Tutorial 3: Slicing

CI1SC422/853
Scott Grant

Overview

Getting Started (Eclipse)
Assignment Structure

Advice for Assignment 4
Debugging and Profiling in Eclipse
Demonstration

Getting Started (Eclipse)

Download Eclipse, If you don't have it

If you downloaded Eclipse IDE for Java
Developers (85 MB) for Al, you can use this

Download a4CISC422853Winter2009.zip

Contains the Java source that you will be
extending, and a set of IMP programs that you
can use to test your solution

In Eclipse, create a new Java Project
Import the files from the 422/853 zip archive

Getting Started (Eclipse)

select a wizard

Create a Java project |

Wizards:

t& filter text

(= General
= ovs
(= Java

B
& 1ava Project Fram Existing Ant Buildfile
[#-[= Examples

& New Java Project

Create a Java Project

Create a Java project in the workspace or in an external location,

Project name

1 1ava Settings

Contents
O Create new project in workspace

@ Create project From existing source

Directory: | C:|Dacuments and Settings!Scott Grant|DeskoplimpsicerPre | |_Bronse... |

JRE

Project lawvout

“Working sets

[[] add praject to working sets

The wizard will automatically configure the JRE and the project lavout based on the
@ existing source.,

2 < Back][Mext =][Finish H Cancel

- BX

& New Java Proj

Define the Java build settings.

[source |B Projects | = Libraries | &-’.} Order and Export:

[EE; imp.moreTestPrograms
£} imp.parser

M 1 imp.slicer

- imp.testPrograms

- £ imp.uti

-3 java_cup

-3 java_cup.runtime

* Details

87 Create new source Folder ! use this iF vou wank bo add a new source Folder b vaur £
projeck.

.'é."@ Link additional source: use this if you have a Folder in the File syskem that should be
used as additional source Folder,

@ Configure inclusion and exclusion filkers : specify patterns to the inclusion and
exclusion Filters instead of including and excluding each Folder or file manually,

';3 Remaove project '855' From build path: Children of the project which are not source o
[allow cutput folders For source Folders
Default output Folder:

remass

|53 |

Browse, ..

Finish

l [Cancel

Getting Started (Eclipse)

in. java - Eclipse Platform

EAERAN main. java
E3) m kesk. java
D impiErammar. bxk

ﬁ-)fE java_cup
#- 8 java_cup.runtime
[+ B4} JRE System Library [jrel.5.0_068]

= imp.main.java - 8§53

File Edit Source Refactor MNavigate Search Project Run Window Help
£ - 50 Q- I BHC- I BO S P I -
[# package Explor 1 'Eg Higrarchy | = O || 1] main.java &2 = =l
T @ + CISC422/853: LSSIGNMENT 4, March 20090 i

package imp;
Fimport java.lang.Exception;[]

class Main {
ll."'ﬂ“.\‘

* This method is responsible for loading an IMP program &
displaying its completed slice based on the user's inpu

*

*

A path of the original £
* — All other arguments: the relevant wvariables
*

*

*

[+ EE; irnp.mareTestProgranms

i imp.parser

E- B imp.slicer

& ;i which is the followihg arguments:
-2 imp.kestPrograms i . e

& J,_E imp.util - First argument: the (relatiwve)

The last node in the program will slways be used as the
location. slicing criteria, and t
resulting slice are all written to 3TDOUT.

The original program,

public static void main(3tring arcuments[])] throws Excepti
String prograwFilePath = null;
Program progrswm = null;
int argumentslength = Array.geitlengih (argumsents) ;
if (argumentslength < 2) {
System. cut.println("™*** ERROR: Must provide at les
Iystem. exit (1) 2

< |

[3_- Problems 22
0 errors, 330 warnings, 0 others (Filker matched 100 of 330 items)
Resource

@ Javador | [E. Declaration

Descripkion Fath Locat... Type

F & Warnings (100 of 330 items)

5 (&’ e |
Bl TaskList 52 =B
mis B =
Fndi [] oAl
7 Uncategorized
EE Outline 53 ; = 0]
@ B o e w Y
& imp
= import declarations

-

.ﬁb Tain
i@ A mainiString[1)

Getting Started (Eclipse)

To verify that things are working:

Declare the command-line parameters to tell
the slicer which file to use as input

Open /imp/main.java and right-click on the
source window

Choose Run As -> Run Configurations

Run as a Java Application, and select the
Arguments tab

The Program arguments box is where you will
tell the slicer which file to process

Getting Started (Eclipse)

#e FJ mnain.java oo

=

@ + CI3C4z2z/853:
package imp:

PTEEEEEE EF

Open Declaration
Cpen Tyvpe Hierarchy
Cpen Call Hierarchy
Show in Breadcrumb
Cuick Cutline

Quick Tyvpe Hierarchy
Show In

Copy Qualified Name
Paste

Cuick, Fix
Source
Refactar
Local Histaory

= References
Declarations

<
= |3 Add to Snippets...

