
Tutorial 2: Promela/Spin

CISC422/853
Scott Grant

Overview

Installing Spin
Starting Spin
Running Spin
General Usage and Tips
Advice for Assignment 2

Installing Spin

Spin has a few distributions
Xspin is the main one, jSpin is a Java GUI
If you're on a Linux machine at home, you
should be fine with Xspin (gcc, tcl)
Installing Xspin requires you to jump through a
few hoops on a Windows or Mac machine
It's possible though, so this presentation will
explain how to get set up with Xspin and the
MinGW compilers on a Windows machine

(sorry, Mac users, I'm not going there on mine)

Installing jSpin

Windows and Mac users might prefer this
http://stwww.weizmann.ac.il/g-cs/benari/jspin/

(or use Google to search for "jSpin")

Download the following files:
mingw.exe (Windows GNU compilers)
jspin-4-6.exe (jSpin installation)

Installing Xspin

First, install the Spin model checker
http://spinroot.com/
Click "Downloading and installation"

http://spinroot.com/spin/Man/README.html
Skim through the document until Section 2

Installing Spin is broken up into sections based on
your operating system
I'm going to cover the Windows install in detail here
If you try installing at home on Linux or OSX, let me
know how it goes!

Installing Xspin

Download the Spin executable from Section 2b.
Installing Spin on a Windows PC

http://spinroot.com/spin/Bin/index.html
As of today, the file is spin517.exe

Save that file somewhere convenient, and to
make things easy, rename it to spin.exe
Don't forget where you saved that file, jeez!

Installing Xspin

Next, download the Xspin GUI
In Section 2b, the first two links are to the
binary and source distributions of Spin

You went to the first link initially in order to get your
spin.exe file
This time, visit the second link:
http://spinroot.com/spin/Src/index.html
Download the most recent version of the xspin GUI
(xspin only), which is currently called xspin510.tcl
Save this somewhere, maybe even with the spin.exe
file from before

Installing Xspin

Next, download a Tcl/Tk interpreter
wtf is tcl.
The Xspin GUI is written in the Tcl (tickle, I kid
you not) scripting language
In order to run it on your machine, download an
interpreter like ActiveTcl

http://www.activestate.com/activetcl/
or just Google activetcl

This will allow you to run tcl scripts

Installing Xspin

Next, install MinGW
The GCC compilers have been ported to
Windows, and since Spin generates and
compiles C code for full verification, you'll need
a C compiler

http://www.mingw.org/
Remember where it installs to!

• (Probably c:\mingw)

Other compilers are fine, if you've got
something else installed already

Installing Xspin

Finally, modify the xspin510.tcl script
Remember, Xspin is just a script, so you can
open it in your favourite text-editor
Xspin makes certain assumptions about
program locations, and you'll need to update
the script with your local settings
You'll need to update the location to the gcc
compiler, and the location to the spin
executable

Installing Xspin

Update CC, CC0, CPP, and SPIN with
your relative paths

Installing Spin

Is there a difference?
Probably not. If you find one easier than the
other, feel free to use that one.
I find jSpin slightly easier to use thanks to the
simpler GUI (one window, one-click buttons)
jSpin's distribution uses an old version of Spin
(4.3.0, current version is 5.1.7), but again,
there's probably no difference
I'll almost certainly be verifying assignment
code in Xspin to be safe, but if that doesn't work
for an assignment, I'll try verifying in jSpin

Starting Spin

Unless you're hardcore, you'll be using a
GUI to interact with the Spin engine
Why on earth is this detail important?

Xspin is not Spin, and neither is jSpin!
The GUI facilitates your use of a command-line
model checker
If you're curious why Spin is giving you results
in a certain format, you can see exactly what
the buttons in your GUI are telling it what to do

Starting Xspin

Starting Xspin Starting jSpin

Starting jSpin Running Spin

How do you actually run Spin?
Check: generate a verifier for your specification
Random: view the path of a random walk
Interactive: manually select each decision that
the model checker can make
Trail: view the results of an error trace
Verify: perform a guided verification of the
model (ie, find errors, if they exist)

Running Spin

Check
Spin generates C code from your Promela
source, which is then compiled and analysed

(This is why you need a compiler like gcc or MinGW)
The Check button tells Spin to create this code,
and acts primarily as a syntax checker

ie, Is my code properly formed?

bin\spin.exe -a -v sample.prom ... done!

-a Generate a verifier (model checker) for the specification.
-v Verbose mode, adds some more detail, and generates more hints

and warnings about the model.

Running Spin

Running Spin

Random
Runs a random simulation on your model
Not guaranteed to find errors, and certainly not
an exhaustive search
However, this is fast, and can help you track
down problems in your model

bin\spin.exe -g -l -p -r -s -X -u250 sample.prom ... done!

