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Abstract 
Extensible Markup Language (XML) is a de facto standard for data exchange 

in the World Wide Web. Indexing plays a key role in improving the execution of 

XML queries over that data. In this thesis we discuss the three main categories of 

indexes proposed in the literature to handle the XML semistructured data model, 

and identify limitations and open problems related to these indexing schemes. 

Based on our findings, we propose two novel XML index structures to overcome 

most of these limitations: a native index structure called Level-based Tree Index 

for XML databases (LTIX) and a relational index structure called Universal Index 

Structure for XML data (UISX).  

A proper labeling scheme is an essential part of a well-built XML index 

structure. We found that existing labeling schemes are not suitable for our index 

structures and therefore propose a novel labeling scheme, Level-based Labeling 

Scheme (LLS), which has the advantages of most popular types of labeling 

schemes while eliminating the main disadvantages. We then combine our LLS 

labeling scheme with our index structures. An evaluation shows that LLS 

performs well in comparison to existing labeling schemes using different 

mappings to relational tables. 
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We propose the LTIX to minimize the number of joins and matches required 

to evaluate twig queries, and also to facilitate effective query optimization 

through early pruning of the space search. Our experimental results show that 

this approach performs well in comparison to existing state-of-the-art 

approaches. 

We propose the UISX to overcome the key problem with the state-of-the-art 

approaches, namely that they cannot support efficient processing of twig queries 

without requiring significant storage. We use a light-weight native XML engine 

on top of an SQL engine to perform the optimization related to the structure of 

the XML data prior to shredding. Experimental results show that our approach 

achieves lower response times than other similar approaches while using less 

space to store XML data. 
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Chapter  1 
 
Introduction 
 

 

Extensible Markup Language (XML) is becoming the dominant method of 

exchanging data over the Internet. It was endorsed as a W3C recommendation in 

1998 [14].  Its roots go back to SGML (Standard Generalized Markup Language) 

[14]. SGML is an international standard since 1986 (ISO 8879). SGML is a meta-

language, that is, it can be used to create new languages in order to describe any 

kind of data. The differences between SGML and XML arise from the aim to 

develop a meta-language especially for the needs of the Web and to promote the 

fast establishment of this language on the Web [117]. XML’s implementation, for 

example, is much simpler than that of SGML and a DTD (Document Type 

Declaration) does not have to be used with XML documents.  

A DTD is used to specify some restrictions on XML data such as, among 

other things, the relationship between elements and types of elements [14]. XML 

Schema [121] is an extension to DTD and has been supplied with many features 
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to overcome some of the limitations of DTDs [21]. Both DTD and XML Schema 

are analogous to a schema in Relational Database Management Systems 

(RDBMS). Even with the presence of a DTD or an XML Schema, XML data is 

considered as semistructured [132]. This is due to the possible use of the “any” 

Type of contents in DTD and the <any> Element in XML Schema, both of which 

extend an XML document with arbitrary elements [21] [70] [121]. 

XML database systems, including the query optimization engine, do not 

have the advantage of being founded on several decades of scientific research as 

do relational DBMSs. In contrast to query optimization in relational databases, 

XML query optimization is a comparatively new research area.  

Indexing and querying XML data are active research areas [6] [56] [65] [89] 

[104] [130] [146]. Methods and techniques from other areas of Information 

Technology have been adapted to index XML data. Inverted files are used for 

text-dense XML documents [58] [59] [74] [109] [133] [137]. A Suffix Tree is used 

by Wang et al. [130] to develop dynamic indexes, and by Zuopeng et al. [147] to 

build an XML index structure. The Index Fabric by Cooper et al. [37] and the PT 

index by Li et al. [79] are based on the Patricia (Practical Algorithm To Retrieve 

Information Coded In Alphanumeric) Trie [73], which is a string indexing 

scheme. The research on optimization of path expressions in object-oriented 

database systems [52] and graph-based semistructured data models [1] [3], have 

been adapted by McHugh and Widom [88] to develop Lore (an XML database 

management system).  

It is worth mentioning here that some researchers emphasize the fact that 

database technology has to be integrated with Information Retrieval (IR) 

technology in order to effectively manage XML data [9] [11] [84]. IR technology 

can be used to handle the unstructured text contents of XML documents, while 
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the database technology can be used to handle the structured part of XML 

documents. 

Many systems have been proposed in the academic and commercial fields to 

provide either a query engine for XML data or a complete XML database 

management system. For example, some systems are designed to handle 

semistructured data [19] in general, including XML documents  [3] [15] [20] [46]. 

Other systems are designed specifically for XML data  [12] [26] [38] [47] [102] 

[112] [128], or have migrated to a fully XML-based data model [53] [87] [88]. 

Finally, there are languages that are designed to query only XML data [16] [17] 

[24] [39] [98] [105] [106] [122]. The anatomy of native XML databases is discussed 

by Feinberg [45]. 

There are two methods for storing and querying XML databases. The first 

method maintains the native hierarchical nesting structure of XML databases and 

is referred to as the Native Method. The other method leverages the existing 

power of RDBMSs that has been established over several decades, and is called 

the Relational Method. Structural indexes play a main role in data retrieval and 

manipulation in both methods [124].  Both methods have drawn the attention of 

the research community. As is always the case with indexes, there is a tradeoff 

between the size and the power of indexes [80] [144]. The state-of-the-art XML 

structural indexes either need to be large to perform well or perform poorly as a 

consequence of saving space. Furthermore, the complexity of the XML data 

model leads to a much larger search space for XML query optimization [26] [128].  

Finally, many types of XML structural indexes require a huge number of 

structural joins and match operations to establish a relation between two 

elements in XML data-trees.   
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1.1 Motivation 

The rapid growth in XML databases has resulted in the need to efficiently 

query this XML data. One way to achieve fast retrieval of data is through 

indexing. XML structural indexes can be used to facilitate more efficient query 

processing and optimization [124].  

There are many advantages to the XML data model compared with 

traditional data models like the relational model [16] [56]. The structure is 

integrated with the data in an XML document [5] [82], whereas, in the relational 

model the structure is defined in a separate relational schema. Therefore, it is 

easier to use XML as an intermediate language for exchanging data in the World 

Wide Web. Also, unlike the relational approach, the XML data model adapts 

easily to the evolution of the data structure in a database [127]. Finally, the XML 

data model is flexible for querying data. This kind of flexibility does not exist in 

SQL (Structured Query Language) [1]. 

Nevertheless, these advantages come with a cost.  First, since the repetition 

of data is irregular due to missing and/or repeated arbitrary elements, its storage 

structure can be scattered over many different locations on the disk, which 

decreases the performance of XML queries [32]. Second, the flexibility of 

specifications of the XML queries (e.g. use of wild cards) adds to the challenge of 

indexing methods [130] [146]. Third, the fact that XML documents contain the 

data mixed with the structure poses a challenge to navigating the structural 

relationships among XML element sets [65].  

One of the main differences between XML data and relational data models is 

the variety of structural relationships between various elements in XML data 

[26]. For example, Figure 1.1 contains a relational database schema and data (we 

mixed the data with the schema for simplicity). This database represents a small 

portion of an educational institute registration system.  
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Figure 1.1   Simple relational database 

 

Note that the complete data are well structured and can be linked through 3 

primary/foreign key relationships. In this model we can access various sets of 

data through only 3 relationships. For example, which course is taken by which 

student?, what courses a specific instructor teach? … etc. This database can be 

represented as an XML database. One possible representation is illustrated in 

Figure 1.2.  

 
 

 

Figure 1.2   An XML data-tree for the relational database in Figure 1.1 
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Basically, the most used relationships between XML elements are ancestor, 

parent, sibling, child, and descendent relationships, which can be used to infer 

other types of relationships1. In our XML data model example in Figure 1.2 we 

have 14 leaf data elements. Each and every one of these elements can be 

associated with the other 13 elements through several relationships. So, there are 

at least 13x14 relationships that have to be indexed properly in order to 

manipulate and query this XML data efficiently. This adds more complexity to 

the XML data model. As a result, the creation of a universal structural index that 

reflects all of these relationships efficiently is a challenging task. In the relational 

approach, in contrast, the relationships are much more limited between different 

elements in different tables, and the data are well structured.  

Labeling schemes can be divided into two categories: Interval labeling 

schemes and Prefix labeling schemes. Each type of scheme has advantages and 

disadvantages. Undesirably, each type of labeling’ pros are the cons of the others. 

Research efforts to design a labeling scheme that works well in all environments 

have flourished lately. 

 
1.1.1 Research Track 

In an effort to address the problem of XML structural indexes, we first study 

the existing indexing techniques and analyse their strength and weakness. The 

best way to do that is to compare these indexing techniques by using common 

criteria that are applicable for all of them and can act as a benchmark. We 

therefore identified the following four comparison criteria:  
                                                      
1 There are  13 relationships as identified by XPath – an XML query language that is recommended by the World Wide 
Web Consortium (W3C). 
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• Retrieval power, which includes the precision and completeness of the 

result, and the type of queries supported.  

• Processing complexity, which covers topics related to the need to compute 

the relationship between elements (such as the parent-child and the 

ancestor-descendent relationships), the need for structural joins to answer 

a query, and the need for additional refinement steps to fine-tune answers. 

• Scalability of the index and its adaptability to queries with different path 

lengths. 

• Update cost, which is measured by the number of nodes that are touched 

during update.     
 

Based on our findings, we came across many issues. These issues include the 

following. First, we identify structural joins as the bottleneck stage in XML query 

processing. Second, there is a trade-off between the size of an index and its 

answering power. Third, relational database management systems are promising 

media to store and retrieve XML data, but the current mapping approaches to 

map XML data into relational tables are still immature. 

We believe that the labelling scheme used is the key factor in controlling the 

size of indexes and to reducing the number of joins required to evaluate queries. 

Some researchers combine different types of indexes to expedite query 

processing, such as combining node indexes with graph indexes. In this case, we 

believe that the integrated system does not have to have the structural 

information available in both indexes. The intuition behind relaxing the structure 

constraint in one of them – e.g. the node index - is to have more room for 

designing a labeling scheme that performs better in evaluating XML queries. 

Most of the present mapping approaches are based on nodes, edges, forward 

paths, and reverse paths. The last approach has proved to be the best, but often 
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produces huge indexes.  We believe that mapping XML data based on the path 

summary not only reduces the size of indexes by eliminating redundant path 

data, but also improves the query evaluation process by linking the indexed data 

nodes to their original structure.   

XML data model is based on hierarchical structure, which is absolutely 

different from the relational data model. Therefore, we believe that if we want to 

use RDBMSs to store and retrieve XML data efficiently, we have to address two 

issues. First, the mapping scheme should reflect the original hierarchical 

structure. Second, an XML engine has to be used along with a relational engine 

to process queries. In this way, the XML engine optimizes queries according the 

structure of the data before shredding, and the relational engine handles the data 

stored in relational tables that pertain to queries under process. 

 

 

1.2 Thesis Statement 

We study and research the outstanding issues that are related to XML structural 

indexes. In the scope of this dissertation, and based on our findings in the areas 

of XML labeling schemes, native XML structural indexes, and XML-Relational 

structural indexes; we propose solutions to these outstanding issues. As part of 

the proposed solutions we implement:  a labeling scheme called LLS; a native 

XML index structure called LTIX; and an XML-Relational index structure called 

UISX. We conduct our experiments to fine-tune our proposed systems in our 
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laboratory.  The experiments support our intuitions that guided our research. 

The experiments are also used for enhancing our findings.  

  

 

1.3 Contributions 

The thesis makes the following original research contributions: 

- Develop a novel native XML index structure, which includes: 

 Designing a structural summary for XML data, and 

implementing an efficient construction and access algorithms to 

this structural summary. 

 Defining a framework to implement and use the native XML 

index structure.       

 Designing an efficient repository for the elements, attributes, and 

values of XML data that facilitates speedy retrieval.    

- Develop  a novel XML-Relational index structure, which includes: 

 Indexing the branching nodes to evaluate twig queries. 

 Designing and implementing an efficient relational schema to 

map shredded XML data using minimal storage space. 

 Developing a light-weight query processor to evaluate XML 

queries using native XML engine on top of SQL engine. The job 

of the native XML engine is to explore potential query 

optimization processes that are related to the structure of XML 

data, which can not be exploited by SQL engines. The SQL 

engine handles the XML-Relational data after shredding. 
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 Designing algorithms to evaluate XML queries efficiently that do 

not use neither inequality comparison, nor “LIKE” operator, 

since SQL engine does not support them efficiently. 

- Develop a novel suitable labeling scheme to be used with the above two 

index structures. This labeling scheme should perform well in 

comparison with existing labeling schemes.  

 

 

   

1.4 Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 presents the 

background on XML data models and the literature study on XML structural 

indexes. In Chapter 3, we present our LLS labeling scheme with a prototype to 

demonstrate the effectiveness of this labeling scheme. The LTIX native index 

structure is described in Chapter 4, which includes a discussion of various 

techniques for building the summary graph of the index structure, and the 

experimental validation of our indexing approach. The UISX XML-Relational 

index structure is illustrated in Chapter 5. It includes a discussion of the various 

mapping approaches. Finally, we summarize the contributions of our research 

with a critical assessment, discuss some of the future work directions, and 

conclude the thesis in Chapter 6.  

 

 

 



CHAPTER 1.  INTRODUCTION 11  

 

 

1.5 Summary 

The complexity of XML data model and flexibility of querying it creates 

many new challenges for the researchers in the area of XML structural indexes 

[127]. We address the problems of existing labeling schemes, which include the 

updating cost and the size of the labels. The dissertation presents a novel labeling 

scheme, which is designed to contain the most needed characteristic in order to 

work properly and efficiently. Also, the dissertation presents two novel indexing 

structures. The first is based on native XML structure and the second uses 

RDBMSs to store and query XML data. We start with laying out the motivation 

behind this research dissertation. Then we state our research hypotheses, the 

scope of our work, and the contributions of this research in the area of XML 

structural indexes. In the following chapters we provide the background study, 

detail presentations of XML structural indexes, LLS labeling scheme, LTIX and 

UISX index structures with experimental evaluations of their methodologies and 

prototypes, and finally summarize and conclude the thesis outlining some of the 

future work directions. 
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Chapter 2 
 
Background and Literature Study 
 
 

XML, which provides a flexible way to define semistructured data, is a 

de facto standard for data exchange in the World Wide Web. The trend towards 

storing data in its XML format has meant a rapid growth in XML databases and 

the need to query them. Indexing plays a key role in improving the execution of 

a query [124]. In this chapter we give a brief history of the creation and the 

development of the XML data model. We discuss the three main categories of 

indexes proposed in the literature to handle the XML semistructured data model 

and provide an evaluation of indexing schemes within these categories. Finally, 

we discuss limitations and open problems related to the major existing indexing 

schemes.  
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2.1   Background 

XML documents can be represented as directed graphs [3], which consist of 

vertices and edges. For example, the directed graph in Figure 2.2 represents the 

XML document in Figure 2.1. The mapping of an XML document to a graph may 

result in an acyclic graph (e.g. Figure 2.2), which is tree shaped, or in a cyclic 

graph (if ID/IDREF tokens are used). While some indexes support all graph data 

[10] (cyclic and acyclic graphs), others only support tree-shaped data. In this 

section, we review four common models for semistructured documents and the 

XPath query language, which is used in this thesis to express queries. 
 

2.1.1   Data Models  

Gou and Chirkova [56] identify four basic data models to represent the 

hierarchical structure of XML documents: edge-labeled tree data model, node-

labeled tree shaped data model, directed acyclic graph (DAG) data model, and 

directed graph with cycles data model.  
 

2.1.1.1   Edge-Labeled Tree Data Model 

Figure 2.2 is an example of an edge-labeled model for the XML document in 

Figure 2.1. Each edge represents an element or an attribute in the XML 

document. For example, author is an element, and reviewer is an attribute. The leaf 

nodes represent the values of the elements or attributes. For example, “Ahmad” 

and “Wang” are values for the reviewer attribute and author element, respectively. 

The same attribute name cannot be repeated under the same element. Attributes 
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are unordered and cannot be nested as in elements. The element in the fifth line 

in Figure 2.1 is an example of an empty element.  

 

 

 
  

Figure 2.1   XML document 

 

Note that in a tree structure an element cannot have more than one parent. 

The same tag name can be repeated along a path (i.e. an element may have a 

child/descendent element and/or a parent/ancestor element with the same tag 

name(s)). This is known as recursion, which requires special attention during the 

evaluation process of an XML query. 

 

 
 

Figure 2.2   Edge-labeled data-tree 

 

<Bib>
<book>

<author>Tim</author>
</book>
<paper> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>
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2.1.1.2   Node-Labeled Tree Data Model 

Figure 2.3 is an example of a node-labeled data-tree for the XML document 

in Figure 2.1. As in the edge-labeled model, it contains three main components: 

elements, attributes, and values. The main difference is that a node in the node-

labeled tree represents an element as opposed to an edge in the edge-labeled 

model. The hierarchal and nesting structure of both models is self-evident in the 

trees that they represent.  

 

 
 

Figure 2.3   Node-labeled data-tree 

 

2.1.1.3   Directed Acyclic Graph Data Model 

Generally, the directed acyclic graph data model uses ID/IDREF tokens to 

identify an attribute type of an element. The ID/IDREF tokens are provided by 

the XML language via DTD. Figure 2.4 is a modified version of the XML 

document in Figure 2.1. Note the use of ID/IDREF and its effect on the 

corresponding DAG in Figure 2.5 (the dashed arrow from node 4 to node 2). 

Unlike the tree structure, a single node can be referred to by two or more 
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elements in the DAG model (e.g. node number 2 in Figure 2.5).  ID/IDREF is 

similar to the key/foreign key relationship in the relational data model.   

 

 

 
 

Figure 2.4   XML document with ID/IDREF 

 

 

 
 

Figure 2.5   Directed acyclic graph data model 

 

2.1.1.4   Directed Graph with Cycles Data Model 

If we add an IDREF from the book element (“recommend=2”, line number 2 

in Figure 2.6) to the paper element (“ID=2”, line number 5), a cycle is formed. This 

<Bib>
<book ID=1>

<author>Tim</author>
</book>
<paper reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>
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book
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author

paper
paper

paper

author reviewer author

Bib
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is also popular in XML, but it adds more complexity in query processing of XML 

data. The result is a directed cyclic graph as illustrated in Figure 2.7.  

 

 
 

Figure 2.6   XML document with ID/IDREF 

 

 

 
 

Figure 2.7   Directed graph with cycles data model 

 

2.1.2   X-Path 

Many APIs (Application Program Interfaces) have been proposed to access 

XML data, such as the standard Document Object Model (DOM) [53] [83] and 

Simple API for XML (SAX) [85]. DOM has been defined to enable XML to be 

<Bib>
<book ID=1 recommend=2>

<author>Tim</author>
</book>
<paper ID=2 reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>
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manipulated by software [53]. The DOM defines how to translate an XML 

document into data structures and thus can serve as a starting point for any XML 

data model. DOM and SAX are language-independent programmatic APIs [50]. 

Whereas DOM creates an in-memory representation of an XML document, SAX 

provides stream-based access to documents. As a document is parsed, events are 

fired for each open and close tag encountered. Thus, in contrast to DOM, SAX 

only supports read-once processing of documents. 

Nevertheless, neither one of these APIs provides enough capabilities to 

manipulate and query XML data. Motivated by this fact, query languages such as 

XPath (XML Path Language) [33] and XQuery [16] were proposed. XPath 

supports thirteen types of relationships or axes including child (“/ ”), descendant 

(“// ”), parent, ancestor, ancestor-or-self, descendant-or-self, following, following-

sibling, preceding, preceding-sibling, attribute, self, and namespace. In this thesis 

we concentrate on the child “/ ” and descendent “// ” axes. Furthermore, our 

proposed approaches in this thesis are capable of supporting these two axes. 

Both XQuery and XPath were developed and recommended by the W3C. 

Furthermore, a version of XQuery (Version 1.0, 1997) is based on XPath [16]. 

XPath provides operators for path traversals in an XML tree-shaped 

document. Path traversals result in a collection of subtrees (forests), which may 

be repeatedly traversed until a designated destination node is reached. Starting 

from a specific node, an XPath query navigates its input document using a 

number of location steps. For each step, an axis describes which document nodes 

(and the subtrees below these nodes) form the intermediate result forest for this 

step using one of the above mentioned 13 axes. 

An XML query may be either a simple single path query with or without a 

recursion (“// ” descendent axis), or a multiple path (twig) query with or without 
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a recursion (please note that single path query is also called path query, for short, 

in this dissertation). Furthermore, an XML query may have a zero, one, or 

multiple predicates. A twig query specifies patterns of selection on multiple 

elements related to one another by a tree structure. Next, we review a few 

examples of an XPath XML queries. Query 2.1 below is an example of a single 

path query.  

 

Query 2.1: /Bib/paper/author 

 

If we run this query against the XML document in Figure 2.3, it returns the 

results {“Sarah”, “Wang”}, which are the values of the author elements under the 

paper elements under the Bib element. Query 2.2 is an example of a recursive 

query, which illustrates the use of the descendent axis. 

 

Query 2.2: /Bib//author 

 

This query returns a set of values {“Tim”,“Sarah”,“Wang”}, which represents 

all author elements under the top-level Bib element. Query 2.3 is an example of a 

twig query that has a predicate.  

 

Query 2.3: //paper[/reviewer=“Ahmad”]/author  

 

This query asks for the author of a paper that has a reviewer named “Ahmad,” 

and the query returns the author “Wang.” This query demonstrates the flexibility 

that XPath provides, which is not available with the relational data model. It 

allows us to query about a paper without concern for where the paper is located 

within the tree structure. However, it adds more complexity to the query 
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language where an effort has to be made to locate the paper element through 

some indexing scheme, or else an exhaustive search has to take place if an index 

is not available. 

In query 2.3 we also see an example of using a predicate in an XPath query. 

Multiple predicates could be used in an XPath query. Path patterns for the above 

three XPath queries are shown in Figure 2.8. In this Figure, an oval represents an 

element, the edges between elements represent the parent-child relations, the 

edges that are marked with an “=” sign represent the ancestor-descendent 

relationships, and the nodes with the question marks are the output nodes [56].    

 

 

Figure 2.8  Schematic representation of XPath queries. 

 

2.2   Structural Indexing Schemes for XML Data 
Some XML databases structural indexes, such as the graph indexes, are 

analogous to the schema of a relational database. Both of them reflect the 

relationship between different parts of the data, and they are used to validate the 

legitimacy of a query before executing it. For example, XML graph indexes are 

used to determine if an XML path exists, before going any further in the query 
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processing for both single and twig path queries [108] [123]. In this section, 

structural indexes for XML data are analyzed in detail. 

Generally, structural indexes can be grouped into three categories:  

• Node indexes  [57] [78] [143] depend on labeling schemes [31] [60] including 

interval labeling [40] and prefix labeling [81] [100] [119] [138].  

• Graph indexes [62] include indexes that cover either single path queries only 

[32] [37] [54] or both single and twig path queries [67]. We divide graph 

indexes in this thesis into three types depending on their deterministic 

property and bisimilarity direction(s) (see Section 2.2.3: Graph Indexing 

Schemes). 

• Sequence indexes [104] [129] [130]  interpret queries as structure-encoded 

sequences and search for a match in the structure-encoded sequences of an 

XML document.   
 

Please note that the term path index is used in the literature to refer to 

different things. Sometimes it refers to graph indexes in general or to specific 

types of graph indexes (the deterministic graph indexes and the non-

deterministic backward bisimilar indexes), and sometimes it may refer to some 

types of node indexes (prefix indexes). In this dissertation we prefer not to use 

the term path indexes and use the specific terms above in order to eliminate any 

ambiguity.  
 

2.2.1 Criteria for Evaluation of Structural Indexing  
             Schemes 

We evaluate the indexing schemes according to a common set of criteria. 

These criteria are chosen in a way to help users decide which indexes are most 
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suitable for their needs by identifying the characteristics that these indexes 

support, such as accuracy, completeness, response time, scalability, and 

adaptability. We use the following criteria:  

• Precision: When a query is evaluated, the results returned may be complete 

and precise, or they may require further processing. Obviously, the first 

option is more efficient if the measurements of time taken to produce the 

initial answer for the two options are approximately equal. A structural 

index is precise if and only if the returned answer does not contain any 

incorrect answers.  

• Recall: This is the probability that all relevant documents are retrieved by 

the query. If the recall achieved is 100%, we say that the result is complete.  

• Processing complexity: This criterion covers different kinds of complexity 

depending on the type of indexing scheme that is used. It covers the 

primary processing procedure as well as additional join processing. 

Complexity criteria for each indexing scheme will be discussed 

individually. 

• Scalability: Large indexes may involve many Input/Output (I/O) accesses. 

These accesses increase the processing time of a query. Some indexes 

expand linearly with the size of the source data, while others increase 

exponentially with the size of the data. The second type imposes 

restrictions on the data growth. 

• Adaptability: Graphical indexes partition the data into equivalence classes 

based on their determinism and bisimilarity (backward bisimilarity, or 

forward and backward bisimilarity). Two nodes are backward bisimilar if 

they share the same incoming paths and forward bisimilar if they share the 

same outgoing paths. The bisimilarity can be specified by a factor k. Two 

nodes are backward k-bisimilar if they share the same incoming paths of a 

length = k. Setting the value of k to a small value results in a small index, 
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while a large value of k results in a large index.  The length of the path in 

queries varies depending on the users’ needs. If a graph index is used 

regularly to evaluate short-path queries, then a small k-value index is 

sufficient. In contrast, long-path queries need a large k-value index. Based 

on these observations, and depending on the queries, it would be useful if 

the size of the index could be adjusted by a given parameter k that 

represents the length of bisimilarity according to the users’ need.  

• Type of queries supported:  The two types of XML queries in general are 

single path and twig path queries. 

• Update cost of insertion of a node or a subtree: The nodes in a given tree index 

have to be maintained in a certain organization in order to reflect ancestor-

descendent, parent-child, and sibling relationships. When a new node is 

inserted into the tree, these relationships have to be preserved. 

Consequently, the index has to reflect its position with regard to these 

relationships, which adds more complexity, especially if there are no gaps 

in the scheme that is used to label nodes. We study two types of updates 

[139]: (1) the insertion of a node, which represents a small incremental 

change for an edge addition (for all indexing schemes); (2) the insertion of 

a subtree, which represents the addition of a new file (for some indexing 

schemes).  

 

2.2.2   Node Indexing Schemes 

Node indexes hold values that reflect the nodes’ positions within the 

structure of an XML tree. They can be used to find a given node’s parent, child, 

sibling, ancestor, and descendent nodes. These values can be used to evaluate 
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single path and twig path queries. Paths are evaluated through many steps. At 

each step, a structural join is performed between two nodes starting from one 

end of the path and finishing at the other end [6] [78] [143].   

Labeling (numbering) schemes were used prior to the creation of XML to 

reproduce the structure of a tree [40]. Two of the most widely used labeling 

schemes are interval (a.k.a. region) labeling [8] [29] [72] [78] [116] [135] [143] and 

prefix (a.k.a. path) labeling [48] [60] [66] [80] [99] [119]. In the following, we take 

the (Beg, End) labeling scheme as an example of the interval labeling and the 

Dewey code scheme as an example of the prefix labeling.  

 

2.2.2.1   Criteria for Evaluation of Node Indexes 

In addition to the general evaluation criteria listed above, we refine the 

processing complexity criterion into the following specific criteria. 