[/ Proble
<terminat|
*%% ER
*%% TE

Fun As
Debug As
Validate

Team
Compare \With
Replace wWith

Preferences. .,

F3
F4
Ctrl+alt+H
Alt+Shift+E
Ctri+0
Ctrl+T
Alt+Shift+

Chrl+

Ctrl+1
Alt+5hift+5
Ale+Shife+T

- v w

»

L33TICGNMENT 4, March 2009[]

loading an IMP progrs
hased on the user's i
et
2] path of the origins
evant wvariables

ill always he used as
| slicing criteria, ar
m to STDOUT.

throws Exce

guments[])

Smark Insert 6zl

igurations

Create, manage, and run configurations

Run a Java application

_—
X B3~

4l Java Applet
=31 Java Application
31 Main

- Ju Junit

Juj Task Context Test

Filter matched 5 of 5 items

Mame: | Main |

® Main | (9= Arguments 5, JRE | 4 Classpath E source | B Enviranment | £ Camman

ARG'S Co HERE!

WM arguments:

Working directory:
(%) Default: | o 3 5 ‘

() Cther: | ‘

Getting Started (Eclipse)

Try with a sample IMP program:
iImp/testPrograms/pl.imp x

Reading Imp program from file imp/testPrograms/p1.imp

** ORIGINAL PROGRAM ***

PROGRAM p1;

VAR

X o INT; *** SLICING CRITERIA ***
y : INT;

Z:INT Location: 6: END

0: BEGIN Variables: [X]

1. x:=1;

2.y :=2; *** SLICED PROGRAM (WITHOUT VARIABLE DECLARATIONS) ***
3: PRINT((x+2));

4: x:= 3; 0: BEGIN

5:z:=(x+1) 6: END

6: END

Assignment Structure

What Is all of this code doing?!

Technically, you only need to modify code in
iImp.slicer
Wait, that's not all, where are you going? Come
back! It's interesting!
IMP has a parser generated from an LALR
parser generator called CUP

You will have an Abstract Syntax Tree and a Control
Flow Graph computed from the input program, and
will use those to do your slicing

Assignment Structure

What Is all of this code doing?!

You aren't required to understand the parser,
but it is very interesting (honestly, not just TA-
Speak)

If you want to "skim" compiler tech, and help
dominate the assignment to boot, make sure
you the understand the CFG, and pay close
attention during the debugging part of this
tutorial!

Assignment Structure

Where do | begin?
One suggestion would be main.java

] main.java 53 =

System. out.println("\n***% ORIGINAL PEOGRAM **%yn™); *
Jystewm. cut.println(program. toString (0]) ;

Iystem.out.printlilni() ;

ff parse the program

ProgrambBody progBody = program.programBody;
Cfyg cfyg = progBody.toCfg (0] ;

System. out.princln("*++* SLICING CRITERIL #+#yn™);:

44 last node iz criterion node by default

Node clHNode = cfg.last:

System.out.println("Location: " + clNode.toString()):
System.out.println("Variables: " + cWVars.toStringl)):

System. cut.println(™yn***¥ SLICED PROGRAM (WITHOUT WARI
f4 compute slice
cfg.computellice (cNode, cWars):

Sf print sliced program
System.outf.println(cfg.tol3tringlUsingRelevant (1]

} /4 class Main

Assignment Structure

cfg.computeSlice(cNode, cVars);

In main.java, determines the program slice
cNode is the current node in the Control Flow
Graph

At first, this is the last node in the program

Node cNode = cfg.last;
cVars is the set of variables you list on the
command line to compute the slice against

cVars.add("x");
If (cVars.contains("x")) {... }

Assignment Structure

cfg.computeSlice(cNode, cVars);

So cNode is the last node in the program's
CFG, and cVars is the list of variables you want
to compute the slice for

You will work backwards from cfg.last, passing
Information about the relevance of the variables

How? We'll see in a second, but first, what are
Node objects?

