

INDEX STRUCTURES FOR XML

DATABASES

by

Samir A. Mohammad

A thesis submitted to the
School of Computing

In conformity with the requirements for
the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada
(March, 2011)

Copyright © Samir A. Mohammad, 2011

 ii

Abstract
Extensible Markup Language (XML) is a de facto standard for data exchange

in the World Wide Web. Indexing plays a key role in improving the execution of

XML queries over that data. In this thesis we discuss the three main categories of

indexes proposed in the literature to handle the XML semistructured data model,

and identify limitations and open problems related to these indexing schemes.

Based on our findings, we propose two novel XML index structures to overcome

most of these limitations: a native index structure called Level-based Tree Index

for XML databases (LTIX) and a relational index structure called Universal Index

Structure for XML data (UISX).

A proper labeling scheme is an essential part of a well-built XML index

structure. We found that existing labeling schemes are not suitable for our index

structures and therefore propose a novel labeling scheme, Level-based Labeling

Scheme (LLS), which has the advantages of most popular types of labeling

schemes while eliminating the main disadvantages. We then combine our LLS

labeling scheme with our index structures. An evaluation shows that LLS

performs well in comparison to existing labeling schemes using different

mappings to relational tables.

iii

We propose the LTIX to minimize the number of joins and matches required

to evaluate twig queries, and also to facilitate effective query optimization

through early pruning of the space search. Our experimental results show that

this approach performs well in comparison to existing state-of-the-art

approaches.

We propose the UISX to overcome the key problem with the state-of-the-art

approaches, namely that they cannot support efficient processing of twig queries

without requiring significant storage. We use a light-weight native XML engine

on top of an SQL engine to perform the optimization related to the structure of

the XML data prior to shredding. Experimental results show that our approach

achieves lower response times than other similar approaches while using less

space to store XML data.

iv

Co-Authors

Mohammad, S., and Martin, P., 2009. Index structures for XML Databases. In Li,
C., and Ling, T. W. (Eds.). Advanced Applications and Structures in XML processing:
Label Streams, Semantics Utilization and Data Query Technologies. IGI Global, pp. 98-
124, is based on Chapter 2.

Mohammad, S., and Martin, P., 2009. XML Structural Indexes (Technical Report
No. 2009-560). Kingston, Ontario, Canada: Queen’s University, is based on
Chapter 2.

Mohammad, S., and Martin, P., 2010. LLS: A Level-based Labeling Scheme for
XML Databases. In Proc. of CASCON 2010, Toronto, Canada, pp. 115-127, is based
on Chapter 3.

Mohammad, S., and Martin, P., 2010. LTIX: A Compact Level-based Tree to
Index XML Databases. In Proc. of International Database Engineering and
Applications Symposium, Montreal, Canada, pp. 21-25, is based on Chapter 4.

Mohammad, S., and Martin, P., 2010. LTIX: A Compact Level-based Tree to
Index XML Databases. (Technical Report No. 2010-570). Kingston, Ontario,
Canada: Queen’s University, is based on Chapter 4.

Mohammad, S., Martin, P., and Powley, W., 2010. Relational Universal Index
Structure for Evaluating XML Twig Queries. (Technical Report No. 2010-576).
Kingston, Ontario, Canada: Queen’s University, is based on Chapter 5.

Mohammad, S., Martin, P., and Powley, W., 2011. Relational Universal Index
Structure for Evaluating XML Twig Queries. Accepted for publication in the Proc.
of the International Conference on Communications and Information Technology –
ICCIT 2011, Aqaba, Jordan., is based on Chapter 5.

v

Acknowledgements

First and foremost I want to thank my advisor, Dr. Patrick Martin, whose

encouragement, guidance, and support along the way enabled me to develop an

understanding of the subject and to improve on it. It is an honor to work with him.

I would like to thank Dr. Ashraf Aboulnaga for his valuable advice on XML

indexing. My sincere thanks to Dr. Selim Akl, Dr. Hossam Hassanein, and Dr.

Kathryn Brohman for their important comments and support. I want to express

my gratitude to Research Associate Wendy Powley for her friendly support and

for listening to me whenever I was excited about a new idea. I thank the members

of the database laboratory for being so nice and helpful, also I thank my colleagues

and the staff in the School of Computing for providing a pleasant atmosphere to

pursue my research.