Processing complexity: 

• Relationship computation: To confirm a relationship between two given 

nodes, certain operations have to be performed. These operations depend 

on the type of the relationship. They also depend on the type of the 

labeling scheme that is used. 

• Relationships supported: Basically there are three types of relationships: 

o  Ancestor-descendent relationship: This relationship is needed to evaluate 

queries with the “// ” axis. 

o  Parent-child relationship: It is useful to evaluate queries with the “/ ” 

axis. 

o Sibling relationship: In some cases, a group of sibling nodes form an 

answer for a twig query.  
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•  Ability to infer parent/ancestor and child/descendent nodes: There are two 

approaches for solving queries, especially the ones with predicates, that is, 

top-down and bottom-up. A bottom-up approach is useful when the 

parent/ancestor nodes of a matched leaf node, for a given query, can be 

inferred from the matched leaf node. Also, identifying child/descendent 

nodes is helpful when the top-down approach is used to evaluate a query. 

• Data type used in indexing scheme: Comparing different data types involves 

different algorithms with different operations. As an illustration, 

comparing two numbers usually requires less time than that of comparing 

two sequences of strings.   

 

2.2.2.2   Interval Labeling Scheme 

The (Beg,End) labeling scheme is an example of interval labeling. Zhang et al. 

[143] introduce it to index the elements in a document. It assigns a pair of 

numbers to each node in an XML document according to its sequential traversal 

order as follows. Starting from the root element, each element, attribute of an 

element, value of an attribute, and value of an element is given a Beg number 

according to its sequential position in the document. When we reach the end of a 

tag, an attribute, or an attribute value, we assign to that tag, attribute, or attribute 

value an End number (which is equal to the next available sequential number) 

before moving to a new element in the XML document. When the value of an 

element is a leaf node, the Beg number of this value is equal to the End number. 

Figure 2.9 is an example of (Beg,End) labeling scheme for the XML document in 

Figure 2.1. The beginning and the ending numbers imply the positions of the 

opening tag (<..>) and the closing tag (</..>), respectively, in an XML document. 
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Figure 2.9   (Beg,End) labeling scheme 

 

This labeling scheme enables us to find the ancestor-descendant relationship 

as indicated in property 1 below. A Level is added to the (Beg,End) label to form a 

node-triplet identification label (Beg,End,Level) for each node in the tree, where 

Level represents the depth of an element in the tree [143]. This triplet 

identification label is used to infer the parent-child relationship as indicated in 

property 2. 

Property 1 - Ancestor-descendant relationship: In a given data-tree, node x is 

an ancestor of node y if x.Beg < y.Beg < x.End.  

For example, in Figure 2.9 node (1,22) is an ancestor of the 

node (3,5). 

Property 2 - Parent-child relationship: In a given data-tree, node x is a parent 

of node y if x.Beg < y.Beg < x.End and y.Level = x.Level + 1.  

For example, in Figure 2.9, node (1,22,1) is a parent to the node 

(2,6,2). 

The (Beg,End) scheme can be used to evaluate a twig query by using 

structural joins [113]. The relations that are supported by the node approach are 
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mainly the parent-child “/  ” and the ancestor-descendent “// ” relationships. The 

(Beg,End) labeling scheme is used to infer the relationship between two nodes at 

a time. It requires two comparisons to infer any of these two relations. The 

number of joins required to evaluate an XML query using a node index is equal 

to the number of nodes in the query minus one, which is high for large twig 

queries.  

The (Beg,End) labeling scheme can be used to evaluate both single path 

queries and twig path queries [113]. For a given query, the relationship between 

any two nodes within a path in the query is investigated separately because this 

indexing scheme’s granularity is defined at the level of each node and hence the 

answer for a given query will be precise and complete.  

Since the nodes’ index numbers are chosen sequentially, or randomly in an 

increasing order, and the tree is not necessarily balanced, there is no way to 

locate the siblings of a given node, using only the knowledge of its index 

numbers. Furthermore, the exact ancestor and descendent index numbers of a 

node cannot be inferred. It is possible to know the range within which the 

parent/ancestor or the child/descendent nodes are located, but the exact number 

of these nodes cannot be determined. 

Temporal XML databases [86] [35] are based on persistent (immutable) 

labeling schemes. Once a node is given an index number (e.g. “Beg,End” 

numbers), it remains unchanged throughout its lifetime. Persistent labeling is 

useful for examining changes to the contents of a source data over time by 

reviewing historical data. The paper by Cohen et al. [34] is an example of the 

early work in this area. 
Unlike a prefix labeling scheme, which we explain in the next section, the 

interval labeling scheme is best used for immutable encoding. Some durable 

schemes, for example Li and Moon [78], suggest leaving gaps between the 
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interval values for new nodes to be inserted. After filling these gaps, 

renumbering or other solutions are required. Cohen et al. [34] proved that 

persistent labeling, which preserves the order of an XML tree, requires O(n) bits 

per label where n is the size of the tree. The complexity is measured in the size of 

the interval labels because this size determines the total size of the index. It is 

desirable to keep the used number of bits small enough so that the index can fit 

in memory. Several researchers including Silberstein et al. [116] and Chen et al. 

[29] have designed dynamic labeling structures for interval indexes that allow 

relabeling by using only O(log n) bits per label.  

Interval labeling schemes require modest storage space. Regardless of the 

depth of the data-tree, each node is represented by only two numbers, and we 

can determine the relationship between any two nodes in fixed time by using 

comparison operations between the index numbers. Nevertheless, updating the 

labeling scheme of these types of indexes is costly. When a new node is inserted 

into the tree, then all the nodes in the tree, except the left sibling subtrees of the 

inserted node, have to be updated.   

Surveying all the variations of interval labeling is beyond the scope of this 

chapter. In the following, we list a few of the variations. Dietz [40] pioneered the 

labeling of an ordered tree [56] [78]. He used (Pre-order, Post-order) numbers to 

label the nodes of a data-tree. Pre-order sequence is based on traversing the tree 

recursively from the root R to subtrees rooted at R in a depth-first direction. Post-

order sequence is based on traversing the tree in an opposite direction to that 

given in pre-order sequence. A vertex x is an ancestor of y if and only if x occurs 

before y in the pre-order traversal of the tree and after y in the post-order 

traversal. Li and Moon [78] propose the (Order,Size) labeling scheme. The Order 

part is based on a pre-order traversal, and the Size part is an estimate of the 
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number of the child/descendent nodes for a given node. This labeling scheme 

leaves room for expansion in order to avoid relabeling of the data-tree in case of 

insertion. Relabeling may be delayed, but eventually it is required. It occurs more 

often if the data distribution in the tree is skewed. 

Tatarinov et al. [119] discuss the possibility of using real numbers (rational 

numbers) instead of integers to represent a position in their proposed global 

order of XML trees and discarded this idea because there is a finite number of 

values between any two real values stored in the computer and using real values 

instead of integers does not make much difference. Later, Amagasa, Yoshikawa, 

and Uemrua [8] used rational numbers instead of integers to represent a region 

(interval) in node indexing. Similar to the (Order,Size) labeling scheme [78], the 

rational number approach only avoids node relabeling as much as possible. If the 

number of insertions exceeds a specific limit, the nodes have to be relabeled. Wu 

et al. [135] propose a novel labeling scheme that uses prime numbers to label 

nodes in an XML tree. In this approach, each node label can only be divided 

exactly (without remainder) by its own ancestor(s). 
 

2.2.2.3  Prefix Labeling Scheme 

Dewey code labeling (Dewey labeling for short), which is an example of a 

prefix labeling scheme, is another labeling scheme that was originally made for 

general knowledge classification [100]. Tatarinov et al. [119] first used it for XML 

tree-shaped data.  

Each node is associated with a vector of numbers that represents the node-ID 

path from the root to the designated node. In addition to being classified here as 

a node index type, it can also be considered as a path index since each node is 

represented as a complete path from the root to the indexed node. 
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Figure 2.10 is an example of the Dewey labeling scheme for the XML 

document in Figure 2.1. Each node label represents the node location within a 

path by including its ancestors’ coding as a prefix (vertical coordinate), and it 

also includes the node number within the siblings of the same parent (horizontal 

coordinate). The level is implicitly included by counting the number of segments 

that are separated by a delimiter (dot in our example in Figure 2.10) in the 

Dewey labels. 
 

 
 

Figure 2.10  Dewey labeling scheme 

 

 

To decide if a parent-child or an ancestor-descendent relationship exists, we 

perform a prefix matching operation on the index string. In a given data-tree, 

node x is an ancestor of node y if the label of node x is a substring of the label of 

node y. For example, node (0.3) is an ancestor of node (0.3.1.0). Unlike the 

(Beg,End) labeling scheme, the Dewey labeling scheme does not require any 

additional information in order to evaluate the parent-child relationship. For 

example, it is easy to see that node (0.3) is the parent of node (0.3.1). 
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The sibling relationship can be computed in the same way without the need 

for any additional information (e.g. level number or parent ID). The Dewey 

labels provide direct support for the sibling relationship. In a given tree, node x 

and node y are siblings if nodes x and y have the same number of fragments in 

their labels (call it n) and  x.prefix = y.prefix (where the prefix length is equal to n 

minus one). For example, node (0.3.0) and node (0.3.1) are siblings. 

Dewey labels are much easier to update than (Beg,End) labels. When a new 

node is inserted, only the nodes in the subtree rooted at the following sibling 

need to be updated [119]. However, its storage size increases with the depth of 

the tree. Furthermore, as the depth increases, it becomes more costly to infer the 

parent-child or the ancestor-descendent relationship between any two arbitrary 

nodes because the string prefix matching becomes longer. 

Fisher et al. [48] propose a dynamic labeling approach that can be applied to 

Dewey labels with identifiers of size O(log n) when there is type information in 

the form of a DTD or Schema, where n is the size of the database. Similar to all 

labeling schemes, immutable Dewey labeling requires O(n) bits per label [34]. 

It is easy to infer the exact ancestors or descendents of a given node in 

Dewey labeling scheme indexes. For example, in Figure 2.10 the ancestors of the 

node (0.3.1) are the nodes that start with a (0.3) or (0) prefix, and the descendents 

are the nodes that start with the (0.3.1) prefix, such as node (0.3.1.0). Since the 

complete path is recorded within a node index, Dewey labeling scheme indexes 

return a precise and a complete answer for both path queries and twig queries. 

Path and twig queries need join operations in order to be evaluated, specifically 

the number of nodes in the query minus one join operations are required.  

Many variants of prefix labels are proposed in the literature. O’Neil et al. [99] 

propose the ORDPATH labeling scheme that is similar to the Dewey labeling 
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scheme, except that the child nodes of a given parent node are labeled by using 

odd numbers, and even numbers are used later for new insertion. In the GRoup 

base Prefix (GRP)  labeling scheme [80] the labels consist of two parts, namely, 

group ID and group prefix. Doung and Zhang [42] propose Labeling Scheme for 

Dynamic XML data (LSDX), where the labels are a combination of numbers and 

letters. LSDX support the ancestor-descendent relationship as well as the sibling 

relationship between nodes. GRP and LSDX labeling schemes are persistent, 

therefore their label sizes can reach O(n) bits per label in the worst case, where n 

is the number of nodes in the tree. 

 

2.2.2.4   Summary of Node Indexes 

Table 2.1 contains a summary of the two types of labeling schemes that are 

used to form node indexes. The precision of an index scheme is either precise 

(does not return any false answers) or imprecise (may contain some false 

answers along with the correct answers). If the recall achieved is 100% then the 

result is complete, otherwise it is incomplete. Relationship computation is fixed if 

we can determine the relationship between any two arbitrary nodes in  a fixed 

time, which may depends on the depth of the data-tree. The relationships 

supported are ancestor-descendent, parent-child, and sibling relationships. The 

data type is either a number or a string. The types of queries supported by these 

node indexing schemes are path and twig queries. The evaluation of both types 

of queries usually require join operations. The maintenance cost of the indexes 

depends on the number of elements and whether or not the index is mutable or 

immutable.   
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Table 2.1   Comparison of interval labeling scheme with prefix labeling scheme 

 
 

 

 

Both types are equivalent with respect to precision, completeness (recall), 

and maintainability. However, they differ with respect to the other 

characteristics. The (Beg,End) labeling scheme requires fixed time to compute a 

relationship between any two arbitrary nodes for two reasons. First, it uses 

integer values to index the nodes. Second, the size of the label that is used to 

index each node is fixed depending on the depth of the tree. On the other hand, 

in Dewey labeling schemes, the time that is required to compute the relationship 

between any two arbitrary nodes is directly proportional to the depth of the 

nodes for two reasons. First, Dewey labeling schemes use strings to represent 

No. Criteria Interval Labeling
(Beg,End)

Prefix Labeling
(Dewey)

1 Precision Precise Precise

2 Recall Complete Complete

3 Computation    
Complexity

Relationship 
computation Fixed Directly proportional 

to depth increase

Relationship  
supported 

- Ancestor/Descendent
- Child/Parent (if “Level” 

is available)
All

Can infer exact  
ancestor &  
descendent nodes

No Yes

Data type Numerical String

4 Size/Scalability  
for increasing depth Linear Exponential

5 Type of queries supported 
efficiently (without joins) None None

6 Maintenance 
cost

Mutable O ( log n ) O ( log n ) 

Immutable O ( n ) O ( n )
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labels instead of integers. Second, the labels’ size increases as the depth increases. 

Unlike (Beg,End) labels, each Dewey label contain the root path (the path from 

the root to the designated node) information. Therefore, with Dewey labels, we 

can infer any node’s parent-child or ancestor-descendent from the label of the 

node. Finally, prefix labels are often easier to update than interval labels, 

although, the cost of maintaining prefix labels can be the same as the cost of 

maintaining interval labels in the worst case.   
 

2.2.3   Graph Indexing Schemes 

A graph index (a.k.a. summary index) is a structural path summary [36] that 
can be used to improve query efficiency, especially for single path queries. It is 
also capable of solving twig queries but with an additional cost of multiple join 
operations.  

Graph indexes consider paths, during query evaluation, as a whole path 
instead of dealing with each node in the path separately. A subsequent step is 
needed to join single paths together in order to evaluate a twig query. In contrast 
to node indexes, the number of joins is reduced during query processing and 
consequently query performance is improved.  

Graph indexes have been categorized according to many criteria. For 

example, Gou and Chirkova [56] group them into two classes, path indexes, 

which are able to cover single path queries (such as strong DataGuides and 

1-index), and twig indexes, which are able to cover twig queries (such as F&B-

index). Graph indexes can also be categorized according to their path exactness 

[103]. Some schemes are exact such as strong DataGuide, Index Fabric, 1-index, 

and F&B-index; while others are approximate such as approximate DataGuide, 

A(k)-index, D(k)-index, and (F+B)k-index.  
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Our classification considers the following important properties of an index:  

• Path determinism: If the index tree is a Deterministic Finite Automaton, then 
the paths of the tree are considered to be deterministic paths. Given a 
particular input (tag name) to a particular node in a tree, it will always 
produce the same single output (path) if the system is deterministic, and it 
may produce several similar outputs (paths) if the system is non-
deterministic. This feature assures that every distinct path in an index 
graph is represented only once. Otherwise, multiple identical paths may 
exist in the index, which may add to the complexity of query evaluation. 
Deterministic indexes guarantee uniqueness of paths, and non-
deterministic indexes guarantee the uniqueness of elements.  

• Bisimilarity: There are two types of bisimilarity, namely, forward and 
backward bisimilarity. Two nodes are backward bisimilar if they share the 
same incoming paths. Two nodes are forward bisimilar if they share the 
same outgoing paths. The direction of bisimilarity significantly affects the 
size of an index and the answering power of an index to a given query. 
Non-deterministic graph indexes with only backward bisimilarity tend to 
have lower accuracy (which is corrected by some post-processing steps) 
but their sizes are minimal. In contrast, graph indexes with forward and 
backward bisimilarity have higher accuracy and cover twig queries, but 
their sizes are larger than those of backward bisimilar indexes. 
 

Based on path determinism and bisimilarity, we classify graph indexes into 
the following categories: 

• Deterministic graph indexes: This includes strong DataGuides [54], 
approximate DataGuide [55], and Index Fabrics [37]. 

• Non-deterministic graph indexes with backward bisimilarity: This includes 
1-index  [90], A(k)-index [70], and D(k)-index [28]. 
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• Non-deterministic graph indexes with forward and backward bisimilarity: This 

includes F&B-index [56] [2], (F+B)k-index [67], disk-based F&B-index 

[131], and AB-Index [145]. 
  

Gou and Chirkova’s [56] classification combines our first two groups into 

one that covers single path queries. Their classification for graph indexes is based 

on the type of queries (path or twig) an index covers, while our classification of 

XML graph indexes is based on their deterministic property, in addition to 

forward and backward bisimilarity.   

Deterministic indexes guarantee uniqueness of paths, and non-deterministic 

indexes guarantee the uniqueness of elements. Therefore, deterministic indexes 

are suitable for single path queries (where the complete path is known). For 

example, to evaluate the query “/P/A” over the deterministic strong DataGuide 

index in Figure 2.11(B) we have to traverse one path only. In contrast, non-

deterministic graph indexes may lead to traversing more than one index path to 

evaluate a single path query. For example, to evaluate the same query as 

described above over the non-deterministic 1-index in Figure 2.11 (C) we have to 

traverse more than one path that satisfies the query.  

Non-deterministic graph indexes, on the other hand, represent every value in 

the source data only once in the index tree, while deterministic graph indexes 

may have the same value in the source data repeated in more than one location 

in the index tree. For example, node “9” in the deterministic strong DataGuide 

index in Figure 2.11 (B) is listed twice, while the non-deterministic 1-index in 

Figure 2.11 (C) has it listed only once. Furthermore, deterministic indexes may 

grow exponentially in the size of the original data (due to repetition of nodes), 

while non-deterministic indexes grow linearly [90]. Based on this discussion, in 

addition to fact that the term path indexes are used ambiguously in the literature 
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to refer to absolutely different types of indexes, we use determinism as one 

criterion to classify graph indexes.  

The other criterion that we use to classify graph indexes is the direction of 

bisimilarity. This criterion further subdivides the non-deterministic indexes into 

backward, and forward and backward bisimilar indexes. The direction of 

bisimilarity significantly affects the size of an index and the answering power of 

an index for a given query. Non-deterministic graph indexes with only backward 

bisimilarity tend to have lower accuracy (which is corrected by some post 

processing steps) but their sizes are minimal. In contrast, graph indexes with 

forward and backward bisimilarity have higher accuracy and cover twig queries, 

but their sizes are larger than those of backward bisimilar indexes. 

We elaborate the development of graph index schemes according to these 

three classes and analyze the schemes using the general criteria given earlier. 

Please note that all graph indexing schemes provide a complete answer for both 

single path queries and twig path queries. They do not require extra joins to 

evaluate the single path queries but they require join operations to evaluate the 

twig queries (except F&B indexes).   
 

 

 

2.2.3.1   Deterministic Graph Indexes 

In deterministic graph indexes, each unique path in a data graph is listed 

once in the summary graph, and every path in a summary graph has at least one 

matching path in the data graph. Three indexing schemes of this type are strong 

DataGuides, approximate DataGuide, and Index Fabrics.  



CHAPTER 2. BACKGROUND  AND  LITERATURE STUDY 38  

 

 

DataGuide 

Goldman and Widom [54] present one of the early structure summaries 

called a strong DataGuide. In this scheme, the nodes in the source data are 

partitioned based on their root path, that is, the path from the root to the indexed 

node. The graph index (a.k.a. structure summary) of an XML data-graph is a 

strong DataGuide if it fulfills two conditions: 

• Every distinct root path in the source data appears only once in the graph 

index. 

• All the paths in the graph index have at least one matching root path in 

the original source data. In other words, there are no invalid paths in the 

graph index.    

 

 Figure 2.11 contains an XML data-tree and its associated graph indexes. 

To simplify the comparison between different schemes in Figure 2.11, we assume 

an edge-labeled graph structure, use numbers inside the nodes to represent the 

node IDs, and use letters to represent the elements (tag types) of the source XML 

data. The letters (B,P,A, and R) in Figure 2.11(B-F) stand for book, paper, author, 

and reviewer in Figure 2.11(A), respectively. Figure 2.11(A) is a modified version 

of the XML data-tree in Figure 2.2. The difference is that two edges are inserted 

(represented by the dashed lines in Figure 2.11(A)). The first edge connects nodes 

“4” and “3”, and the second edge connects nodes “5” and “9”. These edges 

transform the tree-shaped data in Figure 2.2 into directed acyclic graph-shaped 

data. Unlike node indexes, graph indexes are capable of supporting DAG data 

such as in Figure 2.11(A). 
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Figure 2.11    XML data-tree and its corresponding graph indexes 

 

 

The graph index in Figure 2.11(B) is a strong DataGuide for the data in 

Figure 2.11(A). Note that node number “3” occurs in both the “/B/A” and “/P/R” 

paths. Node number “9” occurs in both the “/P/R” and “/P/A” paths. One may 

argue that being deterministic is an advantage of the strong DataGuide structure 

index. Nevertheless, a node’s repetition is directly proportional to the existence 

of multiple parent nodes and cycles in the source data. In the worst case, the 

structural index size may exceed the original size of the data and hence it may 

lose its essential characteristic of a summary. In the case of DAG data, the size 

may be exponential in the size of the original data. Tree-shaped XML data, on the 
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other hand, requires storage space, in the worst case, equal to the size of the data 

itself. 

Strong DataGuides are capable of giving a complete and precise result for 

single parent-child path queries [67] such as “/B/A” in our example, which 

returns the node {3}.  They are also complete and precise for ancestor-descendent 

path queries. For instance, the query “//R,” in our example, returns the nodes 

{3,8,9}. 

Strong DataGuides are complete for twig queries but not precise [67]. For 

example, evaluating query “/P[/A]/R,” which returns an R node that has a P 

parent node and  an A sibling node, over the strong DataGuide index in Figure 

2.11(B) returns index nodes {3,8,9}. This answer is complete because the returned 

set includes the correct answer {8,9}, but it is not precise as node {3} does not 

belong to the correct answer. 

The complexity of maintaining strong DataGuides depends on the structural 

effect of the updates. Updating strong DataGuides could be as simple as 

inserting a new leaf into tree-structured data, which requires only one target set 

to be recomputed and one new object to be added to the strong DataGuide. In 

the worst case, updating a tree with a subgraph of structured data that has loops 

and sharing may incur recomputation of a large portion of the strong DataGuide. 

An edge insertion update requires touching a number of nodes and edges that is 

equal to O(n + m) in the worst case, where n is the number of nodes (objects) and 

m is the number of edges of a strong DataGuide. Please note that from this point 

forward DataGuide alone stands for strong DataGuide. 
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Approximate DataGuide  

Experiments have shown, in general, that the size of the strong DataGuide is 

much smaller than the original database. There are cases, however, where the 

size of the strong DataGuide is unreasonably large (e.g., for cyclic data). 

Approximate DataGuide (ADG), which is proposed by Goldman and Widom 

[55], minimizes the size of strong DataGuides. ADG ignores the second 

requirement of the strong DataGuide, but maintains the first one. Therefore, it 

ensures that every distinct root path in the data source appears exactly once in 

the ADG, but it does not ensure that all ADG paths exist in the original data. 

Hence, an ADG may have false positives but never false negatives, so that all 

correct paths are guaranteed to exist in addition to some false paths. Experiments 

demonstrate that there is a trade-off between the size of ADG and its accuracy. In 

general, strong DataGuide characteristics are applicable for ADG, except that the 

size of the ADG is often smaller. 
 

Index Fabric 

Index Fabric is proposed by Cooper et al. [37] as a solution for very large 

indexes that may not fit in memory. Index Fabric utilizes its paging capabilities 

to solve the size problem. It uses prefix-encoding to represent paths as strings. 

These strings are classified and sorted by a special index called the Index Fabric. 

The index structure is designed specifically for complete path queries that start 

from the document root node. Other paths such as descendent path queries “// ” 

require a post-processing stage and expensive index lookups. The notion of 
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refined paths (template paths) is proposed by the authors to solve this problem. 

However, the refined paths are not dynamic and need to be determined prior to 

index creation and loading time.  

The Index Fabric indexes both paths and values in a tree. As an example, 

each edge of the data-tree in Figure 2.12(A) (which is the same as the XML data-

tree in Figure 2.2) is given a designator as illustrated in Figure 2.12(B). The edge 

labels along with the content of the data-tree are combined at the leaf nodes to 

form a graph index for each value in the tree. Note that compression is used to 

minimize the size of the tree. For example, in Figure 2.12(C), since book edges are 

followed by an author edge, the bold capital B designates the path “/B/A” (book 

and author), instead of “/B” alone.  

A major contribution of the Index Fabric is its layered-based paging strategy 

to index large data. This feature makes it possible to handle very large indexes. 

The index structure is stored on disk and divided into multiple blocks of 

approximately equal size, each of which holds a small sub-Trie. The Tries of the 

lower levels are referenced by higher level Tries in the Index Fabric, and so forth 

until we reach the root Trie, which can fit in one block. The number of the Index 

Fabric levels is based on the size of the original data.  

Index Fabric is conceptually similar to strong DataGuide [130] [32]. It is 

deterministic and its size may grow exponentially in the size of the original data 

for the DAG data, and linearly for the tree-shaped data. Furthermore, it is 

complete and precise for path queries, and complete for twig queries but not 

precise. DAG data can be indexed by an Index Fabric, but Index Fabric is more 

efficient for tree-shaped data. 
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Figure 2.12    Index Fabric of the data-tree in Figure 2.2 

 

 

The Index Fabric is a balanced structure tree like a B-tree. Updating an Index 

Fabric may include a deletion of one record and an insertion of another. The 

insertion may cause one block per level of the tree to split in the worst case.  
 

 

2.2.3.2 Non-Deterministic Graph Indexes with Backward  
               Bisimilarity 
 

The 1-index, the A(k)-index, and the D(k)-index are based on backward 

bisimilarity partitioning. While the 1-index backward bisimilarity length is equal 

to the length of the longest path in the data-graph, the A(k)-index and the 

D(k)-index backward bisimilarity lengths are set by a value k. The k value in the 

A(k)-index is set manually, and the k value in the D(k)-index is set 

automatically.  
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 (1-index) 

Milo and Suciu [90] propose 1-index as an attempt to reduce the size of a 

structural summary to less than that of a strong DataGuide by relaxing the 

determinism constraint. Figure 2.11(C) is an example of 1-index for the data in 

Figure 2.11(A). The 1-index partitions the data nodes of a document into 

equivalence classes based on their backward bisimilarity from the root node to 

the indexed node. Both strong DataGuide and 1-index are identical in the case of 

XML data-trees. In the case of DAG data, however, a 1-index may contain similar 

root paths, but represents each node in the source data-graph only once, and 

hence it is possible for a node to be reachable by multiple paths (see nodes “3” 

and “9” in Figure 2.11(C) for example). Based on this fact, we can say that the 

1-index scheme is non-deterministic in nature. In the worst case, the size of 

1-index will never exceed the size of the original data regardless of whether the 

data source is a basic tree or a graph. Nevertheless, 1-index structural summaries 

are often too large, and are considered inefficient when the original source data is 

large [28] and irregular. 

While a 1-index represents every value in the source data only once in the 

index tree, a strong DataGuide may have the same value in the source data 

repeated in more than one location in the index tree. Hence, a 1-index is more 

node centric in its partition. Inversely, similar paths in the source data could be 

represented by multiple similar paths in 1-index scheme, while strong 

DataGuide represents all similar paths in the source data by only one path in the 

index. Therefore, strong DataGuide is more path centric in its partition. 