Assignment Structure

What is a Node object?

Each instantiation of a Node object represents
a node in the CFG

2 & object
. 5 KA
Each Node instance has O st
= EndMNode
. . ® ProgramEndMode
iInformation that you can use o © vt
= PrintNode .
dRVars (directly relevant variables) o o e
G" SkipNode
dRVarsChanged (help other Nodes) =@ gfmﬁﬁ o
isRelevant (relevant when true) o o IherckeTesiod

& whileTestMode

prevs and nexts (transitions)

Assignment Structure

What is a Node object?

A Node object roughly corresponds to a
statement in your source program

There aren't nodes for variable x or variable y, there
are nodes that identify assignment statements, or
repeat loops
For the purposes of this assignment, Node
objects are places where variables can become
relevant to a slice

Assignment Structure

ProgramBeginNode

|

PROGRAM p1; I
VAR AssignNode
X . INT; <> This is an abstracted view
y . INT; . of the cfg object that you'll
A N .
Zz . INT @@ have available.
0: BEGIN —
1: X:=1; @@ Each prevs and nexts
2: y = 2; v reference in a Node object
3: PRINT((x+2)); @@ is a Vector, so what are the
4. X = 3; v elements of the prevs and
5: Z .= (x+1) @@ nexts object for these?
6: END

ProgramEndNode

|

Assignment Structure

H @

L I

O chode

drWars
dr¥arsChanged
indentLewvel
isReleyant
loc
nexks
<» rapacityIncrement
< elementCounk
< elementData
< modCounk
prevs
o capacityIncrement
elermnentCount
elementData
(o]
[1]
(2]
[3]
[4]
(5]
(8]
(71
(8]

& [9]
< modCounk
programBeginhode

I R

EFEEEREERR

ProgramEndrode {id=33)

Yarld3et (id=24)
false

]

false

Loc (id=61)
Wector<E> (id=95)
]

]

Obiject[10] (id=971
]

Wector<Ex (id=98)
]

1

Ohiject{10] (id=95)
Assignhlode {id=99)
rudll

rudll

rudll

rudll

rudll

ruall

ruall

rudll

rudll

1

ProgramBegintlode (id=44)

We'll explain this specifically in the
demonstration, but here is a visual
representation of cNode for the sample
program imp/testPrograms/pl.imp.

nexts is an empty Vector, and prevs
contains a single element to the
AssignNode that precedes it in memory.

You can see other important variables
here, like dRVars, dRVarsChanged,
and isRelevant.

B Vars

(id=25)
[=]

= O chode ProgramEndiode (id=38)

Varld3et (id=24)

dRYars

[]

Assignment Structure

What is dRVars?

A HashSet object in Java

Contains a set of String values corresponding
to the relevant variables at this point in the slice
If X is relevant, then dRVars.contains("x") is true

This is important for passing information to
earlier Node objects

Assignment Structure

VarldSet class definition

You can extend this if you feel some methods
might help you with your slice

package imp.util;
iImport java.util.HashSet;

[* Implementation of a set containing the strings (id) inside Var objects.
* Used to store the directly relevant variables.

* Fill in this class as needed.

*/

public class VarldSet extends HashSet {

}

Assignment Structure

Adding entire dRVars objects?

This Is just one example, you are not required
to use it.

If you find your implementation uses lots of
similar actions, you can extend the class

public void addVarldSet(VarldSet cVars) {
lterator<String> varlter = cVars.iterator();
while (varlter.hasNext()) {
this.add((String) varlter.next());

}
}

Assignment Structure

So, about that computeSlice method?

You will be mainly concerned with the
computeDRVars method in Node objects under
iImp.slicer

/l cfg.java
public void computeSlice(Node cNode, VarldSet cVars) {
cNode.computeDRVars(cNode, cVars);

}

Il ProgramEndNode.java
public void computeDRVars(Node cNode, VarldSet cVars) {

}

Assignment Structure

If you run the code right now, what
happens?