This thesis would not have been possible without my wife Rola’s sacrifice and

support. I thank my children Ayah, Mohammad, Sarah, and Abdulkareem for

giving me the strength to endeavor every time I felt down in this long journey. I

am blessed to have the greatest parents whose prayers, love, and support helped

me to hold on to my dreams. My thanks go to my brothers and sisters, especially

brother Basheir who provided me with my first PC.

I would like to thank the Natural Science and Engineering Research Council of

Canada (NSERC) for funding my research, and Canada for giving me this

opportunity and for providing a new welcoming home for my family. Last but not

the least, I am grateful to the almighty God for answering my prayers.

vi

Statement of Originality

I, Samir A. Mohammad, certify that all of the work described within this thesis is

the original work of the author. Any published (or unpublished) ideas and/or

techniques from the work of others are fully acknowledged in accordance with

the standard referencing practices.

(March, 2011)

vii

Table of Contents

Abstract .. ii

Co-Authors ... iv

Acknowledgements .. v

Statement of Originality .. vi

Table of Contents .. vii

List of Figures ... xi

List of Tables ... xiv

List of Algorithms .. xv

List of Acronyms ... xvi

Chapter 1 Introduction .. 1

 1.1 Motivation ... 4

 1.1.1 Research Track .. 6

 1.2 Thesis Statement ... 8

 1.3 Contributions .. 9

 1.4 Thesis Orgainzation ... 10

 1.5 Summary .. 11

Chapter 2 Background and Literature Study ... 12

 2.1 Background .. 13

 2.1.1 Data Models ... 13

 2.1.1.1 Edge-labeled Tree Data Model .. 13

 2.1.1.2 Node-Labeled Tree Data Model .. 15

viii

 2.1.1.3 Directed Acyclic Graph Data Model ... 15

 2.1.1.4 Directed Graph with Cycles Data Model .. 16

 2.1.2 X-Path ... 17

 2.2. Structural Indexing Schemes for XML Data ... 20

 2.2.1 Criteria for Evaluation of Structural Indexing Schemes .. 21

 2.2.2 Node Indexing Schemes ... 23

 2.2.2.1 Criteria for Evaluation of Node Indexes ... 24

 2.2.2.2 Interval Labeling Scheme .. 25

 2.2.2.3 Prefix Labeling Scheme .. 29

 2.2.2.4 Summary of Node Indexes ... 32

 2.2.3 Graph Indexing Schemes ... 34

 2.2.3.1 Deterministic Graph Indexes ... 37

 2.2.3.2 Non-Deterministic Graph Indexes with Backward Bisimilarity 43

 2.2.3.3 Non-Deterministic Graph Indexes with Forward and Backward

 Bisimilarity ... 48

 2.2.3.4 Summary of Graph Indexes ... 50

 2.2.4 Sequence Indexing Schemes. .. 52

 2.2.4.1 Specific Comparison Criteria of Sequence Indexes 52

 2.2.4.2 Top-down Sequence Indexes (ViST) ... 53

 2.2.4.3 Bottom-up Sequence Indexes (PRIX) ... 56

 2.2.4.4 Summary of Sequence Indexes .. 59

 2.2.5 Structural Indexes Critique .. 59

 2.2.5.1 Criteria for Comparison among Structural Indexing Schemes 60

 2.2.5.2 Comparison among Structural Indexes . .. 61

 2.3 Summary .. 64

Chapter 3 LLS: Level-based Labeling Scheme for XML Databases 67

 3.1 XML Labeling Schemes ... 68

 3.1.1 Types of Labeling Schemes .. 68

 3.1.2 Importance and Usage of Labeling Schemes .. 71

 3.1.3 Limitions of Existing Labeling Schemes and Intorduction to LLS 72

ix

 3.2 Our Approach: LLS Labeling Scheme ... 74

 3.2.1 Data and Graph Index Models .. 74

 3.2.2 Cost of Updating the LLS Labels.. 80

 3.2.3 Mapping to Relational Databases Tables .. 83

3.3 Prototype Implementation .. 87

 3.3.1 Query Engine Prototype to Test the LLS Labeling Scheme 88

 3.3.2 The Datasets and Queries .. 89

 3.3.3 Performance Evalution .. 90

 3.4 Summary .. 94

Chapter 4 LTIX: A Compact Level-based Tree to Index XML Databases 96

 4.1 XML Structural Indexes .. 97

 4.1.1 Hybrid XML Index Structures ... 97

 4.1.2 Limitations of XML Structral Indexes .. 98

 4.2 Our LTIX Approach ... 103

 4.2.1 XML Data and Path Index Models ... 104

 4.2.2 Two Simple Examples ... 108

 4.2.3 LTIX Path Index Construction ... 111

 4.3 Prototype Implementation ... 117

 4.3.1 The Datasets and Queries .. 118

 4.3.2 Performance Evalution .. 120

 4.4 Summary .. 122

Chapter 5 Relational Universal Index Structure for Evaluating XML Twig Queries ... 123