It is easy to see from Figure 2.11(C) that 1-index is complete and precise for 

evaluating path queries such as “/B/A” and “//R”, and is complete but not precise 
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for evaluating twig queries like “/P[/A]/R”. In General, 1-index is always 

complete, but not necessarily precise [70].  

Kaushik et al. [68] review two kinds of updates for the 1-index, namely, the 

addition of a subgraph, and the addition of an edge. Let the data-graph before 

the addition of the new file be G, the 1-index be IG, H is a new subgraph, and the 

1-index for H  be IH. Let the number of nodes in IG, H, and IH be nIG, nH, and 

nIH, respectively, and the number of edges be mIG, mH, and mIH, respectively. 

The time taken by the subgraph addition is O( mHlog(nH) + (mIH +mIG)log(nIH + 

nIG) ). Note that this is independent of the size of G, but dependent on the size of 

IG, which is usually smaller than the size of the data-graph. 

The complexity of edge addition is measured by the number of nodes and 

edges touched in the data-graph during the update process, which can be O(n + 

m) in the worst case scenario, where n is the number of nodes and m is the 

number of edges in the data-graph[68].  
 

A(k)-index 

The dominant disadvantage of strong DataGuide and 1-index is the size of 

their indexes when the source data is large and irregular. A(k)-index is proposed 

by Kaushik et al. [70], mainly to overcome the size problem. Similar to 1-index, 

A(k)-index (Figure 2.11 (D and E)) is based on backward bisimilarity and is non-

deterministic. A(k)-index uses a mechanism to minimize the size of the graph 

indexes by specifying a factor k that is used to decide the length of the 

backward bisimilarity of the indexed nodes. Two nodes are backward 

k-bisimilar if they share the same incoming paths of a length = k. For example, an 
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A(3)-index is an index for nodes that share the same incoming labeled (tagged) 

paths of length three.  

The size of an A(k)-index is generally smaller than that of a strong 

DataGuide and a 1-index. Similar to the 1-index scheme, A(k)-index grows 

linearly in the size of the source data regardless of the shape of the data. A 

smaller value of k results in a smaller index. A(k)-index gains the advantage of 

having a smaller size at the expense of precision since the index does not 

necessarily reflect the complete path from the root node.  

Since the A(k)-index is based on equivalence-class partitioning of nodes in a 

data-graph, it is usually complete but not necessarily precise [70]. We  take an 

A(1)-index for the data in Figure 2.11(A), which is illustrated in Figure 2.11(D), as 

an example. For path queries such as “//R”, A(1)- index is complete and precise 

as it will return the node set {3,8,9}. Although, it is complete for the path queries 

such as “/B/A”, as it will return {3,9}, which is a superset of the correct answer {3}, 

it is not precise as the answer set contains the wrong answer “9.” It is only 

precise for path queries with a length that is less than or equal to the length set 

by the k value. For example, an A(2)-index, as illustrated in Figure 2.11(E), is 

complete and precise for both “/B/A” and “//R” queries. Note that Figure 2.11(E) 

is identical to the 1-index in Figure 2.11(C). Actually, a 1-index is a special case of 

A(k)-index where k value is equal to the depth of a data-graph (the longest path 

in a graph). A(k)-index is complete but not precise for twig queries like 

“/P[/A]/R.”   

The subgraph addition algorithm for the 1-index extends to the A(k)-index. 

Unfortunately, the edge insertion algorithm does not extend and hence the edge 

insertion for the A(k)-index remains an open problem [68].  
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D(k)-index  

Choosing the correct value of k in the A(k)-index scheme is the biggest 

challenge. Large values may create a larger size index that may negatively affect 

the query processing for both short path and long path queries. Low k values, on 

the other hands, may produce smaller indexes and thus more efficient, but less 

precise, query processing. Chen et al. [28] propose D(k)-index to choose the most 

suitable value of k dynamically based on the workload. Therefore, D(k)-index is 

more efficient than A(k)-index with regard to processing time and storage space. 

In general, with regard to the rest of the above listed evaluation criteria, both 

D(k)-index and A(k)-index schemes share the same levels of precision, 

completeness, and scalability. For both D(k)-index and A(k)-index, if the length 

of the path in a query is longer than the value of k, then a post-evaluation step 

might be necessary to double check the correctness of the answer, which may be 

costly.  

The D(k)-index is considered for two types of updates: the addition of a new 

file (subgraph), and the addition of a new edge. The update algorithm for a 

subgraph addition is based on the update algorithm of 1-index by Kaushik et al. 

[68]. On the other hand, the edge addition algorithm is novel and in general 

performs better than the one presented by Kaushik et al. Assume that a new edge 

is added to the D(k)-index IG from X to Y, and Y ’s local similarity (identical 

structure) is equal to Ky. While the Kaushik algorithm, in the worst case, needs to 

touch O(n+m) nodes and edges in the data-graph, the update algorithm for the 

edge addition with the D(k)-index can touch nodes and edges in a distance less 

than or equal to Ky in the index graph IG [28]. 

 

 

 



CHAPTER 2. BACKGROUND  AND  LITERATURE STUDY 48  

 

 

2.2.3.3  Non-Deterministic Graph Indexes with Forward and  
                 Backward Bisimilarity 
 

We review three types of indexing schemes under this class of graph indexes: 

the F&B-index, the (F+B)k-index, and the disk based F&B-index. They are 

non-deterministic like the above type of graph indexes (1-index, A(k)-index, and 

D(k)-index), but they differ with respect to size and query answering power as 

they are larger and they cover twig queries as well as single path queries. 

F&B-index 

The F&B-index was introduced by Abiteboul et al. [2]. Unlike 1-index, 

A(k)-index, and D(k)-index which are based only on the incoming (backward) 

paths bisimilarity, this index scheme is based on the incoming and the outgoing 

(forward and backward) paths bisimilarity of all nodes in the source data-tree or 

data-graph. Therefore, it is considered to be a twig structural index scheme. It 

can be used as a covering index for the set of all branching path queries that can 

be expressed over a tree or graph of data. 

To demonstrate the benefits of this indexing scheme, consider the twig query 

“/P[/A]/R.” Evaluating this query over strong DataGuide (Figure 2.11(B)), 1-index 

(Figure 2.11(C)), or A(2)-index (Figure 2.11(E)), returns a set of R nodes {3,8,9}. 

We see that R node “3” does not contribute to the correct answer, yet it is 

returned in the initial steps by all the indexes. Eventually, it is eliminated from 

the final answer after performing some additional join steps. In contrast, as 

illustrated in Figure 2.11(F), the F&B-index detects this mismatch early and is 

able to exclude R node “3,” therefore avoiding the additional joins and 

improving efficiency. F&B-index therefore is complete and precise for twig 

queries as well as for path queries. 
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The F&B-index is non-deterministic. The size of the index grows linearly in 

the size of the source data document, and in the worst case does not exceed the 

original data size for both data shapes (tree and graph). Kaushik et al. [67] 

proved that F&B-index is the smallest index covering all branches of a given 

XML graph. However, the size of an F&B-index is often too large to fit in 

memory. To update the F&B-index when a subgraph or an edge is added to the 

data-graph, approaches similar to those used for updating the 1-Index by 

Kaushik et al. [68] can be adopted. 

 

(F+B)k-index  

Kaushik et al. [67] propose (F+B)k-index, which is a modified version of the 

F&B-index. They manage the size of the F&B-index by specifying the value of k 

[56]. A low value of k results in an index that can cover limited classes of 

branching path queries, but the index size is often small. A high value of k, on the 

other hand, can cover a wide range of classes of branching path queries at the 

expense of the size since the size of the index is often large. With regard to the 

rest of the comparison criteria, both F&B-index and (F+B)k-index have the same 

features. The idea of (F+B)k-index as an extension to F&B-index is analogous to 

A(k)-index as an extension to 1-index. 
 

Disk-based F&B-index 

The main shortcoming of the F&B-index and the (F+B)k-index is often their 

large sizes, because they have more details about each node. They, therefore, 

often do not fit in memory. To overcome this weakness, Wang et al. [131] 
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proposed a disk-based F&B-index with various clustering properties and criteria. 

They integrate 1-index with F&B-index in a new clustered disk-based F&B-index 

and store the index on the disk which can be dealt with efficiently as needed. In 

this indexing scheme, only relevant chunks of the index are returned from disk 

to main memory in order to be processed, which is similar to paging utilities that 

are available in some other indexing approaches (e.g. Index Fabric).  

 With regard to the other comparison criteria, in general, the disk-based 

F&B-index has the same characteristics and features as the regular F&B-index, in 

addition to the improvement in dealing with large size data. The authors of disk-

based F&B-index [131] did not discuss or present any updating algorithm for 

their indexing scheme. 

 

2.2.3.4   Summary of Graph Indexes  

Note that 1-index and strong DataGuide indexes are suitable for small to 

medium size data while disk-based F&B-index and Index Fabric are more 

appropriate for very large data sources. Both 1-index and F&B-index are 

considered to be exact indexes. While A(k)-index and D(k)-index could be 

approximate indexes if the value of k for the used indexes is smaller than the 

length of the query path. Moreover, 1-index, A(k)-index, and D(k)-index are 

based on backward bisimilarity and they cover all single path queries. F&B-index 

and disk-based F&B-index, on the other hand, are based on forward and 

backward bisimilarity and they cover all branching queries for a given data set. 

Table 2.2 contains a summary of the graph indexing schemes. The initial size 

(when it is first created) of a graph index for both tree-shaped and graph-shaped 

data could be either the same as the size of the data or exponential in the size of 



CHAPTER 2. BACKGROUND  AND  LITERATURE STUDY 51  

 

 

the data, in the worst case. The scalability (growing size) could be either linear or 

exponential in the size of data. The type of queries that are supported efficiently 

could be path, twig, or both.  

Non-deterministic forward and backward bisimilar indexes are the only type 

of graph indexes that are capable of supporting twig queries if the index is exact 

(i.e. F&B-index). Note that the size of a deterministic index grows linearly in the 

original size of the source data if the shape of the source data is tree, and it grows 

exponentially if the shape of the source data is graph. 
 

 

Table 2.2    Comparison among the three categories of graph indexing approaches 
 

 
 

Before moving into the third type of structural indexes, it is worth 

mentioning here that graph indexes, in addition to being used as structural path 

Deterministic Non-deterministic
Backward Bisimilar

Non-deterministic 
Forward & Backward Bisimilar

Criteria Strong DataGuide,  Index Fabric
Approximate DataGuide 1-index, A(k)-index, D(k)-index F&B-index, (F+B)k-index, Disk-based 

F&B-index

1-Precision
Path Precise Precise Precise

Twig Not Precise Not Precise Precise

2-Recall
Path Complete Complete Complete

Twig Complete Complete Complete

3- Complexity
(joins required)

Path No No No

Twig Yes Yes No

4- Size (initial,  worst)
Tree Same Same Same

Graph Exponential Same Same

4- Size ( scalability, growing) Linearly (for tree data),
Exponentially (for cyclic data) Linearly Linearly

5- Query supported efficiently
(without joins) Path Path

Path
(Twig by F&B-index and disk-

based F&B-index)

6- Maintain ability  (Edge 
insertion, worst) O ( n + m ) O ( n + m ) O (  n + m )

Notes

- Path queries are precise for 
k ≥  path length 

- Edge addition to A(k)-index is not 
available (open for research)

- Precision and the need for joins depend 
on “k” value for (F+B)k-index

- Maintainability of disk-based is not  
available (open for research)
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summaries, can facilitate use of statistics and other features that can aid query 

processing and optimization [4]. For example, a graph index can hold sample 

values for each node or statistics about the extended data such as fan-in and fan-

out of each node. 

 

2.2.4   Sequence Indexing Schemes 

Sequence indexes [104] [130] transform XML documents and queries into 

structure-encoded sequences. Answering a query requires sequence string 

matching between the encoded sequences of the data and the query. This 

eliminates the need for joins to evaluate twig queries. We must be careful, 

however, when using matching to answer a query since the sequence may not 

necessarily reflect a structural tree match (see Computational Complexity, 

Refinement Steps, next page). Sequence indexes combine the structure and the 

values of XML data into an integrated index structure. They are used to 

efficiently evaluate path queries and twig queries with keyword components 

without any extra join operations with tables that hold the values.  

 

2.2.4.1   Specific Comparison Criteria of Sequence Indexes 

In addition to the general comparison criteria listed above, we include the 

following specific comparison criteria for this type of index: 

• Computational complexity ( indexing direction ): The shape of an XML graph 

is similar to a triangle. At the top there is only one root element and at the 

bottom there may be many leaf nodes, which are usually value nodes. 
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A top-down search for a value in a data-tree starts from the root element 

then goes down the tree according to a given query path specification. In 

contrast, a bottom-up approach starts the search from the values at the 

leaf nodes. Since the selectivity of leaf nodes is higher than that of nodes 

in the top and the middle of the tree, a bottom-up search results in fewer 

paths in the tree being examined. Therefore, the indexing direction has an 

effect on the efficiency of a query evaluation.  

• Computational Complexity (Refinement Steps): Sequence schemes suffer from 

two anomalies, namely, false positives (a.k.a. false alarms or imprecise 

result) and false negatives (a.k.a. false dismissals or incomplete result). 

Refinement steps are added to the evaluation process of a query to 

overcome these problems. On the one hand, the fact that these anomalies 

exist in the encoded sequence is an issue by itself. On the other hand, the 

way that these anomalies are dealt with is another issue. With regard to 

this criterion, we are only concerned with how efficiently these problems 

are resolved. 

 

Based on the importance of tree mapping direction, we divide sequence 

indexes into two types, namely, top-down sequence indexing schemes and 

bottom-up sequence indexing schemes. ViST and PRIX are examples of 

top-down and bottom-up indexes, respectively.  

 

2.2.4.2    Top-down Sequence Indexes (ViST) 

The ViST (Virtual Suffix Tree) index structure is proposed by Wang et al. 

[130]. Before we illustrate an example of ViST, please note that the data-tree in 



CHAPTER 2. BACKGROUND  AND  LITERATURE STUDY 54  

 

 

Figure 2.13 (B) is an encoded form of the data-tree in Figure 2.13 (A) by 

substituting the edge labels Bib File, book, author, paper, and reviewer with the 

letters F, B, A, P, and R, respectively. Furthermore, Figure 2.13 (A) is the same as 

the example edge-labeled data-tree in Figure 2.2. As an example of ViST, 

consider the data-tree in Figure 2.13 (B) and the query tree in Figure 2.13 (D). 

Both trees are transformed into structure-encoded sequences as illustrated below. 

Note that each pair in the sequence consists of the node’s tag and the root path of 

the node’s parent. 

 
 

     Data tree 2 (D2) : (F,0) (B,F) (A,FB) (P,F) (P,F) (A,FP) (P,F) (R,FP) (A,FP) 

     Query        (Q2.4)   :   (F,0) (P,F) (R,FP) (A,FP) 
 

 

The underlined subsequences of data D2 match the query sequence of query 

Q2.4, so we return the matched subsequence in the data-tree as an answer to the 

query. We should be aware of any existing false positives in the solution. For 

example, consider the data-tree 3 in Figure 2.13 (C), the sequence of this tree is 

illustrated below. 

 
     Data tree 3 (D3)  :  (F,0)  (P,F)  (R,FP)  (P,F)  (A,FP)   

 

To evaluate the above query Q2.4 over the data D3 data, we notice that the 

underlined sequence forms an answer for the query. It is not a correct answer, 

however, because the R and the A nodes do not have the same parent P node. 

This is an example of a false-positive answer. 
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Figure 2.13    Data trees and a query 

 

In addition to false positives, the sequence schemes also have the problem of 

false negatives, which is caused by the isomorphic tree problem. It occurs when a 

branch node has multiple identical child nodes. For example, the two tree 

combinations which are illustrated in Figure 2.14, have the following structural 

sequences. 

 

     Data tree 1    :  (F,0)  (P,F)  (A,FP)  (P,F)  (R,FP)   

     Data tree 2  :  (F,0)  (P,F)  (R,FP)  (P,F)  (A,FP)   

 

If we run any one of these two trees as a query over the other tree, we will 

not find a match as can be seen from the translated sequences. However, 

logically both trees have the same structure and same number and types of 

elements. To solve this problem in ViST, which occurs when there are similar tag 

siblings in a query, we have to rewrite the given query into all possible 

combinations of sequence order. After that, we evaluate each query separately, 

and then union the result of all queries. In the worst case, permutations of the 

query sequence are exponential in the number of the similar siblings.   
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Figure 2.14    An example of false-negative 

 

ViST is based on top-down traversal tree. As a result, for deep and large 
XML documents, the size of the index becomes a problem as it does not scale 
well with an increase in data size because the top elements have to be included 
within the sequence of the newly inserted elements. As the paths in XML data 
get longer, the sequence length will increase and hence the size of the index will 
increase exponentially in the size of data. 

The false positives problem is resolved by disassembling the query tree at the 
branch into multiple trees, and using join operations to combine their result. This 
solution is definitely expensive, since it involves additional join operations. ViST, 
which is based on the B+-tree [130], is physically implemented as two levels of 
B+-trees [56]. If we assume that the fan-out of the used B+-tree is equal to b, then 
O(b logb n) nodes are touched during a sequence index update at each level, 
where n is equal to the number of nodes in the data-tree.  

 

2.2.4.3    Bottom-up Sequence Indexes  (PRIX) 

ViST’s top-down transformation approach weakens the query processing 

because it results in a large number of nodes (paths) being examined during 

subsequence matching for commonly occurring non-contiguous tag names. 
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Motivated by this fact, Rao and Moon [104] propose another approach that 

implements bottom-up transformation instead. This approach is called PRIX 

(PRufer sequences for Indexing XML). It is based on Prufer sequences as 

indicated by the name. The bottom-up transformation of XML data-trees in PRIX 

plays a crucial role in reducing the query processing time.  

Basically, the top-level elements of an XML tree are shared with lower-level 

elements by being their parent or ancestor nodes. Thus, if we index a tree starting 

from the top, the chances are high of having a large number of elements that 

share the same starting tags in a given query path. In contrast, indexing a tree 

starting from the bottom and moving upward to the top of the tree reduces the 

chance of having a large number of shared elements for a given query path as the 

selectivity is higher at the bottom. A bottom-up index is more efficient than a 

top-down index and PRIX therefore is more efficient than ViST [104]. 

PRIX is based on Prufer sequences. To illustrate how a Prufer sequence is 

used to denote a tree, we use the data-tree in Figure 2.15, which is the same as 

the data-tree in Figure 2.13 (B). The letters inside the node circles represent the 

tag types (labels) and the numbers shown beside the nodes represent the post-

order numbering of the tree. To encode the tree in Figure 2.15 with a Prufer 

sequence, we repeatedly delete the leaf node that has the smallest number and 

append the label of its parent to the sequence.  
 

 

 
 

Figure 2.15   An example of Prufer sequence 
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As we can see in Figure 2.15, the smallest post-order number is “1” so we 

delete it and add “2” to the sequence, so it becomes {2}. We delete the node 

numbered “2” and add its parent “9” to the sequence to become {2,9}, and so 

forth. At the end of this process, we have the sequence {2,9,9,5,9,8,8,9}, which 

represents the following tag sequence {B,F,F,P,F,P,P,F}. 

In PRIX the string/character data in the XML document tree are extended by 

adding dummy child nodes before the transformation process so it can be 

indexed using the Prufer sequence. Similarly, query twigs are also extended 

before transforming them into sequences. Indexing extended Prufer sequences is 

useful for processing twig queries with values. Since queries with value nodes 

usually have high selectivity, they are processed more efficiently than those 

without values. 

The size of a PRIX grows linearly in the total length of the sequences stored 

in it because an increase in the path length will result in a sequence addition 

which is equal to the amount of the increase. In the PRIX approach, the length of 

a Prufer sequence, as we noticed from the above example, is linear in the number 

of nodes in the tree. Hence, the index size is linear in the total number of tree 

nodes regardless of the depth of the tree.  

PRIX uses a complex four-phase refinement process to deal with false 

positives and false negatives. Basically, PRIX overcomes the false positives 

problem by using document by document post-processing which is a time 

consuming process. PRIX is based on the B+-tree, and it is built in a way similar 

to ViST [130]. It is mainly implemented as two levels of B+-trees. If we assume 

that the fan-out of the used B+-tree is equal to b, then O(b logb n) nodes are 

touched during a sequence index update at each level, where n is equal to the 

number of nodes in the data-tree. 
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2.2.4.4    Summary of Sequence Indexes 

Table 2.3 includes a summary of the sequence indexing schemes. Indexing 

can be implemented in either a top-down direction or bottom-up direction. Both 

single path and twig queries are supported efficiently by sequence indexes. 

 

 

Table 2.3    Comparison between Top-down (ViST) and Bottom-up (PRIX) sequencing schemes. 
 

 
 

2.2.5    Structural Indexes Critique 

As is always the case with indexing schemes, there is a trade-off between the 

size and the precision of the index on the one hand, and between the size and the 

efficiency of the index in answering a query on the other hand [110]. The 

No Criteria Top-down
(ViST)

Bottom-up
(PRIX)

1 Precision False-positives
(imprecise)

False-positives
(imprecise)

2 Recall False-negatives
(incomplete)

False-negatives
(incomplete)

3 Computation
Complexity 

Refinement
step Expensive Joins Complicated four-

phase process
Indexing

direction Top-down Bottom-up

4 Scaling/Size Exponential Linear

5 Type of queries supported
efficiently (without joins) Path & Twig Path & Twig

6 Maintainability O(blogb n) O(blogb n)



CHAPTER 2. BACKGROUND  AND  LITERATURE STUDY 60  

 

 

advantages of one index scheme can be the disadvantages of another. In this 

section we compare the three categories of structural indexes, namely, node 

index schemes, graph index schemes, and sequence index schemes. 

 

2.2.5.1  Criteria for Comparison among Structural Indexing  
                  Schemes 

 

In addition to the general criteria listed previously we use the following 

specific criteria to compare the above three types of structural indexing schemes: 

• (A) Computational complexity: Does it require structural joins? 

Structural joins are considered for path queries and twig queries. In 

general, to achieve high performance for a query execution, we need to 

minimize the number of joins. 
   

(B) Computational complexity: Granularity of usage to evaluate a query. 

The granularity of an XML index depends on the type of the indexing 

scheme. For example, the granularity could be at the node level, the path 

level, or the twig level (for twig queries). As the granularity of the index 

that is used to evaluate a query become coarser, the execution time 

becomes shorter. 

• Data supported. 

 The types of data supported by the XML indexing schemes are mainly 

tree-shaped data and graph-shaped data. The main difference between 

them is that the graph-shaped data can be used to represent an XML 

document with the ID/IDREF attribute tokens. The tree-shaped data can 

be considered as a subclass of the graph-shaped data where a node cannot 

have more than one parent. The indexing schemes that are capable of 
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supporting the graph-shaped data are more powerful than the ones that 

support only the tree-shaped data. 

• Ability to facilitate the use of statistics and other features.  

The ability to facilitate the use of statistics, such as the fan-in and the 

fan-out of nodes, helps to provide query optimization with the capability 

to choose the most efficient evaluation plan for a given query. 

• Values integrated into the index structure. 

If the values of the elements and attributes are indexed separately from 

the structure, and a query with some predicates needs to be evaluated 

over that data, then joins between the structural index and the value 

indexes are necessary and hence increases the complexity of the XML 

query evaluation process. In contrast, integrating values into the structural 

index saves some additional joins and narrows down the matching 

procedure during the evaluation process, since the selectivity of the values 

are always higher than that of the elements in a structural index.   

 

2.2.5.2    Comparison among Structural Indexes 

Generally, sequence indexes may initially produce a wrong answer to a 

query then correct it at a later stage in the evaluation process. The deterministic 

graph indexes and non-deterministic graph indexes with backward bisimilarity 

may produce some wrong initial answers. The non-deterministic graph indexes 

that are based on forward and backward bisimilarity, on the contrary, are more 

accurate and often return only the correct answers. Finally, since the node 

indexes are used for binary joins, they do not produce any initial wrong answers. 
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Without some extra post-processing steps, false negatives may occur when 

we use a sequence indexing scheme to evaluate a query. On the other hand, node 

and graph indexes always return a complete answer because the order of the 

nodes is not encoded within the structure of the index. 

The number of structural joins that are required to evaluate a path or a twig 

query varies among the different schemes. It has a significant impact on the 

query processing time. Node indexes are the least efficient with respect to 

structural joins since they require joins for both single path and twig queries. 

Graph indexes support single path queries without the need for structural joins 

but structural joins are required (for all graph indexes except F&B-index) at the 

branching node to evaluate twig queries. Finally, sequence indexes are the best 

because the structure is encoded within the sequence so they do not require any 

structural joins for single path or twig queries.  

There are three levels of granularity used to evaluate a twig query: the pair-

wise, path, and twig levels. For illustration, in order to evaluate a twig query 

using a node index, we break the query into nodes, then join nodes a pair at a 

time until all nodes are joined together for the complete twig path to evaluate the 

query. On the other hand, to evaluate a twig query using all graph indexes 

except F&B-index, we break the query into several singular paths and evaluate 

each path separately, then join the results of all paths to form the answer to the 

query. Finally, to evaluate a twig query by using a sequence index, we process 

the twig query as a whole. 

Node indexes can only support tree-shape data because of the containment 

rule that is used to specify the relationship between two nodes in a data-tree. In 

order for node A to be an ancestor of node B, A’s interval code has to contain B’s 

interval code, and not vice versa, which may be caused by a graph-shaped data. 
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In contrast, graph indexes support the graph-shaped data well. Like node 

indexes, sequences indexes only support tree-shaped data. 

Some indexes provide valuable assistance for query optimization. For 

example, strong DataGuides [54] are used in Lore [87] to facilitate annotation of 

sample values and statistical data. The annotated information is associated with 

the DataGuide objects (nodes). This information assists in estimating the cost of 

the evaluation plans for a given query. The node and the sequence indexes do 

not facilitate these kinds of supporting information. 

There are some attempts to integrate values into graph indexes [37] [133], 

although, the majority of graph indexes do not carry any values within the 

structural summary. Node indexes cannot contain values, and values have to be 

indexed separately. The only indexing schemes that are designed to efficiently 

integrate values into the structural index are the sequence indexing schemes. We 

observe that node indexes are mainly used for path joining, graph indexes for 

path selection, and sequence indexes for complete query evaluation. 

We summarize our comparison of the three categories of structural indexing 

schemes in Table 2.4. The granularity of usage to evaluate a query could be at the 

node level, the path level, or the twig level. The types of queries that are 

supported efficiently without joins by these indexing schemes could be path, 

twig, or both. The maintainability of graph and sequence indexes is measured by 

the number of nodes that are needed to be touched during the update process. 

On the other hand, the maintainability of node indexes are measured by the size 

of used labels. The supported data could be a tree-shaped or a graph-shaped. 

Tree-shaped data is considered a subset of graph-shaped data. 
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Table 2.4   Summary of comparison among the 3 categories of structural indexing schemes. 
 

 
 

2.3   Summary 

Indexing is key factor in improving the performance of XML queries [146]. 

Indexes are used during most of the optimization stages. Indexing the XML data 

has to reflect the structure in order to be able to support XML queries. An XML 

query consists of two parts: (1) the structural part, which is specified by the 

components’ structure of the query; (2) the values that are associated with these 

components.  