-p Shows at each simulation step which process changed
state, and what source statement was executed.

-uN Stop a random or guided simulation after the first N steps.

Running Spin

Running Spin

Interactive
Runs an interactive simulation on your model
At each decision point in the model where
multiple paths can be taken, you will be given
the choice to decide which one to follow

If you want to test edge cases where you believe
something will break, this is extremely helpful!

Running Spin

Running Spin

Trail
Runs a guided simulation using the trail file
created by the execution of the analyzer
Xspin generates a graphical representation of
the trail in the form of a Message Sequence
Chart, and jSpin gives you a wall of text
Both are useful, but make sure you read what's
going on very carefully!

One example of the need for caution is the fact that
the number of columns in jSpin's (read: Spin's) trail
output changes based on how many variables it's
tracking, so please read carefully

Running Spin

Verify
Runs a full verification of your model
If errors are found, you'll see a message like
the following:

pan: assertion violated 0 (at depth 10)

Running Spin

pan: assertion violated 0 (at depth 10)
pan: wrote sample.prom.trail
(Spin Version 4.3.0 -- 22 June 2007)
Warning: Search not completed

+ Partial Order Reduction
Full statespace search for:

never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 16 byte, depth reached 10, ••• errors: 1 •••
11 states, stored
0 states, matched
11 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
2.302 memory usage (Mbyte)

Advice for Assignment 2

Part 1
A single paragraph answer should be enough to
explain what is going on.

Be brief, and don't write a full page answer, but make
sure you say enough to show you understand what
the code is doing.

Advice for Assignment 2

Part 1
The assignment states that you cannot use
model checking to determine what is going on,
but you can definitely use Spin to help guide
you to a solution.

Substitute different values into the str[] array and see
what's going on.

To help reduce the overall complexity, you can
also try reducing the size of the MAX constant.

Advice for Assignment 2

Part 2, Q1
Make sure you understand what your code is
doing!

It is not enough to have code that looks like it's doing
the right thing; it is important to understand how the
model is being verified

As in Part 1, your answer should be concise,
while covering each of the points listed

Obviously a sentence is too short, but don't worry,
this is not an essay
Just describe how your model satisfies the
requirements

Advice for Assignment 2

Part 2, Q2, Q3
Show the command line parameters, and the
output generated by Spin

If you're using Xspin or jSpin, the earlier slides show
where to find this output

Advice for Assignment 2

Part 2, Q4, Q5, Q6
You can enter your LTL statements in jSpin or
Xspin in order to verify them against your model

Advice for Assignment 2

Part 2, General Advice
The assignment gives the following tip:

After an analysis, Spin tells you which parts of your
Promela code were "unreached"; use that to avoid
unreached code in your solution as much as
possible.

Please heed this advice!
A model should not contain lots of unused code, and
if things are too messy, this will impact the "quality of
your code" marking metric

Advice for Assignment 2

Part 2, General Advice
How exactly do you see the unused sections?

After you do a full verification of your model, you'll
see a list of the unreached states
0 unreached states = all code is used in the model

unreached in proctype chameleon
line 72, state 1, "gone[id] = 1"
line 73, state 2, "-end-"
(2 of 2 states)

unreached in proctype frog
line 83, state 3, "(1)"
line 89, state 6, "-end-"
(2 of 6 states)

unreached in proctype :init:
(0 of 16 states)

unreached in proctype chameleon
(0 of x states)

unreached in proctype frog
(0 of y states)

unreached in proctype :init:
(0 of z states)

Advice for Assignment 2

Part 2, General Advice
Be aware of the following:

"Using the provided lock mechanism to guarantee
that the frog does not see unstable intermediate
states associated with two chameleons changing
color"

This can be very tricky, so please be cautious!
One of the chameleons will change colour before the
other does, so you need to make sure the frog
doesn't intercept during this transition state

Advice for Assignment 2

Part 2, General Advice
Using the atomic and timeout keywords are not
acceptable ways to solve the assignment
The only atomic block in your assignment
should be the one that's already given in the
assignment code

References for Assignment 2

Some references for Assignment 2:
http://spinroot.com/spin/Doc/SpinTutorial.pdf

A fairly comprehensive description of the Promela
language, and how Spin goes about verifying models
The first half is relevant, so don't worry about the
detailed memory analysis or anything beyond the
scope of the language syntax

http://spinroot.com/spin/Man/Spin.html
If you look closely at the command-line parameters,
you can understand what the Xspin and jSpin GUIs
are specifically telling the Spin engine to do

