
Tutorial 1: Bogor

CISC422/853
Scott Grant

Overview

 Installing Bogor
Starting Bogor
General Usage and Tips
Advice for Assignment 1

Installing Bogor

Bogor is installed on the lab machines
However, you might want to work from

home, or you might just love Bogor

Easiest to work with as an Eclipse Plugin
http://www.eclipse.org/
http://bogor.projects.cis.ksu.edu/

Installing Bogor

Eclipse
Eclipse is, at its core, an open IDE for developing in a

number of programming languages
You download a distribution based on what type of

software you are developing, and a number of useful
tools are included

For Bogor, this isn't so important, since we are just
interested in the Eclipse IDE

I recommend: Eclipse IDE for Java Developers (85
MB) - unzip anywhere, it is self-contained

Installing Bogor

Installing Bogor

Installing Bogor

bogor-eclipse-bin-xxx.zip

Installing Bogor

Drag and Drop, FTW
bogor-eclipse-bin-xxx.zip should contain seven

directories
Five start with edu.ksu.cis.projects, one starts with

gnu.trove, and one starts with javax.xml.bind.
Copy all of these into the \eclipse\plugins

directory of your new Eclipse installation.

Installing Bogor

How do I know it worked?
Start Eclipse, and go to File -> New -> Other

Starting Bogor

 In the labs
Start -> Programs -> Program Development ->

Eclipse 3.3.0
What's a "workspace"?
Eclipse stores information about your projects

there, and you're fine to use the default..
.. but not in the labs, it seems. If you have

problems, try:
 z:\workspace

Starting Bogor

Create a project
File -> New -> Project
General -> Project
Project Name: whatever you'd like. bogor?

Create a BIR Model in which to write code
File -> New -> Other
Bogor -> BIR Model
File Name: your_file.bir
(Filename must end with .bir, otherwise it's up to you)

Starting Bogor

Starting Bogor

How do you actually run Bogor?
Bogor -> Model Check
(Or you can right-click in the work area, and choose

Model Check)
Choose "Config 0: Default Configuration"
If you don't explicitly choose it, nothing is selected by

default. This sounds pedantic, but it can be
confusing when you choose OK, and nothing runs.
Gah!

Starting Bogor

What am I looking at?
Bogor writes a trail file with the extension

bogor-trails if any errors have been found.
The trail file contains schedule information and

state transitions that lead to the errors.
You can open the counter-example display by

double-clicking the trail file.

Starting Bogor

General Usage and Tips

Bogor Trails
Double-click on the bogor-trails file, if it is

generated after an error occurs.
You can examine each error trail, at each step

of execution, and can observe the values that
caused the error to occur.
These trails can get quite large in some

examples!

General Usage and Tips

General Usage and Tips

General Usage and Tips

Understand why paths are taken
Watch assignments occur
Remember how model checking can be

used to solve these problems
For Q1/Q2, you actually want the model to "fail"

when you have reached your goal

Advice for Assignment 1

Q1
How are you going to represent the position of

each element that crosses the river?
Up to you. In this case, you only really need to know

which side of the shore each element is on, so a
boolean or int would make sense

How can you prevent illegal positions from
being considered?
Use assume(b), where b is some invalid state that we

do not want to pursue

Advice for Assignment 1

system TestBir {
int n;

main thread Main() {
loc loc0:
do {
n := n + 1;

} goto loc1;
loc loc1:
do {
} goto loc0;

}
}

system TestBir {
int n;

main thread Main() {
loc loc0:
do {
n := n + 1;

} goto loc1;
loc loc1:
do {
assume n < 100;

} goto loc0;
}

}Yikes!

Advice for Assignment 1

Q1
An assertion can demonstrate that you've

reached the goal state system TestBir {
int n;

main thread Main() {
loc loc0:

do {
n := n + 1;

} goto loc1;
loc loc1:

do {
assert n <= 10;

} goto loc0;
}

}

I claim that this model
will allow n to reach a value
greater than 10. How can
I use Bogor to prove it? By
asserting that in loc1, at some
point n will not be less than
or equal to 10.

Advice for Assignment 1

Q2
Many of the same rules apply, but you might

need to find a different representation for the
position of your elements
You have three shores now, so if you used one

boolean previously for position, it won't be enough on
its own for three positions

Remember how atomicity works in a location,
and use the invisible keyword if necessary

Advice for Assignment 1

Q2
Each farmer should be represented by its own

thread
Otherwise, the same rules from Q1 apply!
Use assume to prune invalid subtrees
Use assert to identify the goal state
Don't let farmers make invalid moves, but remember

that they're allowed to travel alone, as long as they
don't leave two incompatible items alone on the
same shore

Advice for Assignment 1

Q3
Q3a asks for a brief explanation on why the

simulation is insufficient to determine if the
property always holds no matter how long the
simulation is run.
Be brief!

Advice for Assignment 1

Q3
Each worker in the cooperative should be

represented by their own thread in memory, but
the thread definition should allow for more than
three workers

system SleeplessCode
{

const C { N = 2; }
// ...
thread Worker(int id) {

// ...
}

active thread MAIN()
{

int counter;
// ...
loc loc1:

when counter < C.N do {
counter := counter + 1;
start Worker(counter);

} goto loc1;
when counter == C.N do {} return;

Advice for Assignment 1

Q3
You'll need to store the rank of each worker,

and the last worker to have reached a certain
rank. These values will need to be observed by
each Worker thread..

system SleeplessCode
{

// ...
int[] ranks;
int[] last_promoted_at_rank;

active thread MAIN()
{

loc loc0:
do {

ranks := new int[C.N + 1];
last_promoted_at_rank := new int[C.N + 1];

} goto loc1;

Advice for Assignment 1

Q3
You should be able to convince yourself

whether or not the properties hold
Step through the code, and if necessary, insert

assertions to see how things progress
Adding assertions can be a great way to identify why

your model is doing something you think it shouldn't
Remember how the rules of atomicity work, and

remember at which points each thread can take
over execution
Give yourself time on Q3 - it can be tricky!

Advice for Assignment 1

 If something seems unclear, explain why
you made a decision
It's easier to read commented code than

obfuscated code, and if you leave reasoning for
your decisions, your intentions are clearer

Questions?

Hope this is helpful!