 Our classification of XML graph indexes is novel. It is based on their 

deterministic property in addition to forward and backward bisimilarity, which 

Criteria Node Indexes Graph Indexes Sequence Indexes
1- Precision (wrong initial

answer, false positive) No Yes/No Yes

2- Recall (missing initially
correct  answer,  false negative) No No Yes

3- Computation
complexity
(structural

join required)

Path Yes No No

Twig Yes Yes / No No

3- Computation complexity
(granularity of usage to

evaluate a query)

Nodes Pair-wised
Evaluation

Path
Evaluation

Twig
Evaluation

4- Size / Scalability Linear-Exponential Linear-Exponential Linear-Exponential

5- Type of queries supported 
efficiently (without joins) None

Path
(Twig by exact (F&B)

indexes)
Path & Twig

6- Maintainability for
adding an edge

O(n)  immutable
O(log n) mutable O (n + m) O(blogb n)

7- Data supported Tree Graph Tree
8- Can facilitate the use of statistics No Yes No
9- Hold value No Yes/No Yes
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determines the possible size and accuracy of an index. Deterministic indexes may 

grow exponentially in the worst case, while non-deterministic indexes grow 

linearly. Forward and backward bisimilar indexes are more accurate than 

backward bisimilar indexes. Deterministic indexes guarantee uniqueness of 

paths, and are suitable for single path queries. They evaluate a single path query 

by traversing one path only. In contrast, non-deterministic graph indexes may 

traverse more than one index path to evaluate a single path query. Our 

classification of XML sequence indexes is also novel. It is based on the mapping 

direction of data-trees, because the mapping direction is the main factor that 

drastically affects the size of sequence indexes and their answering power. The 

best way to judge the strength of an indexing technique is to compare it with 

other techniques using common criteria that are applicable for all of them and 

can act as a benchmark. In this chapter, we use common criteria to analyze the 

characteristics of the most common types of XML structural indexes.   

Our analysis of structural indexes is based on the following key issues: 

retrieval power, which covers the precision and the completeness of an index; 

processing complexity, which demonstrates how efficient an index can be used 

to answer a query; scalability of the index and its adaptability to queries with 

different path lengths; and finally update cost of the index. 

We observe that no single indexing scheme is capable of satisfying all users’ 

needs; deciding which index scheme to use depends on the users’ preferences 

[22]. There is a trade-off between the size of the structural index and its precision. 

For example, graph indexes with only backward bisimilarity tend to have lower 

accuracy (which is corrected by some post-processing steps) but their sizes are 

minimal. In contrast, graph indexes with forward and backward bisimilarity 

tend to have high accuracy but at the expense of the size. Node and sequence 
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indexes can be used only for tree-shaped data, while graph indexes can be used 

for both tree-shaped and graph-shaped data. Graph indexes can be used to 

efficiently facilitate additional information such as some statistical information 

[139], which can be used during a query optimization process. Some indexes 

cover twig and single path queries, while others cover only single path queries.   

Finally, the ultimate goal of researchers is to create an indexing scheme that 

will occupy minimal storage without compromising the precision, if possible, or 

at least improve the trade-off in favor of precision (i.e. have a small increase in 

the size to achieve higher precision). 
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Chapter 3 
 
LLS: Level-based Labeling Scheme for 
XML Databases 
 

 

Labeling nodes of XML trees to reflect the structure is useful for indexing 

and retrieving XML data. Current labeling schemes can be divided into two 

groups: interval labeling and prefix labeling schemes.  In this chapter, we first 

discuss the advantages and disadvantages of the two groups.  We then propose a 

novel labeling scheme, Level-based Labeling Scheme (LLS), which has the 

advantages of the two types of schemes while eliminating the main 

disadvantages. The LLS is based on the levels of the nodes in XML trees and the 

summary of an XML tree. We provide a set of experiments that indicate the 

performance benefits of our proposed scheme compared with interval labeling 
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schemes using different mappings to relational tables to implement the indices. 

We end the chapter by summarizing our contributions   

 

3.1   XML Labeling Schemes 

Node indexes depend on the labeling schemes used. In this section, we 

discuss the most popular types of labeling schemes. We then discuss their 

importance in XML data storage and retrieval. Finally, we discuss their 

advantages and disadvantages, which motivate us to propose LLS. The labeling 

schemes are discussed in depth in Chapter 2. For the purpose of suggesting a 

novel labeling scheme that combines two types of labeling schemes in one 

integrated labeling scheme and for ease of reference, we review in this chapter 

the information that is related to the integrated scheme. 

 

3.1.1   Types of Labeling Schemes  

Node indexes hold values that reflect the nodes’ positions within the 

structure of an XML tree. Node indexes depend on labeling schemes [7]. Two of 

the most widely used types of schemes are interval (a.k.a. region) labeling and 

prefix (a.k.a. path) labeling.  

The (Beg,End) labeling scheme proposed by Zhang et al. [143] is an early 

interval labeling scheme. In this scheme, each node in an XML tree is given a 

beginning and ending number based on the sequential traversal of XML 

document. Two nodes are related if one of the node’s interval contains the other 
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node’s interval. Figure 3.2 is an example of the (Beg,End) labeling scheme for the 

data in Figure 3.1. 

 

 
 

Figure 3.1   XML document 
 

 

 
 

Figure 3.2   A (Beg,End) labeled tree representation of the XML document in Figure 3.1 

 

Li and Moon [78] propose another type of interval labeling scheme called the 

(Order,Size) labeling scheme. The Order part is based on a pre-order traversal, 

and the Size part is an estimate of the number of the child-descendent nodes for a 

given node. This durable approach may provide intervals for a certain number of 

<Bib>
<book>

<author>Tim</author>
</book>
<paper> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>
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new nodes equal to the gap size in order to avoid relabeling of the data-tree 

nodes in case of insertion. In this case, relabeling may be delayed, but eventually 

it is required. It occurs more often if the data distribution in the tree is skewed.  

Amagasa et al. [8] use real numbers (rational numbers) instead of integers to 

represent an interval in node indexing to further delay relabeling on nodes upon 

insertion. Wu et al. [135] propose a novel labeling scheme that uses prime 

numbers to label nodes in an XML tree. In this approach, each node’s label can 

only be divided exactly by its own ancestor(s). 

The Dewey code labeling scheme proposed by Tatarinov et al. [119] is an early 

prefix labeling scheme. In this scheme, each node is associated with a vector of 

numbers that represents the node-ID path from the root to the designated node. 

To decide if there is a relation between two nodes, we perform a prefix matching 

operation on the nodes index strings. Figure 3.3 is an example of the Dewey code 

labeling scheme for the data in Figure 3.1. 

O’Neil et al. [99] propose the ORDPATH labeling scheme that is similar to 

the Dewey code labeling scheme, except that the child nodes of a given parent 

node are labeled by using odd numbers, and even numbers are used later for 

new insertions. This labeling scheme handles insertion gracefully. Fisher et al. 

[48] propose a dynamic labeling approach that can be applied to Dewey code 

labels when there is type information in the form of DTD or Schema. 

Other prefix labeling for XML trees include GRP [80] and LSDX [42]. In the 

GRoup base Prefix (GRP) labeling scheme, the labels consist of two parts, 

namely, group ID and group prefix, while in the Labeling Scheme for Dynamic 

XML data (LSDX), the labels are a combination of numbers and letters.  
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Figure 3.3   A Dewey code labeled tree representation of the XML document in Figure 3.1 
 

3.1.2   Importance and Usage of Labeling Schemes  

Node indexes [8] [48] [78] [99] [119] [135] [143] are used at the granularity of 

individual nodes in a query path. Graph indexes [2] [28] [37] [54] [67] [70] [90] 

[131] are used at the granularity of sets that represent paths in a query. Finally, 

Sequence indexes [104] [130] are used at the granularity of a complete query 

path. Node indexes depend on labeling scheme used. Unlike graph and sequence 

indexes that may suffer from false positives and false negatives, node indexes 

always return precise and complete answers [92] [93]. Node indexes require 

more join operations to evaluate a query in comparison to graph and sequence 

indexes. Nevertheless, precision and completeness are the core advantages of 

node indexes over other types of indexes, which explain their popularity among 

XML structural indexes.  

Node indexes depend on the labeling scheme used. Two of the most widely 

used labeling schemes are (Beg,End) [143] and Dewey code [119], which belong to 

interval group and prefix group of labeling schemes, respectively. Node indexes 
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can be used exclusively to evaluate XML queries. Graph and sequence indexes, 

however, need some kind of labeling scheme to label individual nodes in XML 

trees in order to work properly.  

 

3.1.3 Limitations of Existing Labeling Schemes and   
          Introduction to LLS. 

 

Comparing the interval and prefix labeling schemes, we notice that each 

type’s advantages are the disadvantages of the other [92] [93]. The interval 

labeling schemes require fixed time to compute a relationship between any two 

arbitrary nodes for two reasons. First, it uses numerical values to index the 

nodes. Second, the size of the label that is used to index each node is fixed 

depending on the depth of the tree. On the contrary, in prefix labeling schemes, 

the time that is required to compute the relationship between any two arbitrary 

nodes is directly proportional to the depth of the nodes for two reasons. First, 

prefix labeling schemes use strings to represent labels instead of numbers. 

Second, the labels’ size increases as the depth increases [93] [56]. 

Unlike interval labels, each prefix label contains the root path (the path from 

the root to the designated node) information. Therefore, with prefix labels, we 

can infer any node’s parent-child or ancestor-descendent from the label of the 

node [93].  

Finally, prefix labels are often easier to update than interval labels. Updating 

interval labels are costly. When a new node is inserted into a data-tree, then all 

the nodes in the tree, except the left sibling subtree(s) of the inserted node, have 

to be updated [56] [93]. While in prefix labeling scheme, when a new node is 
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inserted, only the nodes in the subtree(s) rooted at the following sibling(s) need 

to be updated [93] [119].   

Because interval node indexes require fixed time to compute a relationship 

between any two arbitrary nodes, we believe that they form a solid foundation 

for strong node indexes. We also believe that interval node indexes can be 

extended to have the advantages of prefix indexes. We therefore propose the LLS 

labeling scheme, which is based on numerical values, has fixed-size labels 

regardless of the depth of the node, requires a fixed time to compute a relation 

between two nodes, can be used to infer the parent-child and ancestor-

descendent nodes from their labels, and requires modest amount of relabeling 

upon insertion. Table 3.1 contains a synopsis of the characteristics of the 

proposed LLS labeling scheme in comparison to the interval and prefix labeling 

schemes.  

 

Table 3.1    A comparison among Interval, Prefix, and LLS labeling schemes 

 

 Interval labeling Prefix labeling Level-based 
Labeling (LLS) 

Relationship 
computation Fixed Directly proportional 

to depth increase Fixed 

Data type Numerical String Numerical 

Size Fixed Directly proportional 
to depth increase Fixed 

Can infer exact  
related nodes No Yes Yes 

Maintenance cost 
Expensive (may 

impose considerable 
relabeling) 

Less expensive (may 
impose limited 

relabeling) 

Less expensive (may 
impose limited 

relabeling) 

 

The motivation behind the design of LLS is to have a single labeling 

scheme that has the advantages of both groups of labeling schemes, while 
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avoiding their disadvantages. The LLS is capable of processing single path 

queries as well as twig queries. The LLS is based on the levels of the elements in 

XML trees. The element labels and values are tightly coupled with a structural 

summary so the method lends itself to efficient query processing and is shown 

here to perform well in comparison to existing labeling schemes.  

 

3.2   Our Approach: LLS Labeling Scheme  

In this section, we first define our basic data model that is used in the LLS. 

Then we discuss the updating complexity of the LLS labeling scheme. Finally, we 

present two simple examples to illustrate how LLS labels are used to evaluate a 

query in comparison with (Beg,End)  interval labels.  

 

3.2.1   Data and Graph Index Models 

We model an XML document as a directed graph G=( R,VR,VL,E,tagg,labelg,T ). 

R is the root node. VR is the set of elements and attributes (internal nodes), 

excluding R and VL. VL = (VT UVE) and VL is the set of leaf nodes that contain the 

set of value (text) nodes,  VT, and the set of empty elements nodes, VE. Nodes in 

VR  and VL are tagged with the tagg function (the extra g stands for the graph G ). 

Nodes in VR and VE are tagged according to the tags of the elements or attributes 

they represent. Nodes in VT  have the same tags as their VR parent nodes. A node 

v, such that v∈ VR, has one or more child nodes, which could be VR and/or VL 

node(s). E is a set of child-parent edges, E={e1,e2,…,ei}, that connect all nodes of 

VR and VL to form a tree. The total number of edges is |E| and the total number 
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of nodes is |VR| +|VL |, where |E|=|VR| + |VL| since R   VR. Each node in VR 

and VL is associated with only one parent through an edge, except R, which does 

not have a parent since it is the root node2.  

All nodes in VR and VL are assigned unique labels through the labelg function, 

which is determined by the LLS labeling scheme as follows. Each node v, such 

that v∈ (VR UVE) is assigned a unique vector label <d.p.s> where d and p are 

taken from the label of the o node in the summary S (Figure 3.5) to which v node 

belongs according to an earlier implemented partition. That is, v node is an 

instance of an o node (instance and summary are defined later). s is the instance 

serial number of node o, which uniquely identifies this node among similar 

nodes of the same class. Nodes in VT carry the same labels as their VR parent 

nodes. The set of serial paths is defined by T, where T={ r1, r2,…,rn} and n is the 

number of leaf nodes |VL|. We define serial path r in Definition 3.2 below. In our 

model, an edge e of a node v, where e∈ E and v∈ (VR UVE), is equal to the serial 

number s of the parent node p, denoted e(v)=s(p). The edges of the nodes in VT 

are equal to the edges of their parent nodes. The data-tree graph representation G 

for the data in Figure 3.1 is illustrated in Figure 3.4, which is used in the 

examples throughout this chapter, unless we state otherwise. Next, we give 

several definitions, which are used in describing the LLS labeling scheme.   

Definition 3.1. A tag path t for a node v is a sequence of tags, l1.l2…li (i ≥ 1), of 

the nodes on the path from the root node to v node, separated by dots.  For 

example, the tag path of node <3.31.1> is Bib.paper.author. 

Definition 3.2. A serial path r for a node v is a sequence of  serial numbers, 

s1.s2…si (i ≥ 1), of the nodes on the path from the root node to v. For example, the 

                                                      
2 REF/IDREF are encoded as values in XML, and can be related through their values, hence we do not  
consider them as edges. 
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serial path of node <3.31.1> is (1.2.1), which contains the third part of the labels 

of the nodes in the path from the root node to this node. Note that the d values 

(the levels) of the components of a serial path r of a node v, where r = (s1.s2…si), is 

d = (1,2,…,i), respectively, where i is the level of v. For example, for node 

<3.31.1>, the levels of the component of the serial path (1.2.1) are (1,2, and 3), 

respectively.  
  

 
 

Figure 3.4   An LLS labeled tree representation of the XML document in Figure 3.1 

 

 

Definition 3.3. A node path n for a node v is a sequence of alternating tags 

and serial numbers l1.s1.l2.s2…li.si (i ≥ 1), of the nodes on the path from the root 

node to v node. For example, the node path of node <3.31.1> is 

Bib.1.paper.2.author.1.The tag path t of a node path n, denoted t(n), is the sequence 

of tags that exist in n. For example, t(n) of Bib.1.paper.2.author.1. is Bib.paper.author. 

Similarly, the serial path r of node path n, denoted r(n), is the sequence of serial 

numbers that exist in n. For example, r(n) of Bib.1.paper.2.author.1. is (1.2.1). 

Definition 3.4. A node with a node path n is an instance of a tag path t if the 

sequence of the tag path in n is identical to the sequence of the tag path t, t(n)=t. 
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For example, the nodes <3.31.1> and <3.31.2> are instances of the tag path 

Bib.paper.author. 

 Definition 3.5. Extension of a tag path t, denoted ext(t), is a set of nodes 

whose node paths are instances of a tag path t, that is, ext(t)={n : t(n)=t }. For 

example, the extensions of the tag path Bib.paper are nodes <2.21.1>,<2.21.2>, and 

<2.21.3>. 

All nodes of an XML data-tree G can be summarized by a summary S such 

that all node paths of G that share the same tag path t are represented by exactly 

one tag path t in S, and every tag path t of S is a tag path of at least one node 

path n of G. That is, every distinct path in the source data to appear only once in 

the summary, and all the paths in the summary have at least one matching path 

in the original source data. Basically, G nodes are partitioned into equivalence 

classes in S where the nodes of a class have the same root path [54].    

We define the summary as a directed graph S=(R,O,M,tags,labels,C). R is the 

same as the data graph G root element, since an XML document can have only 

one root element. O is the set of index nodes excluding R. M is the set of child-

parent edges that connects O nodes to form a tree. |M|=|O|, where |M| is the 

total number of edges in the index tree and |O| is the total number of nodes in 

the index tree. Nodes in O are tagged through the tags function. We tag O nodes 

with the tag name of the element or attribute they extend. All nodes in the 

summary are assigned a unique label through the labels function, which is 

determined by the LLS labeling scheme as follows.  

Each node’s label consists of a two part vector <d.p>, where d is the level 

(depth) of the node, and p is the number of this node across the d level (denoted 

as PerLv). An edge m of a node o, where m∈M and o∈ O, is equal to the p value of 

the parent node x, denoted m(o)=p(x). C is the set of counts of instances for each 
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node in O, that is, C={c1,c2,…,ci  : i =|O|}. For each node oj, and count cj, where 

oj∈ O and cj ∈ C, cj  is the count of instances of the tag path tj of node oj, where 

O={o1,o2,…,oi : i =|O|}, t={ t1,t2,…,ti : i=|O|}, and node oj has tag path tj. If we 

assume that in O there is a node oj whose count of instances is cj, and cj value is x, 

then the s values of the instances of oj would be 1 for the first instance, 2 for the 

second instance, … , and x for the last instance.  Figure 3.5 contains an example 

of a summary S of the XML data-tree G in Figure 3.4. 
 

 
 

Figure 3.5    The Summary S of the XML data-tree G in Figure 3.4 

 

 

For each node oi in S that has a label <di.pi>, there are instances in G that 

have labels of the form <dg.pg.sg>, such that di=dg, pi=pg, and sg={1,2,…,n} where n 

is equal to the count of instances of oi, that is, n=ci. For example, the numbers 

beside the oval shaped nodes in Figures 3.4 and 3.5 represent the labels of the 

nodes according to labelg and labels functions, respectively. 

Note that the labels of the summary nodes in Figure 3.5 are created first, and 

then used to create the labels for the data-tree nodes in Figure 3.4. The gaps 

between the PerLv numbers in Figure 3.5 allow for expansion while maintaining 

the order of the elements. The gaps’ intervals can be specified based on the 

cardinality of existing nodes. 
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The summary S information of Figure 3.5 is mapped into table representation 

as shown by the Summary table in Figure 3.6(A), and the VL (leaf nodes) 

information of the data-tree G of Figure 3.4 is mapped into table representation 

as shown by the Values table in Figure 3.6(B).  
 

 
 

Figure 3.6    The Summary and Values tables of the data in Figures 3.5 and 3.4, respectively 

 
 

In Figure 3.6(A), the Tag field contains the tag of the element of the nodes in 

the summary, which is assigned through the tags function of S. The Lev and PerLv 

fields represent the d and the p parts of the summary nodes labels as indicated in 

Figure 3.5, respectively. These labels are allocated through the labels function of 

S. The Parent field holds the labels of the parent nodes, which are the p values of 

the parent nodes. The Lev(d) value of the parent node is equal to the current node 

Lev value minus one, so we do not need to list the parent node level in the 

Summary table. Note that the Parent value of the root element is zero since it 

does not have a parent. The Type represents the type of node (e.g. element or 

attribute). The Count value (C ) is the number of nodes in the original XML data 

that belong to the same summary group. It is used mainly to reconstruct the 

subtrees that are rooted at the internal nodes VR. 

In Figure 3.6(B), the Lev, PerLv, and No values together form the labels of the 

leaf nodes <d.p.s>, as shown in the data-tree in Figure 3.4. These labels are 

Tag Lev PerLv Parent Type Count

Bib 1 1 0 E 1
book 2 11 1 E 1
paper 2 21 1 E 3
author 3 11 11 E 1
reviewer 3 21 21 A 1
author 3 31 21 E 2

Lev PerLv No Value SerPath

2 21 1 null 1,1
3 11 1 Tim 1,1,1
3 31 1 Sarah 1,2,1
3 21 1 Ahmad 1,3,1
3 31 2 Wang 1,3,2

(A) Summary table (B) Values table
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allocated through the labelg function of G. The Value field contains either the 

values of the value nodes VT, or null for the VE nodes. Note that the labels of the 

VT nodes in the Values table (which consist of Level, PerLv, and No) are the same 

as the element or attribute labels to which they belong. Finally, the SerialPath 

field contains the serial path r of each node in the tree. It represents a vector of 

the No values of the nodes that constitute a path from the root node to the 

designated node.  

Note that the internal nodes VR can be inferred and reconstructed by using 

the Summary table along the SerPath field in the Values table. We therefore do not 

store them. We implement the Summary and the Values tables as relational tables. 

The primary key fields of each table are underlined in Figure 3.6. 

 

3.2.2   Cost of Updating the LLS Labels 

When a new node is inserted into a database, it affects the corresponding 

index structure of the database in one of the following two ways. First, if the 

inserted node changes the structure of the summary (i.e. the inserted node does 

not belong to any of the existing paths in the summary S), and all the gaps are 

used in the summary, then the subsequent sibling nodes across the level of the 

inserted node have to be updated, as shown in Figure 3.7. These updates in the 

summary nodes have to be reflected on the data nodes too. This type of update 

may therefore be expensive. In order to minimize the cost, we can increase the 

gap between the PerLv numbers. Also, we can carry out the relabeling process in 

the direction that requires fewer nodes to be relabeled. For example, the 
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relabeling could be carried out to the previous siblings’ nodes if it is cheaper than 

relabeling the following siblings’ nodes.  

The second case of an update is where the inserted node does not affect the 

summary (i.e. the new node belongs to an existing tag path t in the summary S). 

In this case, only the nodes that belong to the same group and located to the right 

of the inserted nodes must be updated as shown in Figure 3.8. This type of 

update is cheaper than the first type. It involves updating the data nodes only.  
 

 
 

Figure 3.7   A relabeling scenario of LLS summary 

 
 

 
 

Figure 3.8   A relabeling scenario for an LLS labeled data-tree 
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Figure 3.9 illustrates the necessary relabeling of the nodes following the 

addition of a paper node to the XML document shown in Figure 3.1 using 

interval, prefix, and LLS labeling schemes. Since our labeling scheme is based on 

the levels of a tree where each level’s nodes are labeled independently of other 

levels’ nodes, the insertion of a node requires the relabeling of only one level’s 

nodes in the worst case as illustrated in Figure 3.9(C). In contrast, prefix labeling 

may require the relabeling of more than one level of nodes, as illustrated in 

Figure 3.9(B). The update cost of data nodes in our approach is approximately 

equal to the cost incurred by the Dewey code prefix labeling scheme [119], which 

is less than that incurred by the (Beg,End) interval labeling scheme[143]. If a new 

node is inserted into a data-tree that is labeled with the (Beg,End) interval labels 

(see Figure 3.9(A)), then the labels of all nodes in the data-tree have to be 

updated, except the nodes rooted at the previous siblings of the inserted node 

[56], and in the worst case, the labels of all nodes in the tree are subject for 

relabeling. A subtree insertion is dealt with as a group of individual nodes where 

one node is inserted at a time. 

 

 

 
Figure 3.9   Worst case relabeling scenarios for Interval, Prefix, and LLS encoding 
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3.2.3   Mapping to Relational Database Tables 

In this section we present two examples to illustrate how the (Beg,End) and 

the LLS are used to evaluate XML queries by using different types of mappings 

to relational database tables. Note that the data in Figure 3.2, which represent a 

(Beg,End) interval labeled tree, can be mapped into the two relational tables 

shown in Figure 3.10, where the primary key fields of the tables are underlined. 

This mapping is similar to the mapping suggested by Zhang et al. [143], who 

introduced the interval labeling to XML documents. We called this mapping the 

basic mapping. In this mapping, all nodes in the XML tree are mapped into one 

table, the Nodes table (Figure 3.10(A)); and the values are mapped into a separate 

table, the Values table (Figure 3.10(B)).  

 

 
Figure 3.10   The mapping of the (Beg,End) labeled tree in Figure 3.2 into relational tables 

 

 

To evaluate a query by using this mapping, the query is translated into an 

equivalent SQL query and pushed down to the SQL engine for evaluation. The 

translation algorithm is illustrated in Algorithm 3.1.  

Tag Beg End Lev
Bib 1 22 1
book 2 6 2
author 3 5 3
paper 7 8 2
paper 9 13 2
author 10 12 3
paper 14 21 2
reviewer 15 17 3
author 18 20 3

WordNo Value Lev
4 Tim 4
11 Sarah 4
16 Ahmad 4
19 Wang 4

(A) Nodes table (B) Values table
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Step 1 of Algorithm 3.1 identifies the element set of a given query. The 

second step identifies the type of the given query, if it is single path or multiple 

paths query. Step 3 verifies that the element set of the given query exists in the 

element set of the Summary. Step 4 confirms that the structure of the given query 

exists in the Summary, as the Summary reflects the structure of the source data. 

If the tests performed in steps 3 and 4 succeed and the type of query is single 

path query, we evaluate the query as outlined in step 5. If the tests performed in 

Algorithm 3.1 : Evaluate an XPath Query

// F(Q) : Is a function to evaluate  an XPath query and translate it into 
SQL query to retrieve answers from a relational data repository.

// Input : (XPath Query) 
// Output : (SQL   Query)

1 S (Q) → {Eq} // Scan query Q and identify the element set of the given query.
2 T (Q) → SP or MP // Identify type of query (Single path or Multiple paths).

3  If {Eq} does not exists in {Es} : // {Es} is the element set of the Summary table.

Then : abort and exit.
Else  : continue.

4   If {Eq} query structure does not match {Es} summary structure :
Then : abort and exit.
Else : continue 

5 If T (Q)  ==  SP : // If type of query is single path. 
5.1 M (Q) → {(di , pi)} // mapping of Q in Summary, identify leaf nodes IDs in Summary
5.2 For each value in {(di, pi)}

select value
from value table
where Lev = di and

PerLv = pi 
6 Else if T (Q) == MP :// If type of query is multiple paths.

6.1 M (Q) →{(di , pi)} //mapping of Q in Summary, identify leaf nodes IDs of all branching nodes .
M (Q) →(Lb)        // mapping of Q in Summary, identify the branching node level 

6.2 For each node in the first branch {d1 ,p1} set:
Begin

Identify  s1 value at the branching node  (Lb) 
For each node in {d1+i , p1+i  : 1≤ i < number of branches}
Begin

Find  s1+i value
if s1 == s1+i then:

Select value
From value table
Where Lev = d1+i and

PerLv = p1+i 
End

End



CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 85  

 

 

steps 3 and 4 succeed and the type of query is multiple paths query, we evaluate 

the query as outlined in step 6. Step 5 evaluates single path query by retrieving 

the matching leaf nods of the query by using SQL statements. Finally, step 6 

evaluates multiple path query by joining the first branch nodes with the 

matching nodes of the other branches of the given query by using the ids of the 

branching nodes. Then retrieve the related nodes from the database repository.   

 In the following, we show two examples that illustrate how this labeling 

scheme can be used to evaluate XML queries by using both regular and binary 

mapping. To evaluate the XPath Query 3.1 below over the mapped data in Figure 

3.10, which is mapped by using regular mapping, the query is translated into 

SQL statement, and evaluated by the SQL engine. Our approach is flexible and 

can be used to translate an XPath query into several different sets of SQL 

statements. One of the possible translations is illustrated in SQL Query 3.2, as 

shown below. A survey on XML-to-SQL query translation can be found in 

Krishnamurthy et al. [75]. 

 

XPath Query 3.1 :  /Bib/paper/author 

SQL Query 3.2 :  
Select  Values.Value  
From Nodes Bib, Nodes paper,  
 Nodes author, Values  
Where  Bib.Tag = ‘Bib’   and 
 paper.Tag = ‘paper’ and 
 author.Tag = ‘author’ and 
 Bib.Beg < paper.Beg and 
 Bib.End > paper.Beg and 
 paper.Beg < author.Beg and 
 paper.End > author.End and 
 author.Beg < Values.WordNo  and 
 author.End > Values.WordNo  and 
 Values.Lev = author.Lev+1 and 
 Bib.Lev = 1 and 
 paper.Lev =  Bib.Lev+1 and 
 author.Lev =  paper.Lev+1 
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Another possible mapping of (Beg,End) interval labeled nodes to relational 

tables is called the binary mapping. In this mapping, the Nodes table is horizontally 

partitioned based on the Tag name. That is, there is a dedicated table for each set 

of nodes with the same tag name. Evaluating the XPath Query 3.1 above over a 

(Beg,End) binary mapped data can be carried out by a translated SQL query that 

is similar to the SQL Query 3.2 above with the exception of the first 3 lines in the 

Where part.   Here, the node selection part is eliminated, and the nodes are called 

in the From part from the designated tables. 

An LLS labeled data-tree can also be mapped using the basic and binary 

mapping approaches. To evaluate XPath Query 3.1 over an LLS labeled data-tree 

that is mapped into relational tables using the basic mapping approach as 

shown in Figure 3.6, the query could be translated into the SQL Query 3.3 as 

shown below. The evaluation of XPath Query 3.1 over an LLS labeled data-tree 

that is mapped into relational tables using the binary mapping approach can be 

carried out in a similar way to the (Beg,End) binary mapped data evaluation. 

 

SQL Query 3.3 : 
Select  Values.Value  
From Summary Bib, Summary paper, 
 Summary author, Values 
Where  paper.Parent = Bib.PerLv and 
 author.Parent = paper.PerLv and 
 values.Lev = author.Lev and 
 values.PerLv = author.PerLv and 
 Bib.Lev = 1 and 
 paper.Lev = 2 and 
 author.Lev = 3  
 

It is worth mentioning here that the binary mapping of LLS labeled data are 

finer than the binary mapping of (Beg,End) data. The LLS mapped data are 

partitioned horizontally based on the root path, not on the tag name, as in the 
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(Beg,End) labeled data. According to (Beg,End) labeled data binary mapping, it is 

possible for two nodes that belong to different root paths to be partitioned 

together in the same table if they have the same tag name. In contrast, this is 

impossible with the LLS labeled data. This explains the superiority of our LLS 

approach performance over the (Beg,End) approach performance as we shall see 

in the next section.  
 

3.3   Prototype Implementation 

The validity of our labeling scheme is illustrated by experiments conducted 
on a proof-of-concept prototype of the LLS that we implemented in our lab. All 
experiments were performed on a 3 GHz Intel® Pentium 4 PC running 
Windows® XP operating system, with 1.5 GB of RAM. The goals of the 
experiments are to evaluate the performance of the LLS labeling scheme in 
comparison to interval labeling schemes using the basic mapping and the binary 
mapping. Evaluation of the test queries against the datasets that are labeled with 
(Beg,End) labels is implemented by using Multiple Predicate MerGe JoiN 
(MPMGJN) as proposed by Zhang et al. [143]. We compare the basic and binary 
LLS labeling schemes with the basic and binary (Beg,End) labeling schemes, 
respectively. We also compare the basic mapping index structures against their 
respective binary mappings for both (Beg,End) and LLS node indexes. This allows 
us to observe the impact of horizontally partitioning the Nodes table into several 
tables based on the tag name in the (Beg,End) Nodes table, and the Values table 
into several tables based on the root path of the nodes in the LLS Values table. 

We use IBM’s DB2® V9.5 [64] database management system to store the data 
for the four schemes. We evaluate each method against two test sets (see Section 
3.3.2). We measure the performance using the average runtime of a query with 
each method.  
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3.3.1   Query Engine Prototype to Test LLS Labeling  
             Scheme  
 

We implement the LLS as part of a query engine prototype shown in Figure 
3.11. We use Java 1.6 to develop the prototype, which consists of 3 components: 

1- The scan module, which scans an XML database according to a given 
configuration and then passes the contents of the scanned documents to 
the builder. The flowchart of the scanner is given in Appendix B. 

2- The builder module collects the XML data from the scanner module. The 
data contains information about the type of the data (e.g. element, 
attribute, value, special characters, etc.) and the values of the data 
(element value, attributes value). The builder uses the LLS labeling 
scheme to label elements, attributes, and values then follows given 
configuration instructions to map the XML database into DB2® V9.5 [64] 
relational tables. 

3- The query engine takes a query from a user and returns the solution to that 
query. The query engine is a primitive lightweight query processor. 
Basically, it translates an XPath query into an equivalent SQL query and 
passes it into the SQL engine for evaluation. It uses the data in the DB2® 
V9.5 backend to evaluate queries and return the answers. 
 

 
 

Figure 3.11   Layout of the query engine prototype to test the LLS 
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3.3.2   The Datasets and Queries 

We execute our experiments using two datasets: the DBLP Computer Science 

Bibliography [120] dataset and the XMark [111] dataset.  The DBLP dataset is 

record-oriented consisting of short data items such as name, title, date, etc.  The 

XMark dataset, in contrast, consists of large data elements, many exceeding 7,000 

characters.   Statistics for the two datasets are summarized in Table 3.2. For more 

information on these datasets please see Appendix A. 
 

 

 

 

 

Table 3.2   Statistics of DBLP and XMark datasets 

 
 

XPath (XML Path Language) [33] is a flexible query language that has been 

proposed to access XML data. An XML query may consist of either a single path 

or multiple paths (twig path). Both single path and twig path queries can be 

recursive (i.e. support ancestor-descendent “// ” relationships) or non-recursive. 

Based on these criteria, we consider four types of XML queries : 
 

 

 Type 1 (T1): Single path non-recursive queries.  
 Type 2 (T2): Single path recursive queries. 
 Type 3 (T3): Twig path non-recursive queries. 
 Type 4 (T4): Twig path recursive queries. 
 
 

Since most XML queries fall into these four types of queries, we use them in 

our experimental evaluation, and we run them against the two datasets. For each 

type of query, we use 4 example queries as shown in Figure 3.12. These queries 

Test 
Dataset

Size
No of Elements 
in the Summary

No of 
Levels

Total Number 
of Elements 

Max 
Cardinality 

Avg. 
Cardinality 

DBLP 20 MB  71  5 582,033 109,595 8,197 

XMark 15 MB  251  11 185,225  6,183  737 
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are chosen to cover different combinations of query path lengths, cardinality of 

elements, and the number of returned tuples, which is affected by the selectivity. 

Figure 3.12 contain lists of the 4 types of queries, as specified by (T1,T2,T3, and 

T4). For more information on these queries please see Appendix A 
 

 
(A) For DBLP database                                                    (B) For XMark database 

 

Figure 3.12   Representative queries for 4 types of queries 
 

3.3.3   Performance Evaluation 

We execute each query ten times against its respective dataset and take the 
average of the execution time of the 10 readings. The average of each type of the 
4 types of queries is shown in our analysis. The time to translate the XPath 
queries to SQL queries is not included and only the execution times of the 
queries are recorded, which reflect the impact of the labeling scheme used.  

Figures 3.13 and 3.14 shows a comparison between the (Beg,End) and LLS 
approaches performance against the DBLP test cases using basic and binary 
mappings. Figures 3.15 and 3.16 shows a comparison between the (Beg,End) and 
LLS approaches performance against the XMark test cases using basic and binary 
mappings. The results include the average runtime of the test cases. Note that 
log10 scale is used to measure the execution time. We notice from Figures (3.13-

T1‐Q1 : /site/regions/africa/item/id
T1‐Q2 : /site/open_auctions/open_auction/bidder/personref/person
T1‐Q3 : /site/open_auctions/open_auction/seller/person
T1‐Q4 : /site/catgraph/edge/from
T2‐Q1 : //id
T2‐Q2 : //africa//category
T2‐Q3 : //regions//item//text
T2‐Q4 : //open_auctions//text
T3‐Q1 : /site/regions/africa/item[/location='United States']/payment
T3‐Q2 : /site/regions/africa/item[/id='item0'] /location
T3‐Q3 : /site/catgraph/edge[/from='category0']/to
T3‐Q4 : /site/people/person[/name='Kaj Carey']/phone
T4‐Q1 : //africa/item[/quantity='1']/name
T4‐Q2 : //open_auction[/reserve='3199.90']/initial
T4‐Q3 : //closed_auction[/type='Regular']/price
T4‐Q4 : //regions//item[/quantity='2']/name

T1‐Q1 : /dblp/inproceedings/cdrom
T1‐Q2 : /dblp/inproceedings/cite/label
T1‐Q3 : /dblp/inproceedings/booktitle
T1‐Q4 : /dblp/book/series/href
T2‐Q1 : /dblp//author
T2‐Q2 : //series/href
T2‐Q3 : //book//label
T2‐Q4 : //href
T3‐Q1 : /dblp/incollection[/year='2000']/booktitle
T3‐Q2 : /dblp/proceedings[/booktitle='ACCV']/isbn
T3‐Q3 : /dblp/inproceedings[/author='Adele E. Howe']/title
T3‐Q4 : /dblp/proceedings[/isbn='0‐7695‐1991‐1']/title
T4‐Q1 : //inproceedings[/mdate='2002‐08‐04']/title
T4‐Q2 : //proceedings[/booktitle='ACNS']/isbn
T4‐Q3 : //incollection[/booktitle='Temporal Databases']/year
T4‐Q4 : //incollection[/author='Jurgen Annevelink']/title
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3.16) that the LLS outperforms the (Beg,End) using both basic and binary 
mappings for the two datasets. The reason behind this is that the (Beg,End) 
approach, whether it uses basic or binary mapping, has to deal with the 
overhead that is caused by their partitioning techniques, where the partitioning 
techniques are based on the tag name, even though the partitioned nodes may 
belong to different paths. In contrast, LLS labeling lends itself to a more specific 
partitioning that is based on the root path partitioning, and hence only related 
nodes are examined as specified by a given query. 

The experimental results show that in the case of the DBLP dataset, the 
improvement of our approach for basic and binary mappings is higher than that 
of the XMark dataset. This is because the number of elements in DBLP is greater 
than that of XMark dataset, as shown in Table 3.2. 

 
 

 
Figure 3.13  DBLP test cases result for the (Beg,End) and LLS using basic mappings 

 
 

 
Figure 3.14   DBLP test cases result for the (Beg,End) and LLS using binary mappings 
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Figure 3.15   XMark test cases result for the (Beg,End) and LLS using basic mappings 

 
 

 
Figure 3.16   XMark test cases result for the (Beg,End) and LLS using binary mappings 

 

 

Figures 3.17 and 3.18 show the performance comparison between the basic 

and binary mappings of the (Beg,End) and the LLS against the DBLP test cases. 

Figures 3.19 and 3.20 shows the performance comparison between the basic and 

the binary mappings of (Beg,End) and LLS against the XMark test cases. The 

results include the average runtime of the test cases. We notice from Figures 

(3.17-3.20) that the binary mapping performance, in general, is either 

approximately equal to or worse than that of the basic mapping. We believe that 

evaluating a query with n elements over a binary mapped data involves n tables 

and so a minimum of n disk accesses. While evaluating the same query over a 

basic mapped data would require accessing less disk accesses if the data happens 

to be clustered physically on the same pages.    
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Figure 3.17   DBLP test cases result for the basic and binary mappings using (Beg,End) 

 

 

 

 
Figure 3.18   DBLP test cases result for the basic and binary mappings using LLS 

 

 

 

 

 

 
Figure 3.19   XMark test cases result for the basic and binary mappings using (Beg,End) 
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Figure 3.20   XMark test cases result for the basic and binary mappings using LLS 

 

 

We believe that the performance gain over the LLS labeled data, as noted 

above, is due to the fact that LLS labeling scheme has the good characteristics  of 

(Beg,End) labeling scheme, and on top of that , with LLS labeling we can infer the 

related nodes labels with the help of the summary. This feature helps to pinpoint 

the nodes of interest when evaluating a query instead of examining a wider 

range of nodes to find a match in query evaluation process as is the case in the 

(Beg,End) labeled data.   

3.4   Summary  

Unlike the two widely used labeling schemes – interval  [63] [78] [116] [143] 

and prefix [48] [80] [99] [119]  labeling schemes – our LLS labeling scheme 

contains the advantages of both approaches, while avoiding their disadvantages. 

The LLS is based on numerical values, has fixed-size labels regardless of the 

depth of a node, requires a fixed time to compute a relation between two nodes, 

can be used to infer the parent-child and ancestor-descendent nodes from their 

labels, and requires modest amount of relabeling upon insertion. Index 

structures that are based on the LLS are precise and complete.  

1

10

100

1 2 3 4

LLS‐Basic

LLS‐Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e 
(m

s)



CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 95  

 

 

The LLS is based on the level of nodes in XML data-trees. The information of 

the levels at which nodes are located can be used by the query processor 

optimizer to deduce nodes that may contribute a valid answer for a given query. 

The LLS also uses the summary of XML data to label the nodes in the data, so 

nodes that are related to a node of interest can be identified easily.  

Much research has been done to propose a persistent labeling scheme for 

dynamic XML data to avoid the relabeling cost [23] [34] [77] [99]. Cohen et al. 

[34] established that any persistent labeling scheme requires Ω(N) bits per label 

in the absence of any clues about the data, where N is the size of the data. Such 

long labels, however, require high storage in addition to being more expensive to 

process than the shorter ones. In contrast, our labeling scheme, which is tightly 

coupled with the summary, requires a fixed label size to cover dynamic data.  

The update cost of LLS, in the worst case, requires relabeling fewer nodes 

than that of the interval labeling scheme [93]. The cost of updating nodes using 

the LLS is also cheaper than that of updating prefix indexes in many cases. 

Previous approaches that use a universal labeling scheme across a complete 

document (e.g. (Beg,End) approach) result in large labels for large documents. In 

contrast, in our approach we split the labels into groups of smaller numbers that 

require less memory and are easier to maintain and process than large labels. 

We showed in a set of experiments the performance benefits of our proposed 

scheme compared with interval labeling schemes using regular and binary 

mappings to relational tables. The LLS works well for single path queries as well 

as for twig queries.  
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Chapter 4 
 
LTIX: A Compact Level-based Tree to 
Index XML Databases 
 

 

Indexing XML data is essential for XML query optimization. Most of the 

existing approaches that combine a labeling scheme with a graph index use 

labeling schemes that reflect the structure of the indexed data. In addition, the 

labeling rules do not depend on the combined graph indexes. By designing a 

labeling scheme that does not reflect the structure of XML data, since it is 

available in the accompanied graph index; and by aligning the data nodes’ labels 

with the graph index nodes’ labels, we can support the join process more 

efficiently. In this chapter, we propose a novel native XML index structure called 

LTIX (Level-based Tree Index for XML databases). This index structure is based 
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on Level-based Labeling Scheme (LLS) that not only minimizes the number of 

joins and matches required to evaluate twig queries, if it is used with graph 

indexes, but also facilitates effective query optimization through early pruning of 

the space search. Experimental tests show the performance benefits of our 

proposed approach.   

In this chapter we review XML structural indexes, formally define our index 

structure, and explain the LTIX system [95]. We conclude by presenting our 

experimental results and contributions. 

 

4.1 XML Structural Indexes 

In this section we discuss hybrid XML index structures, and we briefly 

review  the weaknesses of XML structural indexes. We then introduce our LTIX 

approach, which we propose to overcome these shortcomings.      

 

 

4.1.1  Hybrid XML Index Structures  

Some researchers combine node indexes with graph indexes to expedite 

query processing and reduce the number of structural joins. For example, 

Kaushik et al. [69], Moro et al. [97], and Haw et al. [63] integrate the (Beg,End) 

interval node index with the DataGuide graph index. In these approaches 

element labels are assigned and then subsequently associated with their 

designated nodes in the graph index. In this case, the graph indexes, as well as 

the interval node indexes, hold the structural information of the data. We believe 
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that it is sufficient for only one of them to hold the structure information in order 

for them to work well together. We can therefore plan a labeling scheme that is 

structure independent and link it with a graph index to provide the structural 

information. We implement this concept in our approach. Our approach is 

therefore similar to the approaches that integrate interval node indexes with 

DataGuide graph indexes [63] [69] [97] with the exception of the labeling scheme. 

We propose a novel index structure that is based on the LLS labeling scheme 

[94], which is shown to work efficiently with DataGuides.  

 

4.1.2    Limitations of XML Structural Indexes 

The main shortcoming of node indexes is the number of structural joins 

required to evaluate a query, which is equal to n-1 where n is equal to the 

number of nodes in the query. 

 Graph indexing schemes [2] [37] [54] [56] [67] [90] consider paths as a 

whole, during query evaluation, instead of dealing with each node in the path 

separately. Consequently, the number of joins is reduced during query 

processing and hence query performance is improved.  

Sequence indexes [104] [130] interpret the whole query as a structure-

encoded sequences and search for a match in the structure-encoded sequence of 

an XML document. They suffer, however, from false positive and false negatives 

[93]. Refinement steps are added to the evaluation process of a query to 

overcome these problems.  

An example of interval node indexes is shown in Figure 4.2. It is based on the 

(Beg,End) labeling scheme of the XML document in Figure 4.1.  
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Figure 4.1   XML document 

 

 
Figure 4.2   An interval labeled tree representation of the XML data in Figure 4.1 

<students>
<student address="Kingston">

<name>
<fname>Tim</fname>
<lname>Wang</lname>

</name>
<courses>

<course>Art</course>
<course>History</course>

</courses>
</student>
<student address="Ottawa">

<name>
<fname>Sarah</fname>
<lname>Ahmad</lname

</name>
<courses>

<course>Math</course>
</courses>
<children>

<child>
<name>

<fname>Mike</fname>
<lname>Salem</lname

</name>
</child>

</children>
</student>

</students>

students
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name
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(29,29) (32,32) (37,37)

(23,52)

(35,39)
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name

“Mike”

lname
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(46,48)(43,45)

(44,44) (47,47)

children
(40,51)

(42,49)

child
(41,50)
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The labels are given according the sequential traversal of the document in 
Figure 4.1. In this type of node indexes, a relation between two elements is 
established if one element’s interval contains the other element’s interval.   

Graph indexes partition element nodes in the source XML data-tree based on 
their path similarity. The DataGuide graph index in Figure 4.7 is an example 
graph index for the data-tree in Figure 4.2. The numbers inside the oval shaped 
nodes represent the labels of the graph index nodes. Unlike node indexes, which 
return the answers of XML queries at the granularity of individual instances of 
elements, graph indexes return the answers of XML queries at the granularity of 
the whole sets of instances of elements. Then a node index, such as the interval 
node index above is used to perform structural joins in a post-processing phase 
to arrive at the answers to a query. In the structural join operations, each 
element’ instances in a set is compared with the other elements’ instances in the 
other sets to find a match.  

To evaluate a single path XML query a number of joins and comparisons are 
required if we use node indexes. To overcome this shortcoming node indexes can 
be integrated with graph indexes. To illustrate this consider evaluating Query 4.1 
below over the data in Figure 4.2. Query 4.1 returns the first and the last names 
of the students in an XML document. The node-labeled tree representation for 
Query 4.1 is given in Figure 4.3.  

 

Query 4.1:  //student/name[fname]/lname 

 
Figure 4.3   The node-labeled tree representation of Query 4.1 

fname

name

?

lname

?

student
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The instances of Query 4.1 elements in the XML data-tree in Figure 4.2 are 

saved in a node index structure similar to the one shown in Figure 4.4 as 

suggested by Zhang et al. [143], which is based on (Beg,End) labeling scheme.  
 

 

 
Figure 4.4    The (Beg,End) interval node index for instances of Query 4.1 elements in Figure 4.2 

 

To evaluate Query 4.1 over the data in (Beg,End) interval node index in 

Figure 4.4, we need to implement 3 structural joins and 18 matches, in the worst 

case. This worst case is reached if we used the standard merge join algorithm to 

arrive at the final answer that contains the following tuples: 
 

 

fname lname 
Tim Wang 

Sarah Ahmad 
 

 
 

Zhang et al.[143] propose the Multiple Predicate MerGe JoiN (MPMGJN) 

algorithm to reduce the number of joins. Much subsequent research has been 

done in this area to reduce the number of joins and comparisons [6] [18] [30] [76]. 

Discussion of these approaches is beyond the scope of this chapter.   

To evaluate Query 4.1 above by using an integrated system such as the one 

shown in Figure 4.5, which integrates the DataGuide graph index (Figure 4.7) 

(2,22) (23,52)
(6,13) (27,34) (42,49) 

(7,9) (28,30) (43,45) 
(10,12) (31,33) (46,48) 

<student>
<name>

<fname>
<lname>
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with the interval node index (Figure 4.4), we need to perform 2 join operations 

and 8 matches in the worst case. This worst case is reached if we used the 

standard merge join algorithm.  

 

 

 
Figure 4.5    Integration of the node index (Figure 4.4) with the graph index (Figure 4.7) 

 

 

From the above discussion we notice that integrating interval node indexes 

with graph indexes dropped the number of joins, in our example, from 3 to 2 join 

operations, and the number of matching operations have been reduced from 18 

to 8 matches. Our proposed LTIX approach, which integrates a special labeling 

scheme (LLS) with a DataGuide graph index, requires implementing only one 

join operation during which two matches are performed in the worst case, to 

evaluate Query 4.1 above. We will return to Query 4.1 example and explain how 

we can achieve this by using LTIX approach in Section (4.2.2) after we elaborate 

on our approach in the next section. 

LLS labeling [94] scheme preserves the best traits of both interval labeling 

[63] [143] and prefix labeling schemes [99] [119] (See Chapter 2). Similar to 

Level PerLv Tag Start End
2 11 student 2 22
2 11 student 23 52
3 21 name 6 13
3 21 name 27 34
4 11 fname 7 9
4 11 fname 28 30
4 21 lname 10 12
4 21 lname 31 33
5 11 name 42 49
6 11 fname 43 45
6 21 lname 46 48
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interval labels, the size of LLS labels is fixed regardless of  the data-tree depth, 

and hence requires modest storage space. Like interval labeling, integers are 

used to label nodes with LLS, which is more efficient for queries processing than 

the substring labels that are used in prefix labeling. Furthermore, a relation 

between two nodes can be identified with a single equality comparison operation 

with LLS, while with interval labeling, a relation is identified using two 

inequality comparison operations. 

ORDPATH labels [99] are a variant of Dewey prefix labels [34] [99]. They do 

not need to be updated when new nodes are inserted, but they suffer from the 

shortcomings of prefix indexes. In the interval node index approach proposed by 

Zhang et al. [143], they suggest including the level of elements as a part of node 

labels. In contrast, our approach not only has the level of elements as part of the 

node labels, but we provide a graph index (absent from Zhang’s approach), and 

the levels are also added to this graph index node labels. 
 

 

 

4.2 Our LTIX Approach 

In this section, we first introduce the XML data model used in LTIX, the 

graph index, and the mapping of XML data-tree into native XML graph index 

and data repository. We then trace two examples to demonstrate how LTIX is 

used to evaluate twig queries and to improve the efficiency of query evaluation 

process. We discuss LTIX path index construction at the end of the section. 
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4.2.1    XML Data and Path Index Models 

We model an XML document as a directed graph G=( R,VR,VL,E,tagg,labelg,T ). 

The definition of this data model is given in Section 3.2.1. The LTIX data-tree 

graph representation G for the data in Figure 4.1 is illustrated in Figure 4.6.   
 

 

 
Figure 4.6   LTIX data-model of the data in Figure 4.1 

 

 
In LTIX, an XML data-tree G can be summarized by a graph index S such 

that all node paths of G that share the same tag path t are represented by exactly 

one tag path t in S, and every tag path t of S is a tag path of at least one node 

path n of G. Basically, G nodes are partitioned into equivalence classes in S where 

the nodes of a class have the same root path.    

We define a graph index as a directed graph S=(R,O,M,tags,labels,C). Formal 

definition of the graph index S can be found in Section 3.2.1. Figure 4.7 contains 

an example of a graph index S of the XML data-tree G in Figure 4.6. 

1.1.1
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Figure 4.7   The graph index S of the XML data-tree G in Figures 4.2 and 4.6 

 

 

 

The graph index S information of Figure 4.7 is mapped into table 

representation as shown by the Graph Index, and Elements and Attributes 

Dictionary tables in Figure 4.8 (B and A), and the data-tree G information of 

Figure 4.6 is mapped into table representation as shown by the Value Index, and 

Elements and Attributes Index tables in Figure 4.8 (C and D). We implement the 

Graph Index as a binary file; and the Elements and Attributes Dictionary, Value 

Index, and Elements and Attributes Index as B+-trees in our LTIX system. The key 

of each index is underlined in Figure 4.8. 

   

Level

1

2

3

4

1.1 students

3.213.11

4.314.11 4.21

3.31

2.11
student

courses
address

name

courselnamefname

3.41

children

5.11

6.11 6.21

name

lnamefname

5

4.41
child

6
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Figure 4.8   Data dictionary and indexes 

 

 

Figure 4.8(A) contains a list of all elements and attributes in the graph index 

and is referred to as the Elements and Attributes Dictionary. The Tag field is the tag 

of the elements or attributes in the graph index, which is assigned through the 

tags function of S. The Level and PerLv columns represent the d and the p parts of 

the graph index nodes labels, respectively, as indicated in Figure 4.7. These labels 

are allocated through the labels function of S. The Type represents the type of 

node (e.g. element or attribute).  

The Parent field in Figure 4.8(B) holds the PerLv labels of the parent nodes, 

which are the p values of the parent nodes. The Level value of the parent node is 

equal to the current node Level value minus one, so we do not need to list the 

parent node’s level in the Graph Index. We assign a zero value for the parent of 

the root node since it does not have any parent. Tables A and B in Figure 4.8 

Level PerLv No Parent
1 1 1 0
2 11 1 1
2 11 2 1
3 11 1 1
3 11 2 2
3 21 1 1
3 21 2 2
3 31 1 1
3 31 2 2
3 41 1 2
4 11 1 1
.
.
.

.

.

.

.

.

.

.

.

.
4 41 1 1
5 11 1 1
6 11 1 1
6 21 1 1

Level PerLv Parent

1 1 0
2 11 1
3 11 11
3 21 11
3 31 11
3 41 11
4 11 21
4 21 21
4 31 31
4 41 41
5 11 41
6 11 11

6 21 11

(B) Graph Index (C) Value Index

Level PerLv No Value SerialPath

3 11 1 Kingston 1,1,1
3 11 2 Ottawa 1,2,2
4 11 1 Tim 1,1,1,1
4 11 2 Sarah 1,2,2,2
4 21 1 Wang 1,1,1,1
4 21 2 Ahmad 1,2,2,2
4 31 1 Art 1,1,1,1
4 31 2 History 1,1,1,2
4 31 3 Math 1,2,2,3
6 11 1 Mike 1,2,1,1,1,1
6 21 1 Salem 1,2,1,1,1,1

(A) Elements and Attributes 
Dictionary

Tag Level PerLv Type

address 3 11 A
child 4 41 E
children 3 41 E
course 4 31 E
courses 3 31 E
fname 4 11 E
fname 6 11 E
lname 4 21 E
lname 6 21 E
name 3 21 E
name 5 11 E
student 2 11 E
students 1 1 E

(D) Elements and Attributes
Index



CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 107  

 

 

could be combined, as in the Summary table of the LLS approach in Figure 

3.6(A), but we prefer to keep them separate because they are used in different 

stages of queries evaluation process. 

Figure 4.8(C) shows the Value Index table, which is populated with the values 

of attributes and elements of the XML data-tree in Figure 4.6. The Level, PerLv, 

and No values together form the labels of the leaf nodes <d.p.s>, as shown in the 

data-tree in Figure 4.6. These labels are allocated through the labelg function of G. 

The Value field contains the values of all leaf nodes, and null for empty elements. 

Note that the value labels (which consist of Level, PerLv, and No) are the same as 

the element or attribute labels to which they belong. Finally, the SerialPath field 

contains the serial paths r of each node in the tree. It represents a vector of the No 

values of the nodes that constitute a path from the root node to the designated 

node. It is used in structural joins to evaluate twig queries, as we shall see in the 

forthcoming example in Section 4.2.2. 

All nodes in the XML tree are represented by the Elements and Attributes 

Index as shown in Figure 4.8(D). The Elements and Attributes Index can be 

extended to have the serial paths of all attributes and elements similar to the 

serial paths of values, but it is not necessary in our approach. Note that the Parent 

values in table (D) are different than the Parent values in table (B). In table (D) 

they stand for the No value of the parent node.  
 

In order to achieve high performance of the LTIX index structure, and since 

an s value uniquely identifies a node among other nodes of the same class, we 

create the Serial Graph Index that is based on the concatenation of 

(Level,PerLv,SerialPath) of values. The serial graph index is used to facilitate the 
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link between two arbitrary nodes in two different branches of a twig query as we 

shall see shortly.  
 

4.2.2    Two Simple Examples 

In this section we trace two examples. The first example shows how LTIX is 

used to minimize the number of join and comparison operations. The second 

example illustrates the ability of the LTIX approach to prune false positives early 

during the evaluation process. 

  

Example 4.1: We evaluate Query 4.1 below, which was introduced in Section 

4.1.2, over the mapped data in Figure 4.8. This query returns the first name and 

the last name of all students. 

 

Query 4.1:  //student /name [fname] /lname 

 

Note that the branching occurs at the name node, which is the parent of the 

two leaf nodes, namely, fname and lname. We can see from the Attributes and 

Elements Dictionary, and the Graph Index  that the fname and lname elements in 

Query 4.1 map to nodes <4.11> and <4.21> in S, respectively. First, we evaluate 

one side by probing the key fields of the Value Index for values whose labels start 

with (“4.11”) and the two returned tuples are: 

 

Level PerLv No Value SerialPath 
4 11 1 Tim 1.1.1.1 
4 11 2 Sarah 1.2.2.2 
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These tuples are joined with the Value Index to arrive at the final answer of 

the query. In order to do that, the information of these two tuples is used by the 

index structure as follows. We know that the Serial Graph Index is based on the 

concatenations of (Level,PerLv,SerialPath) columns. So the index structure probes 

the indexed columns in the Serial Graph Index for tuples that match (4,21,LIKE 

1.1.1%), which is retrieved in one match. The LIKE 1.1.1% part retrieves all 

SerialPaths values that start with 1.1.1. The search for a match to the second tuple 

is carried out in the same way by the search criterion (4,21, LIKE 1.2.2%), which 

retrieves the answer to this part in one match. The first three segments of the 

SerialPath (“1.1.1” and “1.2.2”) are used in the search criteria because the 

branching node is located at the third level. This means that the first three 

segments of the SerialPath of the two branches of the query are common and 

shared by the two branches. 

Our approach, in contrast to the two approaches discussed previously in 

Section 4.1.2 – the (Beg,End) interval node index approach, and the approach that 

integrates the (Beg,End) interval node index with the DataGuide graph index  –  

performs only one join during which two matches are performed to evaluate the 

query. In our approach, the leaf nodes of the two branches are matched directly 

with each other without using the branching node as a mediator to join them, as 

opposed to the previous approaches. Further, the information of tuples obtained 

from evaluating the first branch leaf node is used to retrieve the exact match in 

one comparison for each match by using an equality operator. The previous 

approaches, in contrast, require multiple comparisons to find a match, since there 

are two parameters involved in the searching criteria (start, and end), and both 

are involved in an inequality comparison (less than “< ”, or greater than”>”). 
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Note that the first two fields of the Value Index key and the Serial Graph Index 

key are the same (Level, PerLv). This fact increases the chances of a successful 

memory hit when the search criteria run against the Serial Graph Index are met by 

multiple tuples, and thus decreases the number of disk accesses. This clustering 

helps to explain the shortest response time achieved by LTIX system in 

comparison to the previous approaches as shown in our experiments in 

Section 4.3. 

 

Example 4.2: The level of XML elements in graph indexes can be used to 

identify the elements’ position within an XML tree structure, and can facilitate 

effective query optimization through early pruning of the space search. To 

demonstrate that, we evaluate Query 4.2 below over the mapped data in Figure 

4.8. This query returns the values of fname elements that have a child element 

ancestor. 

 

Query 4.2:  //child//fname 

 

Based on whether the used graph index carries the level information of the 

indexed elements or it does not, we have two scenarios to evaluate Query 4.2. 

First, if we assume that we do not have the level information in the graph index 

S, or we have it but we do not access it in an efficient way at an early stage of the 

evaluation process of a query, then we evaluate Query 4.2 as follows. We access 

the graph index and search for all child and fname elements. In this process node 

<4.41> of child element, plus nodes <4.11> and <6.11> of fname elements are 

retrieved and investigated. Node <4.11> is excluded as the structure index 

would indicate that it is not a valid choice.  
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The second scenario takes place if we assume that the levels of the graph 

index nodes are given and used at an early stage of the evaluation process. In this 

case, we match the extent of node <4.41> with only the extent of node <6.11>. 

The extent of node <4.11> would be excluded at an early stage since its level is 

equal to the level of <4.41> node, which contradicts the query specification. Our 

index structure includes the level at which a node is located as part of the node 

label in the graph index. Based on this fact, the evaluation algorithms of our LTIX 

approach detect invalid choices at an early step of the evaluation process and 

exclude them, thus improving the performance of query evaluation. To illustrate 

this, the Elements and Attributes Dictionary table in Figure 4.8(A) can be used in 

our approach to evaluate Query 4.2 as follows. If we follow a top-down 

evaluation plan, then we would use the Elements and Attributes Dictionary table to 

find the child element information first. The search will return the following 

tuple: 
 

Tag Level PerLv Type 
child 4 41 E 

 
 

This information is used as a predicate to search for fname elements that are 

located at a level greater than 4. This way, the node <4.11> in the graph index of 

fname element is excluded instantly without retrieving it. In contrast, other 

approaches will eventually exclude it, but after retrieving and testing it.    

 

4.2.3     LTIX Path Index Construction 

Graph indexes, in general, require a large amount of memory [56] [144]. 

Motivated by this fact, versions of graph indexes, called approximate indexes 
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[55] [67] [70] have been proposed to reduce the memory requirements. The 

memory reduction, however, comes at the expense of accuracy, and initial 

answers to a query are often subject to refinement steps to finalize the answers 

and remove false positives. Graph indexes, furthermore, are used heavily in 

XML query evaluation, especially for paths that have recursion. Finally, since the 

labeling scheme of our approach is based on the level of XML elements, our 

algorithms use graph indexes more often than other approaches to evaluate XML 

queries. Because of these facts, we discuss different alternatives to minimizing 

the size of the graph indexes without compromising their accuracy.   

We propose two types of implementations for graph indexes. The first is 

called a Matrix Index and the second is called a Flat Index. Figures 4.10 and 4.11 

are examples of the implementations of the first and the second types for the 

graph index in Figure 4.9, respectively. Figure 4.9 is a portion of the graph index 

in Figure 4.7. To simplify our examples we narrow the expansion gaps. The 

expansion gaps are reserved for inserting new nodes between the existing nodes 

while maintaining the order of the nodes. 

 

 

 
 

Figure 4.9   Fraction of the graph index in Figure 4.7 

1.1 students

3.33.1 3.5
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name 3.7
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In the matrix index (Figure 4.10), sequential memory slots (numbered in the 

bottom- right corner) are dealt with as if it is a matrix that has two coordinates. 

The X and Y axes coordinates represent the width (PerLv) and the depth (Level) of 

the graph index. The first seven slots are reserved for the first level elements, the 

second seven for the second level elements, and so on. The width of the matrix is 

chosen in a way to cover the width of the tree, which is 7 in our example. Each 

slot contains the Parent value for its corresponding node in the graph index. The 

empty slots can be used for expansion. This index-probe operation is illustrated 

in Algorithm 4.1, which finds the parent node label for a given node. Note that 

“V(U)” in line 2 in Algorithm 4.1 represents the value that occupies the memory 

unit U. The matrix structure index does not have to have equal width and depth 

as in our example. The depth and the width of the matrix index may vary 

depending in the depth and the width of the graph index tree, and the formed 

structure would still maintain the uniformity of access, which is based on the 

chosen depth and width. 
 

 

 
Figure 4.10    The Matrix Index structure that holds the Parent value of the graph index in Figure 4.9 
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Due to the increase in the number of nodes in the graph index as levels 

increase, and due to the fact that this index structure width has to be the same for 

all levels, the matrix would be sparse. Motivated by this fact, we propose the flat 

index (Figure 4.11) that divides the graph index into three parts. In the first part, 

we save the number of levels of the graph index (assume it is equal to n). The 

second part contains n storage units. These storage units are used to specify how 

many nodes there are in each level. For example, level 3 (in storage unit 4) has 

room for seven nodes. Finally, the third part contains the PerLevel of the parent 

node of all nodes in all levels, if they exist. Otherwise, null value is presented. 

This index-probe operation is illustrated in Algorithm 4.2. 

 

 

 

 

Algorithm 4.1: Find the parent node of a given node using the Matrix Index

// F(di,pi)  : is a function to find the parent node label for a given node.
// Input     : (di,Pi) is the label of a node where di and Pi are the Level and 

the PerLevel of the input node, respectively. 
// Output  : (do,Po) is the label of a node where do and Po are the Level

and the PerLevel of the output(parent) node, respectively. 
1   do=di-1; // return the Level of the output node

2   Po= V(U)=V(((di-1)*W)+Pi)  // return the PerLevel of the output node
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Figure 4.11    More efficient dynamic Flat Index structure for the graph index in Figure 4.9 

 

 

 
 

 

In order to evaluate a query Q, for example, /students//fname against the 

mapped data of G in Figure 4.8, we first verify that the two elements of Q exist in 

S (the Elements and Attributes Dictionary, Figure 4.8(A)). If so, we get their 

labels, which consist of two sets of labels, {<1,1>} and {<4,11>,<6,11>} for students 

and fname elements, respectively. We then use Algorithm 4.3 to verify if a 

relationship exists between the instances of these two sets of elements before 

going any further in the query evaluation. The function R((d1,p1),(d2,p2)) in 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No. 
of

levels

No. of elements
in each level

Graph
Index

1st

level
2nd

level
3rd

level
4th

level

Algorithm 4.2 : Find the parent node of a given node using the Flat Index

// F(di,pi) : is a function to find the parent node label for a given node.
// Input : (di,Pi) is the label of a node where di and Pi are the Level and the 

PerLevel of the input node, respectively. 
// Output : (do,Po) is the label of a node where do and Po are the Level and

the PerLevel of the output (parent) node, respectively. 
1   Y <= V(1) ;  // Assign the value in storage unit 1 to variable Y
2   Target = T = 0 ; // initialize the value of target level
3   For k=2 to di // This loop is to find the address
4       { T=V(k)+T } // of the level specified by di

5  do = di-1;  // returns the value of  do

6  Po =V(U)=V(1+Y+T+Pi )   // returns the value of  Po
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Algorithm 4.3 is used to verify a child-parent or descendant-ancestor relationship 

between any two arbitrary nodes. 

 

 

 

 

The size of the matrix and the flat indexes are dependent on the number of 

spare space available for insertion and the size of the tree. The more space we 

have, the more robust the graph index structure will be, but at the expense of 

size. There is a trade-off between the graph index size and its ability to adapt to 

insertion. Flat index structure, however, has more control over the index size.  

We believe that these types of index structure representations are useful for 

XML databases. They transform the irregularity of XML databases into regular 

data that can be accessed uniformly. Moreover, the address of a node itself is 

used as part of the information to reconstruct the index tree, that is, we use the 

Algorithm 4.3: Confirm a relationship between two given nodes

// R((d1,p1),(d2,p2)) is a function to find if a relationship 
exists between two arbitrary nodes.

// Input    : (d1,p1) is the node in higher level and 
(d2,p2) is the node in lower level. 

// Output : Boolean value: true if the relationship exists, 
or false otherwise.   

1   n = d2-d1;
2   di=d2;
3   Pi=P2 ;
4   for t = 1 to n
5      {  (do,po) = F(di,pi); // The function of Algorithm 4.1 or Algorithm 4.2 is used
6          di=do; 
7          Pi=Po }
8   if (do==d1 and  po==p1)
9   then return  true;

10   else  return  false;         
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address as a representation for Level and PerLevel information instead of saving 

them inside the file, and hence save memory. The size of the flat index is equal to 

O(n + v) were n is the number of nodes in the graph index structure and v is 

equal to the number of levels in the graph index plus one. In real life situations, 

where the nodes in the graph index can reach hundreds or thousands of nodes, v 

becomes negligible compared to n, and hence the size of the graph index is 

approximately O(n) of nodes that a graph index can hold. Since our graph index 

is based on the DataGuide graph index, the size is relatively small for a regular 

data-tree, and grows linearly for irregular data-trees, but does not exceed the size 

of the source data in the worst case [54] [56].  

Another alternative for building the graph index are B+-trees, which handle 

growth gracefully. The B+-trees structure however may require more accesses 

than that required by our approach to retrieve specific information. Because 

B+-trees accesses  depend on the size of the tree that dictates the depth of the 

tree. In addition, B+-trees require huge space compared to that required by our 

approach. Our graph index structure is similar to a dynamic hash index to some 

extent.    
 

  

4.3 Prototype Implementation 

We validate the LTIX with an experimental prototype that we implemented 

in our lab using Java 1.6. All experiments were performed on a 3 GHz Pentium 4 

PC running Windows XP operating system, with 1.5 GB of RAM. The goals of 

the experiments are to evaluate the performance of our LTIX approach that uses 
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the LLS labeling scheme. We therefore compare three different indexing 

methods. First, we implement a basic interval node index with the MPMGJN 

algorithm proposed by Zhang et al. [143]. Second, we modify the MPMGJN 

algorithm to use the graph index we described above. This allows us to observe 

the impact of our graph index on performance. Third, we implement our LTIX 

method, which consists of the LLS labeling scheme and our graph index. We 

evaluate the LLS labeling scheme’s effect in the LTIX system by comparing it 

with the extended version of Zhang’s interval labeling scheme.  We have two 

different labeling schemes integrated with the same graph index so performance 

differences should be due to the labeling schemes.  

We use the Berkeley B+-tree to store the data for the three schemes, and we 

use a binary file to store the graph index. We evaluate each method against two 

test sets (see Section 4.3.1). We measure the performance using two platform-

independent criteria, namely the number of comparisons performed to establish 

relations between two elements and the number of cases pruned by the method, 

as well as the average runtime of a query with each method. The size of the 

tables is not measured since they depend on the B+-tree implementation.  

 

 

4.3.1    The Datasets and Queries 

We execute our experiments using two datasets: the DBLP Computer Science 

Bibliography [120] dataset and the XMark [111] dataset with scale factor (0.1). 

Statistics for the two datasets are summarized in Table 4.1. 
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Table 4.1   Details of DBLP and XMark datasets 

 
 

 

In our experimental evaluation we use the four types of queries listed in the 

previous chapter. We run them against the DBLP and XMark datasets. For each 

type of query, we used 4 queries as shown in Figures 4.12(A and B). Figures 4.12 

(A and B) contain lists of the 4 types of queries, as specified by (T1,T2, T3, and 

T4). Please note that the test queries used in this chapter are the same test queries 

used in Chapter 3, since they are comprehensive and versatile.  

 

 

 
(A)  For DBLP database                                           (B)  For XMark database 

 

Figure 4.12   Representative queries for 4 types of queries 
 

 

Testing 
Dataset Size No of Elements 

in PathIndex
No of 
Levels

Total Number 
of Elements 

Max 
Cardinality 

Avg. 
Cardinality 

DBLP 20 MB  71  5 582,033 109,595 8,197 

XMark 15 MB  251  11 185,225  6,183  737 

T1‐Q1 : /site/regions/africa/item/id
T1‐Q2 : /site/open_auctions/open_auction/bidder/personref/person
T1‐Q3 : /site/open_auctions/open_auction/seller/person
T1‐Q4 : /site/catgraph/edge/from
T2‐Q1 : //id
T2‐Q2 : //africa//category
T2‐Q3 : //regions//item//text
T2‐Q4 : //open_auctions//text
T3‐Q1 : /site/regions/africa/item[/location='United States']/payment
T3‐Q2 : /site/regions/africa/item[/id='item0'] /location
T3‐Q3 : /site/catgraph/edge[/from='category0']/to
T3‐Q4 : /site/people/person[/name='Kaj Carey']/phone
T4‐Q1 : //africa/item[/quantity='1']/name
T4‐Q2 : //open_auction[/reserve='3199.90']/initial
T4‐Q3 : //closed_auction[/type='Regular']/price
T4‐Q4 : //regions//item[/quantity='2']/name

T1‐Q1 : /dblp/inproceedings/cdrom
T1‐Q2 : /dblp/inproceedings/cite/label
T1‐Q3 : /dblp/inproceedings/booktitle
T1‐Q4 : /dblp/book/series/href
T2‐Q1 : /dblp//author
T2‐Q2 : //series/href
T2‐Q3 : //book//label
T2‐Q4 : //href
T3‐Q1 : /dblp/incollection[/year='2000']/booktitle
T3‐Q2 : /dblp/proceedings[/booktitle='ACCV']/isbn
T3‐Q3 : /dblp/inproceedings[/author='Adele E. Howe']/title
T3‐Q4 : /dblp/proceedings[/isbn='0‐7695‐1991‐1']/title
T4‐Q1 : //inproceedings[/mdate='2002‐08‐04']/title
T4‐Q2 : //proceedings[/booktitle='ACNS']/isbn
T4‐Q3 : //incollection[/booktitle='Temporal Databases']/year
T4‐Q4 : //incollection[/author='Jurgen Annevelink']/title
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4.3.2    Performance Evaluation 

We execute each query ten times against its respective dataset and take the 

average of the 10 readings. The average of each type of the 4 types of queries is 

used in our analysis. Tables 4.2 (A and B) show the results of the testing of DBLP 

and XMark test cases, respectively. The results include the number of pruned 

cases, the average number of comparison operations, and the average running 

time to execute the queries of the test cases. The pruning is due to the use of the 

graph indexes and the information about the elements’ levels. We notice that the 

number of pruned cases in DBLP dataset is less than those of XMark datasets. 

This is due to two factors. First, the number of levels is higher in the XMark 

dataset. Second, the number of repetitive element names (elements with the same 

name) is also higher in the XMark dataset. Since more elements are tested in the 

twig queries, we notice that the number of pruned cases for twig queries is more 

than those of single path queries for both datasets.   

In both test cases, the number of row pairs compared drops to zero for both 

types of single path queries (T1 and T2) when the graph index is incorporated, 

and hence the performance of our approach is similar to that of the extended 

approach. The basic interval node indexes require significantly more 

comparisons than the extended interval node indexes and LTIX because, with the 

latter two indexes, the correct set of answers is identified by the graph index. 

During this process, the labels of the nodes (which consist of Level and PerLevel 

parts) that match the exact answer criteria are identified by using the graph 

index, then used to retrieve the answer from the data in the B+-tree index. The 
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data is clustered in the B+-tree by these labels so the retrieval times are much 

smaller than those of the basic interval node indexes.  

We see similar performance improvements for both types of twig queries (T3 

and T4) in both test cases. The extended interval node indexes compare less row 

pairs than the basic interval node indexes (79%-90% less comparisons), and 

LTIXs compares 97.9%-99.9% less pairs than the extended interval node indexes.  

Similarly, extended interval node indexes perform 46%-78% faster than the basic 

interval node indexes, and our approach outperforms the extended interval node 

indexes by 89%-99.6%.  
 

 

Table 4.2   Average pruned cases, comparisons, and runtime for 4 types of queries. 
 

 (A)  Against DBLP dataset.                     (B) Against XMark dataset. 

 
 

 

The experimental results of the twig queries (T3 and T4) show that in the 

case of the DBLP dataset, our approach performs 99.5% - 99.6% faster than the 

extended approach, while in the case of  XMark dataset our approach performs 

89% - 97% faster than the extended approach. This is because the XMark dataset 

is text oriented where the size of data is very large and it exceeds 7,000 characters 

for many elements; while the DBLP dataset is record-oriented and the size of the 

data items is often short (e.g. name, title, date). 

Query 
Type

Average 
Pruned 
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic 
Interval

Extended 
Interval

LTIX
Basic 

Interval
Extended 
Interval

LTIX

T1 5 105,684 0 0 22,108 6 6

T2 2 32,376 0 0 15,545 12 12

T3 13 322,491 67,966 17 39,503 8,543 32

T4 14 316,409 67,384 61 35,016 18,991 96

Query 
Type

Average 
Pruned 
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic 
Interval

Extended 
Interval

LTIX
Basic 

Interval
Extended 
Interval

LTIX

T1 29 25,915 0 0 3,250 7 7

T2 69 7,003 0 0 1,426 48 48

T3 205 32,805 3,272 12 2,304 738 22

T4 140 81,022 7,902 168 5,241 1,732 191
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We believe that the performance gain of LTIX, as noted in Tables 4.2 (A and 

B), is achieved mainly by two factors in our index structure. First, the LTIX graph 

index is based on the levels of XML elements, which is used to prune out false 

positive cases early in the evaluation process. Second, multiple inequality 

comparisons are performed to find a match for a node using the basic and the 

extended node indexes, while LTIX only requires one equality comparison to 

find a match for a node.   

 

4.4 Summary 

Unlike the existing approaches that integrate a labeling scheme with a graph 

index, in which both reflect the structure of XML data, our approach relaxes the 

structure constrains from the labeling scheme of the integrated index structure. 

Alternatively, the used labeling scheme (LLS) not only facilitates effective query 

optimization through early pruning of the space search, but also is capable of 

supporting the join process more efficiently. 

Graph indexes, in general, require a large amount of memory [56] [144]. 

Based on this fact, we developed several efficient implementations techniques for 

the graph indexes in LTIX to minimize the size of the graph indexes and increase 

its efficiency at the same time. Our indexing techniques are based on flattened 

indexes instead of B+-tree for two reasons. First, the B+-trees structure may 

require more number of accesses to retrieve specific information. Second, B+-

trees require huge space to save them. In contrast, our graph index structures 

require less access to retrieve specific indexed information, and they require 

modest space.  
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Chapter 5  
 
Relational Universal Index Structure 
for Evaluating XML Twig Queries 
 
 

Numerous approaches to storing XML data in relational databases have been 

proposed in order to take advantage of the maturity of relational database 

management systems. Index structures have been developed with these 

approaches in order to speed-up XML query processing. However, these index 

structures typically either do not support efficient processing of twig queries or 

are huge in size. In this chapter we propose a novel index structure that is 

compact and effectively supports processing of XML twig queries. We use a 

light-weight native XML engine on top of an SQL engine to perform the 

optimization related to the structure of the XML data prior to shredding. 
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Experimental results show that our approach achieves lower response time than 

other similar approaches while using less space to store the XML data 

In this chapter we discuss XML data mappings to relational data and we 

review the types of existing mapping approaches and their limitations. We then 

introduce our approach (UISX approach), explains the XML data and path 

summary models used to build UISX [96], explains how the proposed index 

structure optimizes the use of the space to store XML data, and illustrates how 

XPath queries are evaluated by using this index structure. Finally, we present an 

experimental evaluation of the UISX approach in comparison to existing 

approaches and summarize this chapter.   
 

5.1 Mapping of XML Data to Relational Data 

Due to its flexibility, XML is becoming the standard for exchanging data 

over the World Wide Web. XML databases can be stored and queried by using 

either native XML repositories [26] [53] [98] [102] [112] [136] [141] [142] [146] or 

relational database management systems [27] [49] [61] [101] [107] [114] [115] [118] 

[119] [134] [140] [143]. Native approaches for storing and querying XML data are 

still relatively new. On the other hand, RDBMSs are well founded, tuned, and 

standardized by several decades of work. RDBMSs are also known for their 

strength in data storage and manipulation, query processing and optimization, 

concurrency control, recovery, and security. Finally, huge volumes of data are 

already stored in relational database management systems. Motivated by these 

facts, researchers and vendors (such as IBM®, Oracle®, Sybase®, and 

Microsoft®) are working on ways to improve the capabilities of RDBMS to store 

and retrieve XML [25] [43] [44] [49] [61] [101] [114] [115] [118] [119] [140] [143]. 
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5.1.1 Types of Mappings  

Many research projects have proposed mapping XML data to RDBMSs. These 
proposals can be divided into two groups: mappings that are based on the 
schemas of XML data [126], which are referred to as structure-mappings; and 
mappings that are not based on XML schemas, which are referred to as model-
mappings [118]. In structure-mapping, XML data is mapped to different relational 
schemas depending on the existing XML schemas. In model-mapping [91], the 
XML data is mapped to the same relational schema regardless of the structure of 
the mapped data, whether an XML schema exists or not. Shanmugasundaram et 
al. [115] and Florescu et al. [49] proposed two of the early approaches for 
mapping XML data. The first approach is based on structure-mapping, and the 
latter is based on model-mapping. Since our approach is based on model-
mapping, we are going to concentrate on model-mapping approaches. 

 

5.1.2 Problems with Model-Mapping Approaches 

There are three types of model-mapping approaches: edge, node, and path 
approaches. The edge model-mapping approach proposed by Florescu and 
Kossmann [49] is based on the edge-labeled data model. It maps all edges in an 
XML data-tree into a single relational table that has the scheme 
(Source,Target,Tag,Flag,Value). Each edge represents an element that has a Source 
and Target identification. An XPath query is evaluated by matching the Target id 
of one element (edge) with the Source id of the following element in the path of a 
query starting from one end and finishing at the other end. The Flag represents 
the type of the node (e.g. int, string). The edge approach requires a minimum of 
n-1 join operations to evaluate a query with n elements for both single path and 
twig path queries. In addition, it does not efficiently evaluate queries with the 
ancestor-descendent “// ” axis.  
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Zhang et al. [143] proposed a model-mapping approach based on the node-

labeled data model. They use intervals to label the nodes and map XML tree 

elements to a relational table that has the scheme (Beg,End,Tag,Level,Value). Two 

elements can be joined together if the interval (Beg,End) of one element contains 

the other element interval. Unlike the edge approach, node model-mapping can 

efficiently evaluate queries with the ancestor-descendent “// ” axis, but it still 

requires n-1 joins to evaluate a single path or a twig path query with n elements.   