You compute the slice of your input program for
the variables you specify on the command line

The computeSlice method begins at the
ProgramEndNode point in the CFG, and calls
computeDRVars to recursively derive the slice

ProgramEndNode has no code In
computeDRVars, so it returns, and the slice is
effectively empty

Assignment Structure

Nalve approach to get started
Pass relevant variables, look at previous nodes

/l ProgramEndNode.java

public void computeDRVars(Node cNode, VarldSet cVars) {
this.dRVars.addVarldSet(cVars);
this.dRVarsChanged = true;
this.isRelevant = true;

for (int i=0; i<this.prevs.size(); i++) {
Node prevNode = (Node) this.prevs.elementAt(i);
If (!(prevNode instanceof ProgramBeginNode)) {
prevNode.computeDRVars(this, this.dRVars);

}
}
}

Assignment Structure

What happens?
Same output, but very different internal result

Reading Imp program from file imp/testPrograms/pl.imp

*+ ORIGINAL PROGRAM ***

PROGRAM p1; *** SLICING CRITERIA ***

VAR

X :k‘; Location: 6;: END

y: : : :

INT Variables: [X]

0: BEGIN

1:x = 1: *** SLICED PROGRAM (WITHOUT
2:y = 2; VARIABLE DECLARATIONS) ***
3: PRINT((x+2));

4: X :=3; 0: BEGIN

5.z = (x+1) 6: END

6: END

Assignment Structure

Alright, we made It to AssignNode!

Of course, this is empty too. The saga
continues..

[J] ProgramEndhade. java J| Assignode java £

L public String toStringi() |
String assignl3tmb3tr = assignStmwt.to3tring(indentLewel) ;

return assignitmtitr;
H

A%% Fill in this method

L
public void computeDBEVars (MNode cMNode, VarlIdset oVWars) |

h

YoAS public class AssignMNode extends Node

£

Assignment Structure

If you have questions about this process,
we can cover them in the demonstration

(or of course, you can ask me now)

This assignment relies on your ability to
pass the correct relevant variables back
through the CFG

Start with basic programs and work up to the
complicated ones!

Advice for Assignment 4

Start small

iImp/testPrograms/pl.imp

What do you need to do with a PrintNode?

Can the print statement modify the relevant
variables? What about SkipNode?

What should these computeDRVars methods look
like?
Once you are comfortable with the AssignNode
method, you will have a better idea of how the
code Is designed to work

Advice for Assignment 4

Start early!

Okay, | say that with every assignment, but this
one is important

This might actually feel like two assignments in
one

The first assignment includes getting everything
excluding loops working

The second comes when you realize how loops can
complicate things

You'll probably want to save loops until the end

Advice for Assignment 4

Don't assume the tests cover all cases

The test programs included with the code are
pretty comprehensive, but you should try writing
some IMP code to make sure your code does

what you expect it will

Advice for Assignment 4

Contact me or Juergen if you have
guestions

We want to help out, and if you give yourself
enough time, we can get you on the right path

There are many ways to solve this problem

If you find things aren't working out, back up
and revisit some earlier examples to get things
working again

Debugging and Profiling in Eclipse

You don't have to use Eclipse

If you're using another Java IDE (or just the
command-line), there are other ways to debug -
send me an emaill if you'd like some help

If you use Eclipse, this can really help

Debugging isn't commonly taught in university
curriculum

If you're going to get an industry job after
school, debugging experience is really valuable

Debugging and Profiling in Eclipse

What do | get out of it?

Normally when you run a piece of code, you
don't have access to the line-by-line state of the
variables

You can use print methods to get some
iInformation, but without debugging the code,
you're extremely restricted in the information
you can get

How would you see the entire CFG data
structure as it exists in memory using a print
statement?

Debugging and Profiling

& Debug - B53/imp/main. jav:

In Eclpse

=g Thread [main] (Suspended (breakpoint at line 115 in Main)) progBady

= Main.main(string[]) line: 115 &
‘gl Cr\Program FilesiJawaljrel.6.0_04binjavaw, exe (Mar 25, 2009 1:00:43 PM) = @ First
@ dRvars
@ dRYarsChange
indentLewvel
isRelevant
loc
nexks
prevs
=

0: BEGIN

e Al

| PR

main.java &4

m

Iystem.cut.println(™\n*** ILICED PROGRAM
/4 compute =lice
cfg.computeslice (cNode, cWars):

/¢ print sliced program

System. cut.printlnicfy.todtringUsingRelevant (]

£

| & console 22 = Tasks |

Main [Java Application] C:\Program Files)Javaljrel.6.0_04ibinljavaw.exe (Mar 25, 2009 1:00:49 PM)
Location: &: END

