
Tutorial 3: Slicing

CISC422/853
Scott Grant

Overview

Getting Started (Eclipse)
Assignment Structure
Advice for Assignment 4
Debugging and Profiling in Eclipse
Demonstration

Getting Started (Eclipse)

Download Eclipse, if you don't have it
If you downloaded Eclipse IDE for Java

Developers (85 MB) for A1, you can use this
Download a4CISC422853Winter2009.zip
Contains the Java source that you will be

extending, and a set of IMP programs that you
can use to test your solution

 In Eclipse, create a new Java Project
Import the files from the 422/853 zip archive

Getting Started (Eclipse)

Getting Started (Eclipse)

Getting Started (Eclipse)

To verify that things are working:
Declare the command-line parameters to tell

the slicer which file to use as input
Open /imp/main.java and right-click on the

source window
Choose Run As -> Run Configurations
Run as a Java Application, and select the

Arguments tab
The Program arguments box is where you will

tell the slicer which file to process

Getting Started (Eclipse)

Getting Started (Eclipse)

Try with a sample IMP program:
imp/testPrograms/p1.imp x

Reading Imp program from file imp/testPrograms/p1.imp

*** ORIGINAL PROGRAM ***

PROGRAM p1;
VAR
x : INT;
y : INT;
z : INT
0: BEGIN
1: x := 1;
2: y := 2;
3: PRINT((x+2));
4: x := 3;
5: z := (x+1)
6: END

*** SLICING CRITERIA ***

Location: 6: END
Variables: [x]

*** SLICED PROGRAM (WITHOUT VARIABLE DECLARATIONS) ***

0: BEGIN
6: END

Assignment Structure

What is all of this code doing?!
Technically, you only need to modify code in

imp.slicer
Wait, that's not all, where are you going? Come

back! It's interesting!
IMP has a parser generated from an LALR

parser generator called CUP
You will have an Abstract Syntax Tree and a Control

Flow Graph computed from the input program, and
will use those to do your slicing

Assignment Structure

What is all of this code doing?!
You aren't required to understand the parser,

but it is very interesting (honestly, not just TA-
speak)
If you want to "skim" compiler tech, and help

dominate the assignment to boot, make sure
you the understand the CFG, and pay close
attention during the debugging part of this
tutorial!

Assignment Structure

Where do I begin?
One suggestion would be main.java

Assignment Structure

cfg.computeSlice(cNode, cVars);
In main.java, determines the program slice
cNode is the current node in the Control Flow

Graph
At first, this is the last node in the program
Node cNode = cfg.last;

cVars is the set of variables you list on the
command line to compute the slice against
cVars.add("x");
if (cVars.contains("x")) { ... }

Assignment Structure

cfg.computeSlice(cNode, cVars);
So cNode is the last node in the program's

CFG, and cVars is the list of variables you want
to compute the slice for
You will work backwards from cfg.last, passing

information about the relevance of the variables
How? We'll see in a second, but first, what are

Node objects?

Assignment Structure

What is a Node object?
Each instantiation of a Node object represents

a node in the CFG
Each Node instance has

information that you can use
dRVars (directly relevant variables)
dRVarsChanged (help other Nodes)
isRelevant (relevant when true)
prevs and nexts (transitions)

Assignment Structure

What is a Node object?
A Node object roughly corresponds to a

statement in your source program
There aren't nodes for variable x or variable y, there

are nodes that identify assignment statements, or
repeat loops

For the purposes of this assignment, Node
objects are places where variables can become
relevant to a slice

Assignment Structure

PROGRAM p1;
VAR

x : INT;
y : INT;
z : INT

0: BEGIN
1: x := 1;
2: y := 2;
3: PRINT((x+2));
4: x := 3;
5: z := (x+1)
6: END

ProgramBeginNode

AssignNode

AssignNode

PrintNode

AssignNode

AssignNode

ProgramEndNode

This is an abstracted view
of the cfg object that you'll
have available.

Each prevs and nexts
reference in a Node object
is a Vector, so what are the
elements of the prevs and
nexts object for these?

Assignment Structure

We'll explain this specifically in the
demonstration, but here is a visual
representation of cNode for the sample
program imp/testPrograms/p1.imp.

nexts is an empty Vector, and prevs
contains a single element to the
AssignNode that precedes it in memory.

You can see other important variables
here, like dRVars, dRVarsChanged,
and isRelevant.