Yoshikawa et al. [140] proposed a model-mapping approach that is based on 

forward-paths of elements in an XML data-tree. A forward-path is a path that 

starts from an element in the higher part of an XML data-tree (e.g. root element) 

and ends at an element at the lower part (e.g. the mapped element). In this 

approach, elements are shredded into a relational table with the scheme 

(Path,Beg,End,Value). Each element is identified by its root-path (which is a 

forward-path). Single path queries are evaluated with one match. Twig queries, 

however, are evaluated by decomposing the twig into multiple single paths. 

Each path is evaluated separately and then joined together to obtain the final 

answer. The number of joins required to evaluate a twig query is usually equal to 

the number of branches in the query. The forward-paths approach reduces the 

number of joins required to evaluate a query, however, it may produce incorrect 

answers when recursion exists in XML data [56]. To overcome this problem Pal et 

al. [101] proposed a similar approach using reversed-paths instead of forward-

paths. A reversed path is a path that starts from an element at a lower part in an 

XML data-tree and ends at an element in a higher part. The reversed-paths 

approach not only eliminates the possibility of producing false results, but also 

improves the performance of query evaluation. The reversed-paths approach has 

been used by IBM® System RX, Microsoft® SQL Server 2005, and Oracle® DB 

[56]. 
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Chen et al. [27] use a reversed-path approach where each node in an XML 

data-tree is given a global id, and then shredded into relational tuples with the 

scheme (HeadId, SchemaPath, LeafValue, IdList). The HeadId is the id of the node at 

which a reversed-paths ends, SchemaPath represents the reversed-paths of XML 

data nodes, LeafValue represents the values of the leaf nodes in the path of the 

mapped elements, and IdList contains lists of the global ids of the nodes that 

constitute a path from the HeadId to the designated mapped nodes. Two index 

structures were proposed with the approach. The first is the ROOTPATHS index, 

which indexes only the prefixes of the root-to-leaf paths. The second is the 

DATAPATHS index, which indexes all subpaths of root-to-leaf paths, including 

the root-to-leaf paths. The key idea of this approach is to create an index for all 

branching nodes. To process a twig query, in the case of ROOTPATHS index, all 

branches are evaluated and the returned IdLists are then merged or hash-joined 

to arrive at the final solution. In the case of DATAPATHS index, a twig query is 

processed by evaluating the base branch (the branch that is evaluated first) to get 

the ids of the branching nodes which are available in the IdList. Then a search is 

carried out for the secondary paths that are rooted at the identified branching 

nodes and that have the exact reversed-path given in the query. The 

reversed-paths that are used to evaluate a twig query in DATAPATHS index 

start from the leaf node of the query and end at the branching nodes. The 

DATAPATHS index reduces access to the index to a single index lookup in order 

to find a match for fully specified, single path query without any recursion. 

Consequently, solving twig queries, which can be divided into multiple single 

path queries, requires a relatively small number of index lookups.  

Chen’s  et al [27] index structure does not have a path summary table like 

our approach. Their approach, however, has a dictionary to encode schema paths 
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by using special characters to designate elements and attributes instead of using 

the whole names. This dictionary has to be accessed at an early stage of an XML 

query evaluation process. Our approach, in contrast, uses the path summary 

table, which has approximately the same size as the dictionary table. The key 

idea of both approaches is to index all leaf nodes in relation to the branching 

nodes, and so minimize the number of index accesses required to evaluate a twig 

query.  

 

5.1.3 Introduction to Our Approach (UISX) 

Our approach falls under the model-mapping category and it is based on 

indexing branching nodes through which we can join XML data-tree nodes. The 

UISX is also based on a novel type of mapping, that is, structure summary 

mapping (summary mapping for short). In what follows, we introduce the 

Universal Index Structure for XML [96].  

Elements in XML data are linked through a hierarchical structure. Any two 

elements are linked through their common ancestor. Therefore, indexing 

common ancestors can facilitate the evaluation of twig queries. For example, 

consider the XPath query 5.1.  
  

Query 5.1: //student [/ fname =‘Sue’ and  lname =‘Jones’ ] / program 
 

This query returns the program of the student Sue Jones. Its pattern can be 

represented as a node-labeled tree as shown in Figure 5.1. A single line 
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represents a parent-child relation and a double line represents an ancestor-

descendent relation. 

Figure 5.2 contains an XML document, which is represented as the 

hierarchical node-labeled tree in Figure 5.3. The nodes’ labels are given inside the 

nodes of Figure 5.3. Query 5.1 can be evaluated over the data in Figure 5.3 as 

follows. We first evaluate the branch with fname=‘Sue’. This part returns the node 

<4.2.3> and the branching node <3.1.3>, assuming that all branching nodes for 

each node in the data-tree are recorded in the database. We call the branch that is 

evaluated first the base branch, and the branch(es) evaluated afterward the 

secondary branch(es).   
 

 
Figure 5.1  Query 5.1 hierarchical patterns 

 

Now to evaluate the second branch lname=‘Jones’, we have to search for the 

lname element that has a value “Jones” and whose parent node label is <3.1.3>. 

The only node that matches these criteria is node <4.3.3>. Note that the other two 

nodes that have the same last name “Jones,” namely, nodes <4.3.1> and <4.3.2>, 

are excluded early in the search because their parent node is not <3.1.3>. Finally, 

we search for branch program relative to its parent <3.1.3>. So the value “CS” is 

returned as the final answer.  
 

student

fnameprogram

? “Sue”

lname

“Jones”
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Figure 5.2   XML document 

 

From the above example, we can see that twig queries can be evaluated by 
using knowledge of their branching nodes. We propose an approach that utilizes 
this idea to evaluate twig queries efficiently by building a Universal Index 
Structures for XML databases (UISX). This index structure guarantees to find a 
complete and accurate match for each node of any arbitrary base branch by 
executing a single index lookup. That is, all relevant matching tuples are 
retrieved without any false positives.  

 

 
 

Figure 5.3   The data-tree representation of the XML document in Figure 5.2 

<course number="251">
<name>XML</name>
<students>

<student>
<program>Math</program>
<fname>Omar</fname>
<lname>Jones</lname>

</student>
<student>

<program>Physics</program>
<fname>Ayah</fname>
<lname>Jones</lname>

</student>
<student>

<program>CS</program>
<fname>Sue</fname>
<lname>Jones</lname>

</student>
</students>
<instructor>Beth</instructor>

</course>

2.1.1

3.1.1 3.1.2 3.1.3

4.2.2 4.3.2

2.3.1

1.1.1
course

student

“251”
student

number

“Beth”

student

“Sue”

fname

“Ayah”

lname

“Jones”

2.4.1instructor2.2.1

“XML”

name

“Physics” “CS”

4.2.1 4.3.1
fname lname

“Jones”

4.2.3 4.3.3
fname

“Jones”

lname

students

4.1.1
program

4.1.2
program

4.1.3
program

“Omar”“Math”

4.2.2 4.3.2 4.1.3 4.2.3 4.3.34.1.24.3.14.2.14.1.1

2.4.12.2.12.1.1
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Finding matching elements of a twig is a core operation in XML query 

processing [27]. Much research has been done to match elements at different 

branches of twig queries [27] [37] [54] [67] [88]. Generally, these approaches 

suffer from either being huge in size, or not being able to support twig queries as 

efficiently as they support single path queries. A good study of the trade-off 

between index space and evaluation efficiency is given by Chen et al. [27]. They 

implement two index structures: ROOTPATHS and DATAPATHS. 

ROOTPATHS has small size, but it is not as efficient as DATAPATHS, whose 

size is much larger. The reason behind the DATAPATHS superior performance 

is the fact that it indexes all possible subpaths of root-to-leaf paths, which are 

used to match any two arbitrary branches.  

Our proposed approach has a compact size, yet, it supports efficient 

evaluations of twig queries.  It uses a RDBMS to store and query XML 

documents. It also uses path summaries, which are based on DataGuides [54], to 

facilitate a query evaluation.  
 

 

5.2 Our Approach: Universal Index Structure 
for XML Data 

 

Based on the observation that branching nodes are the key element in solving 

twig queries, we propose the UISX approach [96] to efficiently match and join any 
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two arbitrary nodes that share the same branching node. In this approach the base 

branch is evaluated first. Then, for each returned base branch node, the secondary 

branches are examined, and the matching nodes of each branch are located 

through their common ancestor node by using only one index lookup.   
 

5.2.1 XML Data and Path Summary Models 

In this section we describe our basic data model, and path summary that we 

used in developing the UISX system. Then we discuss the query language, the 

size optimization, and the query processor of the UISX.   

We model XML documents as trees. An XML tree is a directed ordered graph 

G=( R,VR,VL,E,tagg,labelg,T ). Formal definitions of this data model can be found in 

Section 3.2.1. The data-tree representation G of the data in Figure 5.2 is illustrated 

in Figure 5.3.   

In UISX, an XML data-tree G can be summarized by a path summary S such 

that every distinct path in the source data to appear only once in the path 

summary, and all the paths in the summary have to have at least one matching 

path in the original source data. Basically, G nodes are partitioned into 

equivalence classes in S where the nodes of a class have the same root path [54] 

[93]. 

We model path summary as a directed ordered tree S=(R,O,M,tags,labels,C). 

Formal definition of the path summary S can be found in Section 3.2.1. Figure 5.4 

contains an example of a path summary S of the XML data-tree G in Figure 5.3. Note 

that the leaf nodes’ labels in G are represented by their parent nodes’ labels. 
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Figure 5.4   The path summary of the data in Figures 5.2 and 5.3 
 

 

The path summary in Figure 5.4 is mapped to the relational table 
PathSummary as shown in Table 5.1, which is similar to the Summary table of LLS 
approach (Figure 3.6(A)). The leaf nodes data of Figure 5.3 is mapped to the 
relational table LeafNodes as shown in Table 5.2.  

In Table 5.1, the Tag field contains the tags of the elements of the nodes in the 
summary, which is assigned through the tags function of S. The Level and PerLv 
fields represent the d and the p parts of the path summary nodes labels as 
indicated in Figure 5.4, respectively. These labels are allocated through the labels 
function of S. The Parent field holds the label of the parent nodes, which are the p 
values of the parent nodes. The Level value d of the parent node is equal to the 
current node Level value minus one, so we do not need to list the parent node 
level in the PathSummary table. Note that the Parent value of the root element is 
zero since it does not have a parent. The Type represents the type of node (e.g. 
element or attribute). The Count value C is the number of nodes in the original 
XML data that belong to the same summary group. It is used mainly to 
reconstruct the subtrees that are rooted at the internal nodes (see Section 5.2.3). 
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Table 5.1   The PathSummary table 

 
 

Table 5.2 shows the LeafNodes table, which is populated with the data of all 

leaf nodes VL in the XML tree. In this table, the Level, PerLv, and No values 

together form the label of the leaf nodes d, p, and s, respectively, as shown in the 

data-tree in Figure 5.3. These labels are allocated through the labelg function of G. 

The Value  field contains the values of the node for VT nodes, and null for VE 

nodes. The Lev1,…, Lev4 fields are explained below. 
 

 

Table 5.2   The LeafNodes table 

 

Tag Level PerLv Parent Type Count
course 1 1 0 E 1
number 2 1 1 A 1
name 2 2 1 E 1
stduents 2 3 1 E 1
instructor 2 4 1 E 1
student 3 1 3 E 3
program 4 1 1 E 3
fname 4 2 1 E 3
lname 4 3 1 E 3

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4
2 1 1 251 1 1 0 0
2 2 1 XML 1 1 0 0
2 4 1 Beth 1 1 0 0
4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3
4 2 1 Omar 1 1 1 1
4 2 2 Ayah 1 1 2 2
4 2 3 Sue 1 1 3 3
4 3 1 Jones 1 1 1 1
4 3 2 Jones 1 1 2 2
4 3 3 Jones 1 1 3 3
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Branching Indices :  In order to achieve high performance of the UISX index 

structure, and since an s value uniquely identifies a node among other nodes of 

the same class, we split the serial path parts that are separated by dots 

previously, and save each part in a different field (see Table 5.2). Each field is 

titled after the level of the s values it contains. That is, each field is titled Lev(i), 

where i ∈ [1,…,n], and n is the number of levels in G. Each field of these fields is 

used for indexing branching nodes located at the corresponding level. We define 

H as a set of branching indices that we create to index si values, where 

H={H1,H2,…,Hn}, i∈ [1,…,n], and n is the number of levels in G. Each index for 

each level is based on the concatenation of (si,d,p) values (see Table 5.2). All s 

values of V nodes in G are covered by the H set. 

The index structure of UISX has mainly three components:  path summary 

table, leaf nodes table, and branching indices. The tables’ key fields are underlined 

in Tables 5.1 and 5.2. The key field of the PathSummary table is (Tag), and the key 

fields of LeafNodes table are (Level,PerLv,Value). The two tables are related 

through the (Level,PerLv) fields. The branching indices are the H set of indexes, 

which are used to facilitate the link between two arbitrary nodes in a twig query. 

Our index structure covers nodes that belong to the same XML document; the 

extension to multiple documents can be implemented by adding the document id 

to the labels of S and G nodes. 

 

5.2.2 X-Path Query Expressions 

In what follows we introduce three definitions that are used in defining 

X-Path query expressions formally, as they are used in the UISX. 
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Definition 5.1. A query Q is covered by a summary S if and only if: (1) the 

nodes of Q exist in S, and (2) the Q nodes exist in S according the structure 

specified by Q.  

For example, the query “/instructor[/name=‘XML’]/course” is not covered by 

the path summary S in Figure 5.4. Although the first condition is met, but not the 

second. If we switch the positions of course and instructor tags 

“/course[/name=‘XML’]/instructor,” then the mapping of Q nodes to S nodes 

succeeds and S covers Q.   

Definition 5.2. To evaluate a twig query Q over a data graph G by using S, we 

say that the matching of an instance of one group with the instances of another 

group is complete if the returned nodes contain all the relevant nodes. 

Definition 5.3. To evaluate a twig query Q over a data graph G by using S, we 

say that the matching of an instance of one group with the instances of another 

group is precise if the returned nodes do not contain any irrelevant node.  

The pattern of single path query expressions can be represented as 

“t1.rel.t2…rel.tx,” where (t1,t2,…,tx) are tags of the query and rel represent the 

relation between the adjacent tags, and it may be a parent-child relation “/ ” or  

ancestor-descendent relation “//.”  We refer to single path query expressions that 

have only the “/ ” axis as simple single path queries, and to single path query 

expressions that have one or more “// ” axes as single complex path queries. Both 

types are evaluated by finding the extension of tx, that is, ext(tx). In the relational 

tables in UISX, the mapped data are sorted by <d.p> keys, and hence one index 

look up is sufficient to evaluate these types of queries by probing the index for 

tuples that match <y.x>, where <y.x> is the label of tx, and d=y and p=x. Twig 

queries patterns can be represented as: 
 

t1.rel.t2…rel.tb[rel.t1.rel.t2…tf1][rel.t1.rel.t2…tf2]…rel.t1.rel.t2…tfi 
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This twig pattern expression consists of multiple single path expressions. The 

expressions inside the square brackets and the expression that follows at the end 

are the branches of the twig. The branching element tags are denoted by tb. 

(tf1.tf2…tfi) are the leaf elements’ tags of the first branch, second branch, and ith  

branch, respectively, where i is the number of branches in the twig. Given an 

XML data-tree G with a path summary S, in general, with UISX we evaluate a 

twig query Q against G in two steps. First, we map nodes of Q to nodes of S. If 

the mapping succeeds (i.e. Q is covered by S), we move to the next step in the 

evaluation process. In the second step we use only the extension of tags tb and 

(tf1, tf2,…,tfi) to evaluate the query. Before we present an example, we need to 

introduce the following theorem.   
 
Theorem 5.1.  In UISX, one index lookup into a branching index H is sufficient 

to join a pre-defined node of one group of the leaf nodes with the complete and 

precise matching nodes in another group of leaf nodes of a twig query.   

 
Proof. First consider the following twig query with two branches:  

 

Q : t1.rel.t2…rel.tb[rel.t1.rel.t2… tf1][rel.t1.rel.t2…tf2] 

 

In this query, we assume that the level of the branching node tb is Lb, and Q 

has two leafs: tf1 and tf2. The extension of tf1 is a set of nodes Vf1, that is, 

ext(tf1)=Vf1={vf11,vf12,…,vf1n}, and similarly ext(tf2)=Vf2={vf21,vf22,…,vf2n}, where n 

is the number of instances in each set. According to query Q, we want to prove 
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that one index lookup into HLb is sufficient to join a single node in Vf1 node-set 

with all matching nodes in Vf2 node-set.      

From the data-graph G definition, the labels of Vf j sets, where j∈  [1,2], 

consist of the three parts <d.p.s> . The first two parts (d and p) are the same for all 

nodes in each set. The third part s is the part that uniquely distinguishes each 

node among all nodes of the same class (or group). Each node in Vf j sets has a 

serial path r (Definition 3.2), which consist of the s part of the labels of the nodes 

in the path from the root node to the designated node. Since s is unique for each 

instance of a class, then r can be used to uniquely identify the labels of all nodes 

in the serial path of a node. Assume that the value of s of the branching node tb 

that is located at level Lb is sx. The two branches’ nodes that share tb node in their 

serial paths are matched if the value of each serial path r at tb node is equal to sx 

value. This way, the matching process will return either an empty set if there is 

no match, or it will return the complete and precise matches since all nodes that 

share this common ancestor tb node have their r values at tb set to sx. 

Consequently, there is no chance for any false positives to be retrieved. Since all s 

values of V nodes in G are covered by the H set of indexes (see branching 

indices), and HLb index is based on s values of Lev(Lb) field, then by using an 

index structure that contains HLb, it would require only one index lookup to find 

a complete and precise match for any arbitrary node in one branch with one or 

more nodes in any other branch of a twig provided that they share a joining 

node. This matching process can be extended to evaluate multiple branches 

queries with n branches by evaluating two branches at a time until all branches 

are evaluated as illustrated in Algorithm 5.2 (to be discussed shortly). � 
 



CHAPTER 5.  RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 139  

 

 

Example 5.1. Consider twig Query 5.2 over the data-tree G shown in Figure 

5.3, which returns the list of students’ first name and the programs in which they 

are enrolled. 

 

 

Query 5.2: /course//student [/ program]/fname  

 

 
  

Figure 5.5   The node-labeled tree representation of Query 5.2. 

 

 

This query node-labeled tree representation is shown in Figure 5.5. It is easy 

to see that S covers Q because the mapping of Q query over S path summary of G 

data-tree can be carried out successfully. In this case student node is the 

branching node tb, program node is the first leaf node tf 1, and fname node is the 

second leaf node tf 2.  These three Q nodes maps to S nodes <3.1>, <4.1>, and 

<4.2>, respectively. Note that Lb=3. We next retrieve ext(tf 1), the extension of tf 1, 

which returns the tuples: 

 
 

 

 

student

fname

course

program

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4 
4 1 1 Math 1 1 1 1 
4 1 2 Physics 1 1 2 2 
4 1 3 CS 1 1 3 3 
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To find a match for the first tuple above, and since Lb=3, we use the index 

structure to probe the H3 branch index, which is based on columns 

(Lev3,Level,PerLv), to retrieve all nodes that match (1,4,2) search criterion. 

Similarly, the second and the third tuples are matched by probing the same H3 

branch index for nodes that match (2,4,2) and (3,4,2) search criteria, respectively, 

and hence the following tuples below are returned. If there are multiple nodes 

that match a search criterion, we retrieve them by invoking only one index 

lookup because they are physically clustered together. 
 
 

Program Fname 
  Math Omar 
Physics Ayah 

   CS   Sue 
 

 

 

5.2.3 Size Optimization 

The UISX system only maps leaf nodes because internal nodes can be 

regenerated using the PathSummary and the LeafNodes tables. 

Claim 5.1.  Suppose S is a path summary for an XML data-tree G, VL is the set 

of leaf nodes of G, and T is the set of serial paths of VL. Then we can use S and T 

to reconstruct the subtree that is rooted at any internal node v, where v∈VR.     

Next, we present Algorithm 5.1 that reconstructs a subtree that is rooted at 

an internal node v where v∈VR. The algorithm is a proof for Claim 5.1 above, 
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which establishes that a subtree rooted at any internal node can be reconstructed 

by using S and T. 

 

 

Algorithm 5.1 : Publish an internal node

Input : An internal node v .
Output : Subtree(s) rooted at v .
1 Identify by using S: 

a- The branching node v according to a given path,
b- structure of the subtree ST that is rooted at v , and
c- leaf nodes L of ST, and sort them by Level and PerLev .
CheckedNodes = empty set { }

2 For each node l in L
Begin
For i = 1 to l c // l c is the count of node l

Begin
While(CurrentNode.Level ≤ v.Level and CurrentNode Not in CheckedNodes)

Add CurrentNode (ChildNode,ParentNode ) to CheckedNodes
CurrentNode=CurrentNode.Parent

End
End

3 Sort nodes in CheckedNodes based on <d,p,s>. 
For each root node v in CheckedNodes

Begin
Subtree = empty tree { }
IdentifyChildren(v)

Begin
Add v to Subtree
ChildrenSet ={v.child}
For each child y in ChildrenSet

Begin
if  y Is Not in LeafNode

IdentifyChildren(y)
else

Add v to Subtree
End

End
End

Return the subtree rooted at v node .
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Step 1, as outlined in the left-hand side of Algorithm 5.1, identifies the 

internal node v that need to be published, the structure of the subtree ST rooted 

at v, and the leaf nodes L of ST. This step also initializes an empty set of checked 

nodes. Step 2 identifies all instances of all nodes that exist in ST and adds them to 

the temporary storage repository CheckedNodes. For each node, it adds the labels 

of the child (the current node) and the parent nodes, which are connected 

through an edge. Step 3 contains a recursive function that takes all nodes in the 

CheckedNodes repository and builds the subtrees that exist in these nodes 

according to parent-child relations using the labels obtained at the previous step. 

Note that step 2 follows a bottom-up tree traversal direction, while step 3 follows 

a top-down tree traversal direction. This algorithm is designed to reconstruct a 

subtree rooted at single S node that satisfies a query path. Adjustment to adapt to 

multiple S nodes that satisfy a given query path can be implemented by adding 

an outer loop to the algorithm to cover all satisfying nodes. All nodes N of ST are 

scanned and retrieved only once in which they are added to a temporary 

repository that are used at a subsequent step to rebuilt the original subtrees, and 

hence the complexity of this algorithms is O(N) database accesses in the worst 

case. Since nodes N are clustered by their <d.p> values, the actual database 

accesses are less than that expected by the worst case analysis. Next, we trace a 

simple example that shows how an internal node is published to demonstrate 

our claim.  

Example 5.2. To illustrate how the reconstruction of an internal node is 

carried out, we use parts of the DBLP XML database that we use in our 

experimental evaluation. Table 5.3 represents a portion of the actual 

PathSummary table of the DBLP database that we implemented using DB2® V9.5. 
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Figure 5.6 illustrates a portion of the DBLP summary tree. The numbers below 

the elements’ tags represent the count C of the extent nodes in the source XML 

database for the designated elements in the summary, which are taken from the 

COUNT field in the PathSummary table (Table 5.3). For simplicity, we assume in 

this example that the book element has only three child elements (title, cdrom, and 

cite). 
 

 
Table 5.3   Part of the PathSummary of the 50 MB DBLP XML Database  

 

 
  

 

To evaluate the query “//book” we have to reconstruct the internal node book 

as per the structure shown in Figure 5.6. We use the PathSummary and the 

LeafNodes tables to implement the reconstruction as follows.  

• From the PathSummary table we can see that the C value of  book element is 

1249, in other words, there are 1249 instances of the book element, and 

these instances are associated by child relations with: 1249 instances of the 
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title element, 4 instances of the cdrom element, and 3319 instances of the 

cite element. For repetitive referencing, we refer to the book element here as 

the parent element, and the title, cdrom, and cite elements as the child 

elements. 

• At this stage we want to determine which child instances are associated 

with each parent instance. In order to show how to do that, we use the 

LeafNodes table. We take only the instances of the cdrom element in the 

LeafNodes table, which are shown in Table 5.4, as an example.  

• Note that the parent element (the root element of the subtree) is located at 

level 2 (Lb=2) and the child elements are located at level 3 as shown in 

Figure 5.6. Also, from Table 5.4, we can see that the first instance (the first 

tuple in Table 5.4), whose SerNo=1, of the cdrom element is associated with 

instance number 4 (s value at Lev2) of the book parent element. Similarly, 

the second instance of cdrom element is associated with instance number 

22 of the book parent element, and so on.  
  

 

 

 
 

Figure 5.6   A portion of the 50 MB DBLP XML path summary tree 
 

 

2.2

book

3.13
title
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In this way we can reconstruct and publish the internal nodes. In our 

example in Figure 5.6, each instance of the book element has only one title child 

element. Just 4 instances of the book element have 4 instances of cdrom child 

element, in one-to-one relation. Finally, some instances of the book parent element 

have multiple instances of the cite child element. 
 

 

Table 5.4    The tuples of cdrom element in the LeafNodes table 

 
 

Since we can reconstruct internal nodes from the LeafNodes and the 

PathSummary tables, we do not need to store them, so the size of the mapped 

database can be reduced significantly. For example, the actual size savings in our 

experiments are 115 MB and 88 MB for the XMark and the DBLP databases, 

respectively (see Table 5.5). Another source of space saving in our approach is 

the fact that the paths of the nodes (elements and attributes) are not recorded in 

the database, as the case in other approaches [27] [37], because we can regenerate 

them from the PathSummary table by using the nodes’ labels.  
 

 

Table 5.5    Sizes of XMark and DBLP data-sets with different implementations 

 

Level PerLevel SerNo Value Lev1 Lev2 Lev3 Lev4
3 23 1 AHV/Toc.pdf 1 4 1 0
3 23 2 BERNSTEIN/Contents.pdf 1 22 2 0
3 23 3 MAIER/CONTENTS.pdf 1 151 3 0
3 23 4 Wiederhold/toc.html 1 443 4 0

Original 
size

UISX with Internal 
nodes mapping

UISX without internal 
nodes mapping

Saved 
space 

Percentage of 
saved space

XMARK 100 MB 250 158 115 42%

DBLP      50 MB 155 85 88 51%
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5.2.4 UISX Query Processor  

This section discusses the components of the UISX query processor and the 

algorithm used in evaluating twig queries. We evaluate twig queries using a 

light-weight native XML engine on top of an SQL engine as illustrated in Figure 

5.7. Hence we refer to this method as a hybrid query processor. The job of the 

native XML engine is to explore potential query optimization processes that are 

related to the structure of XML data, which can not be exploited by SQL engines. 

The SQL engine handles the XML-Relational data after shredding. 
 

 

 
 

Figure 5.7   The UISX hybrid query processor 
 

 

We developed Algorithm 5.2 to evaluate twig queries with one branching 

node. To evaluate a query with multiple branching nodes, the query is divided 

SQL Engine

RDBMS
PathSummary Table 
LeafNodes      Table

Translator & Coordinator

XML Engine

XML Query Interface
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into several subtrees that are rooted at the branching nodes. The most nested 

subtree is evaluated first, and then the result is used to evaluate the subtree that 

is rooted at the next higher branching node, and so on.  

The algorithm consists of 5 parts, which are indicated on the left-hand side of 

the algorithm. Please note that curly brackets stand for a set that can contain one 

or more node(s) or element(s); (d,p) represents the node in the path summary table 

whose Level is specified by d and PerLv is specified by p; and (d,p,V,Lev(x)) stands 

for the tuple in the LeafNodes table whose Level is d, PerLv is p,  the Value of the 

tuple is V, and the Lev(x) represent the value of  Lev(x) in the LeafNodes table 

where x is equal to the level of the branching node, namely Lb. 

Step 1 of Algorithm 5.2 identifies the labels d and p (Level, and PerLv) of the 

leaf nodes for all branches in a twig query, in addition to the level of the 

branching node Lb. The second step identifies the branch with the minimal 

cardinality if no predicates are given in the query, where the cardinality can be 

identified from the Count field in the PathSummary table, or it identifies the 

branch with the higher selectivity if predicates are used in the query [13]. We 

need this step to minimize the number of nodes examined to identify a match, 

and hence reduce the evaluation cost. Step 3 in the algorithm identifies the set of 

secondary branches, which contains all the branches identified in step 1 minus 

the base branch identified in step 2. Step 4 evaluates the base branch by 

identifying the set of tuples that satisfy the predicates obtained in the preceding 

steps. These predicates include the values of d, p, and x. Note that the first two 

predicates are obtained from step 2, and the third predicate is obtained from step 

1 where x (to be used in Lev(x)) is equal to Lb. We use these predicates to identify 
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V and Lev(x) values of the leaf nodes of the base branch. Finally, in step 5, the 

information obtained in the previous steps - specifically d, p, and Lev(x) values - 

is used to evaluate the secondary branches and obtain the final answers, which 

are returned to the user as the answer to the given query.  

 

  
 

 

Algorithm 5.2: Evaluating twig queries

Algorithm to evaluate twig queries by using the hybrid method. 
Input :   Multiple paths XML query Q .
Output :   Answer to all leaf nodes of the query .
1 //Use the PathSummary table to identify the Level & PerLev sets {(di , pi )} 

//for all leaf nodes of all branches, plus the Level of the branching node Lb.
M (Q)→ {(di , pi)} // mapping of Q in S, identify leaf nodes
M (Q)→ (Lb)        // mapping of Q in S, identify the branching node level

2 //define the base branch (dmin ,pmin).
(dmin , pmin)=(d1,p1) 
For k = 2 to i

if       Count(dk , pk) < Count(dmin, pmin) 
then  (dmin, pmin)=(dk,pk) 

3 //define the secondary branches (dr , pr).
{(dr ,pr)}={{(di , pi)} – (dmin , pmin)}

4 //Evaluate the base branch first.
use LeafNodes table to find set of tuples {(dj ,pj ,Vm ,Lev (x))} 

where dj=dmin and
pj=pmin and
x = Lb

5//Evaluate the secondary branches by using the base branch  information .
For each tuple in {(dj ,pj ,Vm , Lev (x))} returned by step 4

Begin
For each branch in {(dr , pr)}

Find {(dr , pr , Vn , Lev (y))}
where y = Lb and

Lev(x)= Lev(y)
Return (Vm, {{ Vn}})

End
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In Algorithm 5.2 there are two factors that affect the number of accesses to 

indexes: the number of branches and the selectivity of the branches.  Generally, 

the number of accesses to indexes is affected exponentially by the number of 

branches and linearly by the selectivity of the leaf nodes. The numbers of 

returned tuples and indexes accesses are inversely proportional to the selectivity 

of the leaf nodes of the branches in twig queries. False positive answers for a 

query are not possible with this algorithm since the set of retrieved tuples 

(candidate tuples) forms the exact answer to the query. 
 

 

5.3 Prototype Implementation 

To validate our approach, we implemented a prototype of the UISX in our 

lab using Java 1.6 and DB2® V9.5. We performed all experiments on a 3 GHz 

Intel® Pentium 4 PC running Windows® XP, with 1.5 GB of RAM. We use IBM’s 

DB2® V9.5 RDBMS [64] to store and retrieve XML shredded data. The goal of the 

experiments is to evaluate the performance in terms of elapsed time to execute a 

query and the sizes of the databases, and the supporting indexes that are used by 

UISX system. We compare our approach with the approaches proposed by Chen 

et al. [27] for two reasons. First, they adopt a similar approach by creating 

branching nodes indexes that facilitate and guarantee one index lookup to find 

matches for each node returned by the base branch evaluation. Second, they 
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compared their approach with five existing indexing schemes including: Edge 

table [88] and simulated DataGuide [54], which are based on edge model-

mapping; simulated Index Fabric [37] and Access Support Relation (ASR) [71], 

which are based on forward-paths model-mapping; and Join Indices (JI) [125]. 

Chen et al. [27] proved experimentally that, in general, their approaches 

outperform these schemes.   
 

 

5.3.1 Testing Data and Queries  

Our experiments were carried out using the XMark [111], and DBLP [120] 

datasets. We used the test queries proposed by Chen et al. [27] because they are 

broad and cover different criteria such as cardinality, selectivity, recursion, and 

depth of the branch node. For ease of reference, the queries are listed in Table 5.6. 

Table 5.7 contains a summary of the characteristics of the test query sets in Table 

5.6. The first set covers single path queries. The second set covers twig (multiple 

paths) queries with different selectivity and high branch points. The third set 

covers twig queries with low branch points. The fourth set covers recursive 

queries. The “X” and the “D” in the “Query No” column in Table 5.6 stand for the 

XMark and the DBLP databases, respectively. 
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Table 5.6   Four sets of queries used in testing 

 

Set
No

Qry
No Testing Query

Result 
per 

Branch

1

Q1X
Q1D
Q2X
Q2D
Q3X
Q3D

/site/regions/namerica/item/quantity [ . = 5]
/dblp/inproceedings/year [ . = 1968]
/site/regions/namerica/item/quantity [ . = 2]
/dblp/inproceedings/year [ . = 1988]
/site/regions/namerica/item/quantity [ . = 1]
/dblp/inproceedings/year [ . = 2004]

1
1

709
1746
9228

10660

2

Q4X

Q5X

Q6X

Q7X

Q8X

Q9X

/site [/people/person/profile/@income = 46814.17]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 46814.17]
[/people/person/name = ‘Hagen Artosi’ ]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[ /increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’ ]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/ increase = 3.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’ ]
/open_auctions/open_auction /bidder[ /increase = 3.00]

1
55
1
1

55
2038

55
2038
7519

55
2038
5172
2038
7519
5172

3

Q10X

Q11X

/site/open_auctions/open_auction
[ /annotation/author/@person = ‘person22082’]
/bidder/time
/site/open_auctions/open_auction
[ /annotation/author/@person = ‘person22082’]
[/bidder/increase = 3.00]
/bidder/time

2
59486

2
5172

59486

4

Q12X

Q13X

Q14X

Q15X

/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/mailbox/mail/to
/site//item[/quantity = 2]
[/location = ‘United States’]
/site//item[/quantity = 2]
[/location = ‘United States’]
/mailbox/mail/to

41
20946

41
20946
20946
1543

16294
1543

16294
20946
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Table 5.7   Characteristics of the testing query sets in Table 5.6 

 
 

We executed each query ten times against its respective dataset and used the 

average of the 10 readings in our analysis. The time to translate the XPath queries 

to SQL queries is not included and only the execution times of the queries are 

recorded, which reflect the impact of the index structures. 
 

 

5.3.2 Experimental Results 

Table 5.8 summarizes the characteristics of the ROOTPATHS, DATAPATHS, 

and UISX index structures for the XMark and the DBLP databases. The tables 

and indexes sizes are in Megabytes. Note that the original sizes of XMark and 

DBLP datasets are 100 MB and 50 MB, respectively.  
 

 

Table 5.8   Characteristics of testing databases as implemented by the indicated approaches 
 

 

Query 
Set Branches Result Per 

Branch
Branch 
Depth Recursion

1 1 1 – 10660 N/A 0
2 2-3 1 – 7519 High 0
3 2-3 2 – 59486 Low 0
4 2-3 41 – 20946 Low 1

ROOTPATHS DATAPATHS UISX

XMARK Tables Size MB 267 1,285 158
DBLP      Tables Size MB 151 381 85
XMARK Indexes Size MB 509 2,535 325
DBLP      Indexes Size MB 282 402 183
XMARK No. of Tuples 2,995,272 15,734,707 1,158,492
DBLP     No. of Tuples 2,709,327 8,022,673 1,296,328
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The ROOTPATHS and DATAPATHS indexes in Table 5.8 were not subjected 

to the compression methods listed in Chen et al.’s paper. To save the shredded 

data of the XMark database, UISX used a space equal to 59% of the space used by 

ROOTPATHS, and 12% of the space used by DATAPATHS. Similarly, to save the 

shredded data of the DBLP database, UISX used a space equal to 56% of the 

space used by ROOTPATHS, and 22% of the space used by DATAPATHS. With 

regard to the indexes size for XMark database, UISX used 64% of the space used 

by ROOTPATHS, and 13% of the space used by DATAPATHS. With regard to 

the indexes size of the DBLP database, UISX used 65% of the space used by 

ROOTPATHS, and 46% of the space used by DATAPATHS. Finally, the number 

of tuples that is required by UISX to shred the XMark XML database is equal to 

39% of the tuples required by ROOTPATHS, and 7% of the tuples required by 

DATAPATHS; and for DBLP, UISX requires 48% of the number of tuples 

required by ROOTPATHS and 16% of the tuples required by DATAPATHS. 

The results of the performance tests of UISX compared to ROOTPATHS and 

DATAPATHS with regards to the sets of test queries in Table 5.6 are illustrated 

in Figures 5.8-5.10. Note that log10 scale is used to measure execution time. 
 

 

 

 
Figure 5.8   Performance comparison of UISX with ROOTPATHS and DATAPATHS using the 

DBLP database 
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We tested the DBLP data-tree with just the single branch queries since its 

depth is shallow. The results of the 3 test queries, given in Figure 5.8, show that 

UISX performs 67% - 76% better than the ROOTPATHS, and 76% - 79% better 

than DATAPATHS. 

Figure 5.9 presents the elapsed execution time of the test queries with UISX 

compared with ROOTPATHS using the XMark database. We notice that the gain 

in performance is fairly steady (53% – 64%) for the first type (single branch 

queries 1-3). On the other hand, the percentage gain in performance for the 

second type of queries (queries 4 – 9) decreases from the 81% to 31% as the 

selectivity decreases, since the number of pages that contain the returned tuples 

of the elements with high selectivity are smaller than those with low selectivity. 

The gain in performance for the third type of test queries is extremely high (99%) 

because with ROOTPATHS, each tuple returned by the base branch evaluation 

result has to be hash-joined or merged with the tuples returned by the secondary 

branches in order to find the matching tuples. While in UISX, the matching 

tuples of each secondary branch are retrieved with one comparison for each 

tuple returned by the base branch. The gain in performance for the fourth type of 

queries is high (79% - 89%) for the selective queries (queries 12 and 13), and 

relatively low (19% - 37%) for the queries with low selectivity (queries 14 and 15). 
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Figure 5.9   The performance comparison of UISX with ROOTPATHS using XMark database 
 

 
 

 

Figure 5.10 shows the comparison of UISX with DATAPATHS using the 

XMark database. We notice that the gain percentage for the first type of queries is 

steady and it is in the fifties. Similar to the performance tests against the 

ROOTPATHS, the gain percentage in the performance of the second type of 

queries decreases as the selectivity decreases and ranges between (9% - 53%). The 

gain percentage in performance for the third type is ranging between (48% - 

50%). Also, the gain percentage in performance for the first two queries of the 

forth type of queries (queries with high selectivity) ranges between (36% - 44%), 

which is higher than that of the last two queries (queries with low selectivity), 

which ranges between (9% -24%). 
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Figure 5.10  The performance comparison of UISX with DATAPATHS using XMark database 

 

 

Our approach performs well in comparison to ROOTPATHS and 

DATAPATHS. Generally, we believe that the UISX performance gains over 

ROOTPATHS are mainly because UISX does not produce any false positive 

answers, while ROOTPATHS does. DATAPATHS does not produce any false 

positive, and it is an efficient index structure, but its size is large. UISX 

performance gains over DATAPATHS are due to the relatively small size of the 

UISX index structure. Larger indexes require a deeper B+-tree, and hence require 

more search. An efficient way to evaluate a query using DATAPATHS index 

structure is by evaluating the base branch first. Then a mechanism has to be 

implemented in order to extract the ids of the branching nodes from the returned 

IdLists (e.g. scan the IdList string by implementing a string matching operations). 
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In UISX, in contrast, when the base branch is evaluated, the branching nodes ids 

(labels) are returned in the fields (Lev2,Lev3,Lev4,..etc), and are ready to be used 

in matching operations directly without the need for extra techniques to extract 

the branching nodes ids.   

To evaluate recursive queries (queries 12-15), the reversed-path approaches 

use the Optional String Pattern Matching (OSPM) function (“LIKE”) to evaluate a 

path with ancestor-descendent axis [56]. For example, if we assume that S and A 

stands for student and address elements, respectively, then the query 

“//student/address” would be evaluated by using an SQL query that would 

contain the statement “SchemaPath LIKE AS%” along with other statements.  In 

contrast, UISX approach uses only the exact string pattern matching (“=”). For 

example to find the nodes that match the path in the above query, we would run 

the following SQL query: 
 

Select  s1.level, s1.perlv 
From  PathSummary as s1, PathSummary as s2 
Where s1.tag='address'  and 
 s2.tag='student'  and 
 s1.parent=s2.perlv   
 

 

It is known that SQL supports exact string pattern matching efficiently by 

using the B+-tree indexes, while B+-tree indexes does not support (“LIKE”) 

efficiently [56]. 

 

5.4 Summary 

Twig queries can be evaluated by using knowledge of their branching nodes. 

We propose an approach that utilizes this idea to evaluate twig queries 
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efficiently by building a universal index structure that covers all nodes in XML 

databases. This index structure guarantees to find a complete and accurate match 

in a secondary branch for each node of any arbitrary base branch by executing a 

single index lookup.  

Our proposed approach has a compact size, yet, it supports efficient 

evaluations of twig queries.  It uses a RDBMS to store and query XML 

documents. It also uses path summaries, which are based on DataGuides [54], to 

facilitate a query evaluation. The path summary, which is modeled as a simple 

table in a relational database, reduces the number of matches required to 

evaluate a query by preserving a path summary of the original XML data 

structure before shredding. Path summaries reduce the size of the stored XML 

databases. This reduction in size is achieved by: (1) eliminating redundant data 

from the database, such as the path of an element, which can be regenerated 

when needed from the summary, and (2) by using the summary to regenerate the 

internal nodes of the XML data-tree along with their subtrees. Therefore, internal 

nodes do not need to be shredded and stored in relational tables. In our 

approach, only the leaf nodes are shredded and stored in relational tables. The 

root-paths are recorded for all leaf nodes, where the information of the internal 

nodes is encoded.  

Zhang et al. [143] observed that RDBMSs do not support the inequality-joins 

efficiently, while they support the equality-joins efficiently. Our XML-relational 

approach evaluates XML queries by using equijoins, while most XML-relational 

approaches use inequality-joins [56] [143].  

We use light-weight native XML engine on top of an SQL engine to evaluate 

queries. The job of the native XML engine is to explore potential query 

optimization processes that are related to the structure of XML data, which can 
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not be exploited by SQL engines. The SQL engine handles the XML-Relational 

data after shredding. 

We implement the UISX index structure in our laboratory successfully using 

the DB2® V9.5 DBMS [64], and the experimental results show that it performs 

well in comparison to existing state-of-the-art approaches in terms of size and 

response time.  
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Chapter 6 
 
Conclusions  
 

 

XML employs a tree-structured data model. Therefore, an XML query 

typically consists of two parts: structure constraints and values. Since the 

repetition of XML data is irregular due to missing and/or repeated arbitrary 

elements, its storage structure can be scattered over many different locations on 

the disk, which decreases the performance of XML queries [32]. Furthermore, the 

flexibility of specifications of the XML queries (e.g. use of wild cards) adds to the 

challenge of indexing methods [130] [146]. These complexities offer many new 

challenges for the researchers and software vendors. In this dissertation we 

present a labelling scheme and two index structures for XML databases. We 

conclude our dissertation in this chapter by providing a summary of the 

previous chapters and discussing some of the future work directions. 
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6.1 Summary 

In Chapter 2 we give a brief history of the creation and the development of 

the XML data model. Then we discuss the three main categories of structural 

indexing schemes proposed in the literature to handle the XML semistructured 

data model. Finally, we discuss limitations and open problems related to the 

major existing indexing schemes. We classify XML structural indexes according 

to two important characteristics: determinism and bisimilarity, since these 

characteristics controls the size of indexes and their query answering power. 

Two of the most widely used labeling schemes are interval and prefix labeling 

schemes. Each type of scheme has advantages and disadvantages. We design a 

labeling scheme that has the advantages of the two types of schemes while 

eliminating the main disadvantages in Chapter 3. This labeling scheme is based 

on the levels of elements in XML trees. 

There are two methods for storing and querying XML databases. The first 

method relies on native hierarchical nesting structure of XML databases. The 

other method leverages the existing power of RDBMSs that has been established 

over several decades. We design a native and an XML-Relational index 

structures in Chapters 4 and 5, respectively. 

We address the excessive number of joins and match operations required to 

evaluate a query in Chapter 4 and we propose an index structure that 

remarkably reduces them. The proposed index structure also eliminates a great 

number of search space that is associated with XML data model.   
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Generally there is a tradeoff between the size and the power of indexes [56] 

[144]. The state-of-the-art XML structural indexes suffer from either being huge 

to perform well or perform poorly as a consequence to saving size. Chapter 5 

presents an indexing approach that minimizes the size of XML structural 

indexes, yet performs well. This approach is based on two ideas: indexing the 

branching nodes of XML trees and map XML data into relational tables using a 

novel mapping scheme that is based on graph summary mapping. In the 

following section we present our future work directions before concluding the 

dissertation. 

 

6.2 Future Directions and Challenges 

The main challenge in indexing XML data is the irregularity of data and 

structure. Value-based queries can be evaluated by using traditional indexing 

schemes, such as B+-trees or inverted lists. However, efficient support for the 

structural part is a challenging task. The semistructured nature of XML data and 

the flexibility of the query languages pose another distinctive concern for 

deriving or selecting proper indexing methods. Designing representations for 

efficient storage of semistructured data is also a difficult task. 

Making the existing labeling schemes – including the LLS – dynamic so that 

they adapt gracefully to deletion and insertion of new nodes is not an easy task. 

Choosing an appropriate index definition that covers a given query workload is 

an open problem for (F+B)k-index. Also, efficient index building and updating 

algorithms are needed for non-deterministic forward and backward bisimilar 

indexes. Efficient integration of graph indexes with value indexes is another 
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interesting area. This will minimize the I/O accesses by eliminating the need to 

access two different indexes to evaluate an XML query with a predicate. A 

hierarchy of graph covering indexes is yet another open area of research. The 

hierarchies could be defined in terms of summary tables, where higher level 

summaries could be extracted from lower level summary tables. 

Sequence indexes support solving a twig query only in a certain order. If the 

query order does not match the index order it will return an incorrect answer. To 

run a query against a sequence index all possible orders of the query nodes have 

to be tested in order to get an accurate result. The node and graph indexes do not 

have this problem. Another limitation of sequence indexes is that they may 

require a large number of accesses to the index, consequently, it might result in 

expensive random I/O accesses. Finally, the overhead of the false positives 

problem is a major drawback of sequence indexes. 

One of the challenges we are planning to pursue is to identify a suitable set 

of statistics for a given graph-based data that can be efficiently computed and 

stored without having a fixed graph index. We are also planning to use a 

customized XML storage media for the data in LTIX system, instead of using 

B+-tree storage media. We would like to extend our relational indexing scheme 

by adding a module to the XML query engine that translates XPath queries into 

SQL queries where the hierarchy of XML paths is reflected properly. 

Finally, we are planning to improve on the native XML query engine that 

works on top of the SQL engine in UISX system. We think that coordinating the 

query optimization tasks between these two engines can improve XML query 

processing. Despite the fact that the size of the shredded data in UISX system is 

minimized, since the leaf nodes contain details about both themselves and the 

internal nodes, we noticed that some of these details are redundant among 
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multiple leaf nodes. For example, leaf nodes that share the same branching node 

have similar information about the path from the root node to the branching 

node. It worth investigating if there is a way to eliminate these redundancies and 

improves performance at the same time. 
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Appendix A  
The datasets and queries used in testing the LLS and LTIX approaches  

 

 

DBLP 
The DBLP is a computer science bibliography website hosted at the 

University of Trier, in Germany. The DBLP server provides bibliographic 

information on major computer science journals and proceedings. The server 

initially was focused on DataBase systems and Logic Programming (DBLP). 

Recently, it is being expanded to include other fields of computer science. So 

“DBLP” now may be read as "Digital Bibliography & Library Project."  

 

The DBLP indexes more than one million articles on computer science and 

contains more than 10,000 links to home pages of computer scientists. Journals 

tracked on this site include, to name a few, VLDB, a journal for very large 

databases; the IEEE Transactions; and the ACM Transactions. Proceedings are 

also tracked from several conferences. The DBLP XML records can be 

downloaded from the DBLP’s website.  

 

The DBLP XML records are used in testing the proposed LLS, LTIX, and 

UISX systems in this dissertation. Figure A.1 shows the number of tuples 

returned by the queries used to test the LLS system (Section 3.3) and the LTIX 

system (Section 4.3). Figure A.3 shows a small part of the hierarchical structure of 
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the DBLP as provided by the DB2 XML Document Viewer Utilities for the DBLP 

data used in this dissertation. 

 

 

XMark 
XMark is a well-known benchmark for XML data management. It consists of 

a scalable document database modeling an internet auction website. XMark 

offers a document generator that generates XML documents of different sizes 

according to a numeric scaling factor. The document size grows linearly with 

respect to the scaling factor. For instance, factor 0.01 corresponds to a document 

of (about) 1.16 MB and factor 0.1 corresponds to a document of (about) 11.6 MB, 

and so on. The benchmark is intended to help both implementers and users to 

compare XML database systems independent of their own specific applications. 

 

In this dissertation, we use XMark document generator to generate XML 

databases with different scaling factors. Then we use the generated data to test 

the proposed LLS, LTIX, and UISX systems. Figure A.2 shows the number of 

tuples returned by the queries used to test the LLS system (Section 3.3) and the 

LTIX system (Section 4.3). Figure A.4 shows a small part of the hierarchical 

structure of the XMark database used in this dissertation as provided by the DB2 

XML Document Viewer Utilities. 
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Figure A.1   Number of returned tuples by the DBLP test queries 

 

Query 
No. Query Matching 

Nodes IDs
Cardin-

ality
Returned 

Tuples

T1‐Q1 /dblp/inproceedings/cdrom <3.54> 211 211
T1‐Q2 /dblp/inproceedings/cite/label <4.7> 340 340
T1‐Q3 /dblp/inproceedings/booktitle <3.50> 43524 43524

T1‐Q4 /dblp/book/series/href <4.3> 579 579

T2‐Q1 /dblp//author see below 116276 116276

<3.3> 5026 5026
<3.19> 1649 1649
<3.53> 7 7
<3.45> 109594 109594

T2‐Q2 //series/href see below 1089 1089
<4.3> 579 579
<4.6> 510 510

T2‐Q3 //book//label <4.1> 2977 2977
T2‐Q4 //href see below 1238 1238

<4.4> 59 59
<4.2> 90 90
<4.3> 579 579

<4.6> 510 510

T3‐Q1 /dblp/incollection[/year='2000'] <3.6> 2526 53
/booktitle <3.7> 2526 53

T3‐Q2 /dblp/proceedings[/booktitle='ACCV'] <3.36> 794 3

/isbn <3.40> 733 3
T3‐Q3 /dblp/inproceedings[/author='Adele E. Howe'] <3.45> 109594 12

/title <3.46> 43524 12
T3‐Q4 /dblp/proceedings[/isbn='0‐7695‐1991‐1'] <3.40> 733 1

/title <3.36> 794 1

T4‐Q1 //inproceedings[/mdate='2002‐08‐04'] <3.43> 43524 213

/title   <3.46> 43524 213
T4‐Q2 //proceedings[/booktitle='ACNS'] <3.36> 794 5

/isbn <3.40> 733 5
T4‐Q3 //incollection[/booktitle='Temporal Databases'] <3.7> 2526 23

/year <3.6> 2526 23
T4‐Q4 //incollection[/author='Jurgen Annevelink'] <3.3> 5026 3

/title <3.4> 2526 3
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Figure A.2   Number of returned tuples by the XMark test queries 

Query 
No. Query Matching 

Nodes IDs
Cardin-

ality
Returned 

Tuples

T1 ‐ Q1 /site/regions/africa/item/id <5.1> 55 55
T1 ‐ Q2 /site/open_auctions/open_auction/bidder/personref/person <6.28> 6182 6182
T1 ‐ Q3 /site/open_auctions/open_auction/seller/person <5.80> 1200 1200
T1 ‐ Q4 /site/catgraph/edge/from <4.10> 100 100
T2 ‐ Q1 //id see below 6025 6025

<4.7> 100 100
<4.12> 2550 2550
<4.21> 1200 1200
<5.1> 55 55
<5.11> 200 200
<5.21> 220 220
<5.31> 600 600
<5.41> 1000 1000
<5.51> 100 100

T2 ‐ Q2 //africa//category <6.2> 198 198
T2 ‐ Q3 //regions//item//text see below 6242 6242

<8.1> 39 39
<7.5> 53 53
<6.4> 37 37
<10.1> 63 63
<8.3> 143 143
<6.7> 137 137
<7.10> 210 210
<10.2> 86 86
<8.5> 175 175
<7.15> 212 212
<6.12> 148 148
<10.3> 129 129
<6.13> 441 441
<7.19> 590 590
<8.7> 360 360
<10.4> 276 276
<6.17> 707 707
<7.24> 985 985
<8.9> 689 689
<10.5> 491 491
<6.21> 72 72
<7.29> 88 88
<8.11> 70 70
<10.6> 41 41

T2 ‐ Q4 //open_auctions//text see below 2327 2327
<10.7> 622 622
<8.15> 887 887
<6.31> 818 818

T3 ‐ Q1 /site/regions/africa/item[/location='United States'] <5.2> 55 47
/payment  <5.5> 53 45

T3 ‐ Q2 /site/regions/africa/item[/id='item0'] <5.1> 55 1
/location <5.2> 55 1

T3 ‐ Q3 /site/catgraph/edge[/from='category0'] <4.10> 100 1
/to <4.11> 100 1

T3 ‐ Q4 /site/people/person[/name='Kaj Carey'] <4.13> 2550 1
/phone <4.18> 1263 1

T4 ‐ Q1 //africa/item[/quantity='1'] <5.3> 55 52
/name <5.4> 55 52

T4 ‐ Q2 //open_auction[/reserve='3199.90'] <4.23> 607 1
/initial <4.22> 1200 1

T4 ‐ Q3 //closed_auction[/type='Regular'] <4.39> 975 456
/price <4.36> 975 456

T4 ‐ Q4 //regions//item[/quantity='2'] see below 2175 162
/name see below 2175 162

… /quantity='2' <5.3> 55 3
/name <5.4> 55 3

… /quantity='2' <5.13> 200 17
/name <5.14> 200 17

… /quantity='2' <5.23> 220 22
/name <5.24> 220 22

… /quantity='2' <5.33> 600 36
/name <5.34> 600 36

… /quantity='2' <5.43> 1000 77
/name <5.44> 1000 77

… /quantity='2' <5.53> 100 7
/name <5.54> 100 7
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Figure A.3   A part of the DBLP hierarchical structure 
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Figure A.4   A part of the XMark hierarchical structure 
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Appendix B 
 The LLS  Scanner Flowchart    
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