
Tutorial 1: Bogor

CISC422/853
Scott Grant

Overview

 Installing Bogor
Starting Bogor
General Usage and Tips
Advice for Assignment 1

Installing Bogor

Bogor is installed on the lab machines
However, you might want to work from

home, or you might just love Bogor

Easiest to work with as an Eclipse Plugin
http://www.eclipse.org/
http://bogor.projects.cis.ksu.edu/

Installing Bogor

Eclipse
Eclipse is, at its core, an open IDE for developing in a

number of programming languages
You download a distribution based on what type of

software you are developing, and a number of useful
tools are included

For Bogor, this isn't so important, since we are just
interested in the Eclipse IDE

I recommend: Eclipse IDE for Java Developers (85
MB) - unzip anywhere, it is self-contained

Installing Bogor

Installing Bogor

Installing Bogor

bogor-eclipse-bin-xxx.zip

Installing Bogor

Drag and Drop, FTW
bogor-eclipse-bin-xxx.zip should contain seven

directories
Five start with edu.ksu.cis.projects, one starts with

gnu.trove, and one starts with javax.xml.bind.
Copy all of these into the \eclipse\plugins

directory of your new Eclipse installation.

Installing Bogor

How do I know it worked?
Start Eclipse, and go to File -> New -> Other

Starting Bogor

 In the labs
Start -> Programs -> Program Development ->

Eclipse 3.3.0
What's a "workspace"?
Eclipse stores information about your projects

there, and you're fine to use the default..
.. but not in the labs, it seems. If you have

problems, try:
 z:\workspace

Starting Bogor

Create a project
File -> New -> Project
General -> Project
Project Name: whatever you'd like. bogor?

Create a BIR Model in which to write code
File -> New -> Other
Bogor -> BIR Model
File Name: your_file.bir
(Filename must end with .bir, otherwise it's up to you)

Starting Bogor

Starting Bogor

How do you actually run Bogor?
Bogor -> Model Check
(Or you can right-click in the work area, and choose

Model Check)
Choose "Config 0: Default Configuration"
If you don't explicitly choose it, nothing is selected by

default. This sounds pedantic, but it can be
confusing when you choose OK, and nothing runs.
Gah!

Starting Bogor

What am I looking at?
Bogor writes a trail file with the extension

bogor-trails if any errors have been found.
The trail file contains schedule information and

state transitions that lead to the errors.
You can open the counter-example display by

double-clicking the trail file.

Starting Bogor

General Usage and Tips

Bogor Trails
Double-click on the bogor-trails file, if it is

generated after an error occurs.
You can examine each error trail, at each step

of execution, and can observe the values that
caused the error to occur.
These trails can get quite large in some

examples!

General Usage and Tips

General Usage and Tips

General Usage and Tips

Understand why paths are taken
Watch assignments occur
Remember how model checking can be

used to solve these problems
For Q1/Q2, you actually want the model to "fail"

when you have reached your goal

Advice for Assignment 1

Q1
How are you going to represent the position of

each element that crosses the river?
Up to you. In this case, you only really need to know

which side of the shore each element is on, so a
boolean or int would make sense

How can you prevent illegal positions from
being considered?
Use assume(b), where b is some invalid state that we

do not want to pursue

Advice for Assignment 1

system TestBir {
int n;

main thread Main() {
loc loc0:
do {
n := n + 1;

} goto loc1;
loc loc1:
do {
} goto loc0;

}
}

system TestBir {
int n;

main thread Main() {
loc loc0:
do {
n := n + 1;

} goto loc1;
loc loc1:
do {
assume n < 100;

} goto loc0;
}

}Yikes!

Advice for Assignment 1

Q1
An assertion can demonstrate that you've

reached the goal state system TestBir {
int n;

main thread Main() {
loc loc0:

do {
n := n + 1;

} goto loc1;
loc loc1:

do {
assert n <= 10;

} goto loc0;
}

}

I claim that this model
will allow n to reach a value
greater than 10. How can
I use Bogor to prove it? By
asserting that in loc1, at some
point n will not be less than
or equal to 10.

Advice for Assignment 1

Q2
Many of the same rules apply, but you might

need to find a different representation for the
position of your elements
You have three shores now, so if you used one

boolean previously for position, it won't be enough on
its own for three positions

Remember how atomicity works in a location,
and use the invisible keyword if necessary

Advice for Assignment 1

Q2
Each farmer should be represented by its own

thread
Otherwise, the same rules from Q1 apply!
Use assume to prune invalid subtrees
Use assert to identify the goal state
Don't let farmers make invalid moves, but remember

that they're allowed to travel alone, as long as they
don't leave two incompatible items alone on the
same shore

Advice for Assignment 1

Q3
Q3a asks for a brief explanation on why the

simulation is insufficient to determine if the
property always holds no matter how long the
simulation is run.
Be brief!

Advice for Assignment 1

Q3
Each worker in the cooperative should be

represented by their own thread in memory, but
the thread definition should allow for more than
three workers

system SleeplessCode
{

const C { N = 2; }
// ...
thread Worker(int id) {

// ...
}

active thread MAIN()
{

int counter;
// ...
loc loc1:

when counter < C.N do {
counter := counter + 1;
start Worker(counter);

} goto loc1;
when counter == C.N do {} return;

Advice for Assignment 1

Q3
You'll need to store the rank of each worker,

and the last worker to have reached a certain
rank. These values will need to be observed by
each Worker thread..

system SleeplessCode
{

// ...
int[] ranks;
int[] last_promoted_at_rank;

active thread MAIN()
{

loc loc0:
do {

ranks := new int[C.N + 1];
last_promoted_at_rank := new int[C.N + 1];

} goto loc1;

Advice for Assignment 1

Q3
You should be able to convince yourself

whether or not the properties hold
Step through the code, and if necessary, insert

assertions to see how things progress
Adding assertions can be a great way to identify why

your model is doing something you think it shouldn't
Remember how the rules of atomicity work, and

remember at which points each thread can take
over execution
Give yourself time on Q3 - it can be tricky!

Advice for Assignment 1

 If something seems unclear, explain why
you made a decision
It's easier to read commented code than

obfuscated code, and if you leave reasoning for
your decisions, your intentions are clearer

Questions?

Hope this is helpful!

