in BIR)
• does not check for liveness properties

Spin
• checks for violations of liveness properties expressed 

using 
° progress labels: “Is there a run not ending in a progress cycle?”
° Buechi Automata (expressed as Never Claims): “Is there a run 

that fully matches the Never Claim?”
° LTL formulas (expressed as Never Claims): “Is there a run that 

fully matches the Never Claim representing the negated LTL 
formula?”
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Computation Tree Logic (CTL) (1)

Computation Tree Logic (CTL) =
propositional logic

+ 

temporal operators

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

to capture properties of
individual states, e.g.
• x=0 Æ (y=13→ z=13)
• m*n = output + (count*n)

• AG p   “along all paths, 
in all states p”

• AF p “along all paths, 
eventually p”

• AG p   “along all paths, 
in all states p”

• AF p “along all paths, 
eventually p”

Examples:
• AG x != 13
• AF (request → EF granted)
• A[access U locked]

S ² AG x!=13 iff
“x!=13 in every state in every path of S”

S S
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Computation Tree Logic (CTL) (2)

Temporal operators in CTL have the following form

where 
• PathQuantifier ∈ {All, Exists}
• StateQuantifier ∈ {Globally, Finally, neXt, Until}

PathQuantifier StateQuantifierPathQuantifier StateQuantifier

As before, p∈AP, that is, p is an atomic proposition
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Computation Tree Logic (CTL) (3)

path
quantifier

state
quantifier
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Computation Tree Logic (CTL) (4)
Consider following computation tree

Black states satisfy p
Red states satisfy q
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Computation Tree Logic (CTL) (5)

“along all paths,
in every state”

“along all paths,
in some state”

(finally, eventually)

“along all paths,
in the next state”

“along all paths, 
p until q”
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Computation Tree Logic (CTL) (6)

“along at least one path,
in every state”

“along at least one path,
in some state”

(finally, eventually)

“along at least one path,
in the next state”

“along at least one path, 
p until q”
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CTL Semantics

Taken from course notes on CTL 
(available on course web pages) CISC422/853, Winter 2009                 Specifying 70

CTL Semantics (Cont’d)
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CTL Examples (1)

EF UserASuperUserEF UserASuperUser

AG EF UserASuperUserAG EF UserASuperUser

AG (requested → AF granted)AG (requested → AF granted)

AG ¬badAG ¬bad

AG(floor=2 Æ direction=up Æ ButtonOnFloor5Pressed →
A[direction=up U floor=5])

AG(floor=2 Æ direction=up Æ ButtonOnFloor5Pressed →
A[direction=up U floor=5])

“It is possible for User A to become superuser”

“It is always possible for User A to become superuser”

“A request is always eventually granted”

“It is impossible to reach a bad state”¬EF bad¬EF bad

“In every reachable state, when the elevator is on floor 2 and 
moving up and the request Button on floor 5 is pressed, then 
1. it will eventually arrive on floor 5, and 
2. up until that point it will move up”
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CTL Examples (2)

AG !(pc0=cr0 Æ pc0=cr0)AG !(pc0=cr0 Æ pc0=cr0)

AG (pc0=nc0 → AF pc0=cr0)AG (pc0=nc0 → AF pc0=cr0)

AG (pc1=nc1 → AF pc1=cr1)AG (pc1=nc1 → AF pc1=cr1)

“C0 and C1 are never in their 
critical region at the same time”

“C0 will always eventually 
be able to enter its critical region”
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CTL Equivalences

¬AGϕ ↔ EF¬ϕ
¬EGϕ ↔ AF¬ϕ
¬AFϕ ↔ EG¬ϕ
¬EFϕ ↔ AG¬ϕ
¬AXϕ ↔ EX¬ϕ
¬ EXϕ ↔ AX¬ϕ

¬AGϕ ↔ EF¬ϕ
¬EGϕ ↔ AF¬ϕ
¬AFϕ ↔ EG¬ϕ
¬EFϕ ↔ AG¬ϕ
¬AXϕ ↔ EX¬ϕ
¬ EXϕ ↔ AX¬ϕ

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

“Unwindings”

Dualities

CISC422/853, Winter 2009                 Specifying 74

CTL Equivalences (Cont’d)

EGϕ ↔ ¬ (AF¬ varphi)
AFϕ ↔ A[tt U ϕ]
EFϕ ↔ E[tt U ϕ]
A[ϕ1 U ϕ2] ↔ ¬(E[¬ϕ2 U (¬ ϕ1Æ ¬ϕ2)]  Ç EG¬ϕ2)

EGϕ ↔ ¬ (AF¬ varphi)
AFϕ ↔ A[tt U ϕ]
EFϕ ↔ E[tt U ϕ]
A[ϕ1 U ϕ2] ↔ ¬(E[¬ϕ2 U (¬ ϕ1Æ ¬ϕ2)]  Ç EG¬ϕ2)

Reductions
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CTL vs LTL

LTL: execution sequences are linear
CTL: execution sequence are branching
The two logics are incomparable wrt their 
expressiveness
• There are CTL formulas that are not expressible in LTL

° e.g., AF AG p

• There are LTL formulas that are not expressible in CTL
° e.g., F G p

Also, as we will see the algorithm for CTL model 
checking will be quite different from the LTL model 
checking algorithm that we have seen (more on this 
later)
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Specification Patterns: Motivation

Have already seen one way to classify properties: 
• safety
• liveness

This classification is very useful, because it impacts
• design of analysis algorithms
• design of optimization algorithms 
• use of existing tools (e.g., Spin)

However, it’s also very coarse
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Specification Patterns: Motivation 
(Cont’d)

Lots of interesting properties can be expressed in 
temporal logic
However, as soon as temporal operators are nested, 
formulas can become very difficult to design and read
Example:

Would be great to have a more high-level way to think 
of temporal properties

[]((Q Æ ¬R Æ <>R)  → (P → (¬R U (SÆ ¬R))) U R)
or, in ASCII format:

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)
“P triggers S between Q and R”

[]((Q Æ ¬R Æ <>R)  → (P → (¬R U (SÆ ¬R))) U R)
or, in ASCII format:

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)
“P triggers S between Q and R”
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Specification Pattern System

Developed by Dwyer, Avrunin, and Corbett
Pattern system for presenting, codifying, and reusing 
property specifications for finite-state verification
• similar to Design Patterns in OO Programming

Developed by examining over 500 temporal 
specifications collected from the literature
Organized into a hierarchy based on the semantics of 
the requirement 
http://patterns.projects.cis.ksu.edu
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Specification Patterns: Example

5 different 
scopes
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Specification Patterns: Example 
(Cont’d)
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Specification Patterns: Possible 
Scopes

CISC422/853, Winter 2009                 Specifying 82

Specification Patterns: Hierarchy

Occurrence: 
Requires states or events to occur or not to occur

Order:
Constrains the order in which states or events occur

CISC422/853, Winter 2009                 Specifying 83

Specification Patterns: Hierarchy 
(Cont’d)

Absence
• A state/event does not occur within a given scope

Existence
• A state/event must occur within a given scope

Bounded existence
• A state/event must occur {at most, exactly, at least} k times 

within a given scope

Universality
• A state/event does occur throughout a given scope

Precedence
• A state/event P must always be preceded by a state/event Q

Response
• A state/event P must always be followed by a state/event Q
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Specification Patterns: Examples in 
LTL

ScopesScopes

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Specification Patterns: Examples in 
LTL (Cont’d)

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml


