Basic Math – Vectors & Lines

Vector in 2D

length (p) = | p | = sqrt(x² + y²)

Vector in 3D

length (p) = | p | = sqrt(x² + y² + z²)

Copyright © Gabor Fichtinger, 2008

Unit vector

Scaling up/down a vector

Create unit vector from a vector a.k.a. "normalize" a vector

Scale down the vector by its own length:

v = *a* / |*a*| or *v* = *a* /length(*a*)

Laboratory for Percutaneous Surgery – The Perk Lab

Copyright © Gabor Fichtinger, 2008

Create unit vector from a vector (Example)

v = (3/5, 4/5, 0)

Sum of vectors

Catenate the vectors !

Subtraction of vectors

Reverse p_2 and catenate to p_1 !

Vector from A to B

Laboratory for Percutaneous Surgery – The Perk Lab

Copyright © Gabor Fichtinger, 2008

Distance between A to B

Vector equation of a line

Create the direction vector of a line

Vector equation of a line

Cross product

Cross product (or vector product) of u and v is denoted as $q = u \times v$, where u, v, q are 3D vectors denoted as $u(x_1, y_1, z_1)$, $v(x_2, y_2, z_2)$, $q(x_3, y_3, z_3)$, $|\boldsymbol{q}| = |\boldsymbol{u}| * |\boldsymbol{v}| * \sin(\alpha)$ q is perpendicular to both u and v, and q $X_3 = y_1^* Z_2 - y_2^* Z_1$ $y_3 = X_2^* Z_1 - X_1^* Z_2$ Ω $Z_3 = X_1^* Y_2 - X_2^* Y_1$ **NOT COMMUTATIVE! ORDER MATTERS !** Cross product = 0 if and only if $sin(\alpha)=0$ i.e. *u* and *v* are parallel

Area of a triangle

 $A = \frac{1}{2} |\mathbf{b}|^* |\mathbf{c}| * \sin(\alpha)$ $A = \frac{1}{2} |\mathbf{b} \times \mathbf{c}|$

For non-zero b and c, the area is 0 if and only if $sin(\alpha) = 0$ i.e. c and b are parallel, so $\alpha = 0$

Is the point P on the line?

Dot product

Dot product (or scalar product) = dot($\boldsymbol{u}, \boldsymbol{v}$) = $\boldsymbol{u}^* \boldsymbol{v}$

dot product = $u * v = |u| * |v| * \cos(\alpha) = (x_1x_2 + y_1y_2 + z_1z_2)$

Result is a scalar number, not a vector

It is commutative, so order does not matter

 $u(x_1, y_1, z_1) v(x_2, y_2, z_2)$

V

α

Dot product and the length of a vector

Length = square root of the dot product with itself

$$\mathbf{v} = (x, y, z)$$

length(\mathbf{v}) = sqrt($x^2 + y^2 + z^2$) = sqrt(dot(\mathbf{v}, \mathbf{v}))

Some More Dot Product Facts

ab	= ba	commutative
(ab)c	!= a (bc)	not associative
(a + b)c	c = ac + bc	distributive with addition

Angle between vectors

If *u* and *v* are unit vectors:

 $dot(\boldsymbol{u}, \boldsymbol{v}) = cos(\alpha)$

v is a known unit vector, so length(v) = 1c=P-A -- this is a known vector $dot(\mathbf{v},\mathbf{c}) = \mathbf{v}\mathbf{c} = |\mathbf{v}| * |\mathbf{c}| * \cos(\alpha) = |\mathbf{c}| * \cos(\alpha) = |\mathbf{a}|$ a = v * |a| = v(vc)d = c - a = c - v(vc)dist = $|\mathbf{d}| = |\mathbf{c} - \mathbf{v}(\mathbf{v}\mathbf{c})|$ or $\mathbf{d}^2 = \mathbf{c}^2 - (\mathbf{v}\mathbf{c})^2$ Jueen's

Laboratory for Percutaneous Surgery – The Perk Lab

Intersection of 2 lines?

Intersection of 2 lines

Intersection of 2 lines – IMPOSSIBLE

In the intersection point :

$$\begin{array}{l} L_{1x} - L_{2x} = 0 = P_{1x} - P_{2x} + \mathbf{t_1}^* \mathbf{v_{1x}} - \mathbf{t_2}^* \mathbf{v_{2x}} \\ L_{1y} - L_{2y} = 0 = P_{1y} - P_{2y} + \mathbf{t_1}^* \mathbf{v_{1y}} - \mathbf{t_2}^* \mathbf{v_{2y}} \\ L_{1z} - L_{2z} = 0 = P_{1z} - P_{2z} + \mathbf{t_1}^* \mathbf{v_{1z}} - \mathbf{t_2}^* \mathbf{v_{2z}} \\ \text{where} \end{array}$$

t=(-inf,inf) u=(-inf,inf)

Trouble: 3 eqs, 2 unknowns \rightarrow no guaranteed solution.

The lines might just intersect, but they do not have to.

When they intersect, one of the three eqs cancels out. In other words: a linear combination of any two gives the third one. (We have to be extremely lucky for this to happen.) Generally, two lines avoid each other. We approximate: find the shortest distance between the two lines and find the point in midway.

Approximate Intersection of 2 lines

Intuition: Find the line that is perpendicular to both lines

Write up the equation of each line

Derive conditions, make an equation system

Solve the vector equation system

Laboratory for Percutaneous Surgery – The Perk Lab

Copyright © Gabor Fichtinger, 2008

Solve the linear equations

Use any of the three methods:

- 1. Gaussian elimination
- 2. Substitution
- 3. Matrix inversion

$$\begin{pmatrix} P_{1x} - P_{2x} \\ P_{1y} - P_{2y} \\ P_{1z} - P_{2z} \end{pmatrix} = \begin{pmatrix} -v_{1x} & v_{2x} & v_{3x} \\ -v_{1y} & v_{2y} & v_{3y} \\ -v_{1z} & v_{2z} & v_{3z} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

$$Plug t_1 and t_2 back into L_1 and L_2 line equations$$

$$\begin{pmatrix} -v_{1x} & v_{2x} & v_{3x} \\ -v_{1y} & v_{2y} & v_{3y} \\ -v_{1z} & v_{2z} & v_{3z} \end{pmatrix}^{-1} \begin{pmatrix} P_{1x} - P_{2x} \\ P_{1y} - P_{2y} \\ P_{1z} - P_{2z} \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

$$M = (L_1 + L_2)/2$$

$$d = length (L_1 - L_2)$$

Copyright © Gabor Fichtinger, 2008

ALTERNATIVE METHOD FOR FINDING THE MINIMUM DISTANCE AND CLOSEST POINT BETWEEN TWO LINES IN SPACE

Find the mutually perpendicular vector between L1 & L2

 $L_{1} = P_{1} + t_{1} * v_{1}$ $L_{2} = P_{2} + t_{2} * v_{2}$ $v_{3} = v_{1} \times v_{2} / |v_{1} \times v_{2}|$ $v_{3} \text{ is normalized!!!}$

We look for the vector \boldsymbol{u} that is perpendicular to both L1 and L2. This vector is expressed as $\boldsymbol{u}=t_3 * \boldsymbol{v}_3$. The length of it is t_3 and its direction is determined by the \boldsymbol{v}_3 unit direction vector. \boldsymbol{v}_3 is the cross product of \boldsymbol{V}_1 and \boldsymbol{V}_2 , being perpendicular to both.

Find the mutually perpendicular vector between L1 & L2

Laboratory for Percutaneous Surgery – The Perk Lab

Copyright © Gabor Fichtinger, 2008

Use the same "dot product trick" for t₁ and t₂

$$P_{1} - P_{2} = -t_{1}^{*} v_{1} + t_{2}^{*} v_{2} + t_{3}^{*} v_{3}$$
(1)
$$(P_{1} - P_{2}) v_{1} = -t_{1}^{*} v_{1} v_{1} + t_{2}^{*} v_{1} v_{2} + t_{3}^{*} v_{1} v_{3}^{*} \text{ if dot produce by } v_{1}$$

$$(2) \qquad (P_{1} - P_{2}) v_{2} = -t_{1}^{*} v_{2} v_{1} + t_{2}^{*} v_{2} v_{2} + t_{3}^{*} v_{2} v_{3}^{*} \text{ if dot produce by } v_{2}$$

$$1 \qquad 0$$

We recognize three dot products of vectors:

$$(P_1 - P_2) v_1$$
 and $(P_1 - P_2) v_1$ and $v_1 v_2$
REMEMBER: dot product is a scalar number

Let a₁, a₂ and d denote those scalars..

(1)
$$a_1 = -t_1 + t_2 d$$

(2) $a_2 = -t_1 d + t_2$ This solves easily for t1 and t2.

$$t_{1} = (a_{2} d - a_{1}) (1 - d^{2})$$

$$t_{2} = -(a_{1} d - a_{2}) (1 - d^{2})$$

$$t_{3} = (P_{1} - P_{2}) v_{3}$$

Plug t_1 and t_2 back into L_1 and L_2 line equations $L_1 = P_1 + t_1^* \boldsymbol{v_1}$ $L_2 = P_2 + t_2^* \boldsymbol{v_2}$

The mid point is M =($L_1 + L_2$) /2 The distance between L_1 and L_2 is t_3

14