Assignment Structure

What is dRVars?
A HashSet object in Java
Contains a set of String values corresponding

to the relevant variables at this point in the slice
If x is relevant, then dRVars.contains("x") is true

This is important for passing information to
earlier Node objects

Assignment Structure

VarIdSet class definition
You can extend this if you feel some methods

might help you with your slice
package imp.util;

import java.util.HashSet;

/* Implementation of a set containing the strings (id) inside Var objects.
* Used to store the directly relevant variables.
* Fill in this class as needed.
*/

public class VarIdSet extends HashSet {
}

Assignment Structure

Adding entire dRVars objects?
This is just one example, you are not required

to use it.
If you find your implementation uses lots of

similar actions, you can extend the class

public void addVarIdSet(VarIdSet cVars) {
Iterator<String> varIter = cVars.iterator();
while (varIter.hasNext()) {

this.add((String) varIter.next());
}

}

Assignment Structure

So, about that computeSlice method?
You will be mainly concerned with the

computeDRVars method in Node objects under
imp.slicer

// cfg.java
public void computeSlice(Node cNode, VarIdSet cVars) {

cNode.computeDRVars(cNode, cVars);
}

// ProgramEndNode.java
public void computeDRVars(Node cNode, VarIdSet cVars) {
}

Assignment Structure

 If you run the code right now, what
happens?
You compute the slice of your input program for

the variables you specify on the command line
The computeSlice method begins at the

ProgramEndNode point in the CFG, and calls
computeDRVars to recursively derive the slice
ProgramEndNode has no code in

computeDRVars, so it returns, and the slice is
effectively empty

Assignment Structure

Naive approach to get started
Pass relevant variables, look at previous nodes

// ProgramEndNode.java
public void computeDRVars(Node cNode, VarIdSet cVars) {

this.dRVars.addVarIdSet(cVars);
this.dRVarsChanged = true;
this.isRelevant = true;

for (int i=0; i<this.prevs.size(); i++) {
Node prevNode = (Node) this.prevs.elementAt(i);
if (!(prevNode instanceof ProgramBeginNode)) {

prevNode.computeDRVars(this, this.dRVars);
}

}
}

Assignment Structure

What happens?
Same output, but very different internal result

Reading Imp program from file imp/testPrograms/p1.imp

*** ORIGINAL PROGRAM ***

PROGRAM p1;
VAR
x : INT;
y : INT;
z : INT
0: BEGIN
1: x := 1;
2: y := 2;
3: PRINT((x+2));
4: x := 3;
5: z := (x+1)
6: END

*** SLICING CRITERIA ***

Location: 6: END
Variables: [x]

*** SLICED PROGRAM (WITHOUT
VARIABLE DECLARATIONS) ***

0: BEGIN
6: END

Assignment Structure

Alright, we made it to AssignNode!
Of course, this is empty too. The saga

continues..

Assignment Structure

 If you have questions about this process,
we can cover them in the demonstration
(or of course, you can ask me now)

This assignment relies on your ability to
pass the correct relevant variables back
through the CFG
Start with basic programs and work up to the

complicated ones!

Advice for Assignment 4

Start small
imp/testPrograms/p1.imp
What do you need to do with a PrintNode?
Can the print statement modify the relevant

variables? What about SkipNode?
What should these computeDRVars methods look

like?
Once you are comfortable with the AssignNode

method, you will have a better idea of how the
code is designed to work

Advice for Assignment 4

Start early!
Okay, I say that with every assignment, but this

one is important
This might actually feel like two assignments in

one
The first assignment includes getting everything

excluding loops working
The second comes when you realize how loops can

complicate things
You'll probably want to save loops until the end

Advice for Assignment 4

Don't assume the tests cover all cases
The test programs included with the code are

pretty comprehensive, but you should try writing
some IMP code to make sure your code does
what you expect it will

Advice for Assignment 4

Contact me or Juergen if you have
questions
We want to help out, and if you give yourself

enough time, we can get you on the right path
There are many ways to solve this problem
If you find things aren't working out, back up

and revisit some earlier examples to get things
working again

Debugging and Profiling in Eclipse

You don't have to use Eclipse
If you're using another Java IDE (or just the

command-line), there are other ways to debug -
send me an email if you'd like some help

 If you use Eclipse, this can really help
Debugging isn't commonly taught in university

curriculum
If you're going to get an industry job after

school, debugging experience is really valuable

Debugging and Profiling in Eclipse

What do I get out of it?
Normally when you run a piece of code, you

don't have access to the line-by-line state of the
variables
You can use print methods to get some

information, but without debugging the code,
you're extremely restricted in the information
you can get
How would you see the entire CFG data

structure as it exists in memory using a print
statement?

Debugging and Profiling in Eclipse

Debugging and Profiling in Eclipse

 If you want to examine specific parts of
your program, use breakpoints
Set a breakpoint by either right-clicking on the

left side of the source window, choosing Run ->
Toggle Breakpoint, or pressing Ctrl-Shift-B
Make sure you choose "Debug" (F11) instead

of just "Run" when you execute your code!

Debugging and Profiling in Eclipse

Debugging and Profiling in Eclipse

Controlling code execution
Step Into (F5): Follow the trace into the current

method, if possible
If we set a breakpoint at cfg.computeSlice and step

into the code here, we retain control of execution and
proceed inside the computeSlice method itself

Step Over (F6): Execute the current statement,
and continue debugging on the next one
We don't care about the internals of this statement,

but don't want to give up control yet

Debugging and Profiling in Eclipse

Controlling code execution
Step Return (F7): Jump out a single level, out of

the current method
Resume (F8): Continue debugging, and only

stop again if we hit another breakpoint
Terminate (Ctrl-F2): Halt execution
If you're doing a lot of debugging, don't let your old

processes sit around at breakpoints! Terminate them
if you're done with them.

Demonstration

Let's take a look at some breakpoints