Variables: [x]

TEH

*##% SLICED PROGEALM (WITHOUT VARIAELE DECLARATICNS)

inkd

File Edit Source Refactor Mavigate Search Project Run Window Help
= ﬁ - Q- % L B ¥ g i 'i;fﬁ Debug"ig}' Java
%5 Debug 52 (b= S T 7 T O 19 variables % . ©g Breakpoints e e (|
=1 3] Main [Java Application] Mame Walue ~
imp.Main at localhosk: 1439 B @ vars YarldSet (id=16)

(WITHOUT WARIAELE DECLARALTICHNS)

ProgramBody (id=34)

CFg {id

ProgramBeginflode {jd=54)
Warldset {id=62)

false

1]

false

Loc {id=63)

Vector<E> (id=64)
Vector<Ex (id=65)

ProgramEndiode (id=38) w
A~
st

= 0| 5= outine 52 =0
A BB e w~
RN # imp
import declarations
e Main
P A maingString[1)
M
>.
WBEE e 5--0
A
v

Debugging and Profiling in Eclipse

If you want to examine specific parts of
your program, use breakpoints

Set a breakpoint by either right-clicking on the
left side of the source window, choosing Run ->
Toggle Breakpoint, or pressing Ctrl-Shift-B

Make sure you choose "Debug"” (F11) instead
of just "Run" when you execute your code!

J¥% Fill in this method

public void computeDRVars (Node clMNode, vakIdSEt cWars) |

Debugging and Profiling in Eclipse

& Debug - B53fimp/main. java - Eclipse SDK

File Edit Source Refactor MNavigate Search Project Run Window Help

-RésumerStoplStep Into/Step Overletc, 435 cobug | & 20s

= O |/ 4= variables 53 Zg Breakpoints £ FH YO

S
|

| #ﬁ Debug &3

= [T Main [Java Application]

Yalue =
=2 imp.Main at localhost: 1449) arguments String[2] (id=27)
= ' programFilePath "impftestProgramsspl imp" (id=30)
: program Program (id=37)
gt CHProgram FilesJavaljrel 6.0_D4ibinjavaw, exe (Mar 25, 2009 1:06:59 PM) @ argumentsLength rull
® @ cvars Varld3et {id=17)
- # O progBody ProgramBody {id=31)
C t L t = O CFyg (id=35)
u rre n oca I 0 n = @ first ProgramBeginMode (id=43) o
@ dRVars VarldSet (id=47)

@ dR¥arsChange false
@ indentLevel a
@ isRelevant false

N 1
- %
R st o Variable Watch -
TE: fag P=al -
|2 r o= P Y 1
main.java 52 [J] Assigniode.java = B || 5% outline 52 =g
System. cut.println(™yn%%% SLICED PROGRAM (WITHOUT VARIAELE DECLARATIONS) ““‘\.nf: la? }7{ ‘@‘5 @ ‘@': k=
/7 compute sl:.Lce : -
cfg.cowmputesSlice (cHode, oWVars): E-= import declarations
)) = ﬁb Main
// print sliced program .;")S main(Skringl])
Svstem. print [cfog angUsingRelevant ()] ;
: ode indow
3y H S5 v
< : >
| B Console 51 ™ ¥ Tasks | ¢ EN U_E|§|Ir£ﬂ| A EErisg 0
Main [Java Application] C:\Program FilestJavaijrel 6. 0_04bintjavaw. sxe (Mar 25, 2009 1:06:59 PM)
~
*#%% ZLICED PROGRAM (WITHOUT WARIABLE DECLARATICNG) ***
Console OUtpLIt Z

Debugging and Profiling in Eclipse

Controlling code execution

Step Into (F5): Follow the trace into the current
method, If possible

If we set a breakpoint at cfg.computeSlice and step
Into the code here, we retain control of execution and
proceed inside the computeSlice method itself

Step Over (F6): Execute the current statement,

and continue debugging on the next one

We don't care about the internals of this statement,
but don't want to give up control yet

Debugging and Profiling in Eclipse

Controlling code execution

Step Return (F7): Jump out a single level, out of
the current method

Resume (F8): Continue debugging, and only
stop again if we hit another breakpoint

Terminate (Ctrl-F2): Halt execution

If you're doing a lot of debugging, don't let your old
processes sit around at breakpoints! Terminate them
If you're done with them.

Demonstration

Let's take a look at some breakpoints