 5.1 Mapping of XML Data to Relational Data .. 124

 5.1.1 Types of Mappings .. 125

 5.1.2 Problems with Model-Mapping Approaches .. 125

 5.1.3 Introduction to Our Approach (UISX) ... 128

 5.2 Our Approach: Universal Index Structure for XML Data .. 131

 5.2.1 XML Data and Path Summary Models .. 132

 5.2.2 X-Path Query Expressions ... 135

x

 5.2.3 Size Optimization .. 140

 5.2.4 UISX Query Processor ... 146

 5.3 Prototype Implemenation .. 149

 5.3.1 Testing Data and Queries .. 150

 5.3.2 Experimental Results ... 152

 5.4 Summary .. 157

 Chapter 6 Conclusions ... 160

 6.1 Summary ... 161

 6.2 Future Directions and Challenges .. 162

Trademarks ... 165

References ... 166

Appendix A The datasets and queires used in testing the LLS and LTIX approaches 179

Appendix B The LLS Scanner Flowchart ... 185

xi

List of Figures

Figure 1.1 Simple relational database .. 5

Figure 1.2 An XML data-tree for the database in Figure 1.1 ... 5

Figure 2.1 XML document .. 14

Figure 2.2 Edge-labeled data-tree .. 14

Figure 2.3 Node-labeled data-tree ... 15

Figure 2.4 XML document with ID/IDREF ... 16

Figure 2.5 Directed acyclic graph data model ... 16

Figure 2.6 XML document with ID/IDREF ... 17

Figure 2.7 Directed graph with cycles data model .. 17

Figure 2.8 Schematic representation of XPath queries ... 20

Figure 2.9 (Beg,End) labeling scheme ... 26

Figure 2.10 Dewey labeling scheme ... 30

Figure 2.11 XML data-tree and its corresponding graph indexes .. 39

Figure 2.12 Index Fabric of the data-tree in Figure 2.2 .. 43

Figure 2.13 Data trees and a query ... 55

Figure 2.14 An example of false-negative ... 56

Figure 2.15 An example of Prufer sequence ... 57

Figure 3.1 XML document ... 69

Figure 3.2 A (Beg,End) labeled tree representation of the XML document in Figure 3.1 69

Figure 3.3 A Dewey code labeled tree representation of the XML document in Figure 3.1 71

Figure 3.4 An LLS labeled tree representation of the XML document in Figure 3.1 76

Figure 3.5 The Summary S of the XML data-tree G in Figure 3.4 .. 78

Figure 3.6 The Summary and Values tables of the data in Figures 3.5 and 3.4, respectively 79

xii

Figure 3.7 A relabeling scenario of LLS summary ... 81

Figure 3.8 A relabeling scenario for an LLS labeled data-tree .. 81

Figure 3.9 Worst case relabeling scenarios for Interval, Prefix, and LLS encoding 82

Figure 3.10 The mapping of the (Beg,End) labeled tree in Figure 3.2 into relational tables 83

Figure 3.11 Layout of the query engine prototype to test the LLS ... 88

Figure 3.12 Representative queries for 4 types of queries ... 90

Figure 3.13 DBLP test cases result for the (Beg,End) and LLS using basic mappings 91

Figure 3.14 DBLP test cases result for the (Beg,End) and LLS using binary mappings 91

Figure 3.15 XMark test cases result for the (Beg,End) and LLS using basic mappings 92

Figure 3.16 XMark test cases result for the (Beg,End) and LLS using binary mappings 92

Figure 3.17 DBLP test cases result for the basic and binary mappings using (Beg,End) 93

Figure 3.18 DBLP test cases result for the basic and binary mappings using LLS 93

Figure 3.19 XMark test cases result for the basic and binary mappings using (Beg,End) 93

Figure 3.20 XMark test cases result for the basic and binary mappings using LLS 94

Figure 4.1 XML document ... 99

Figure 4.2 An interval labeled tree representation of the XML data in Figure 4.1 99

Figure 4.3 The node-labeled tree representation of Query 4.1 ... 100

 Figure 4.4 The (Beg,End) interval node index for instances of Query 4.1 elements in Figure 4.2 101

Figure 4.5 Integration of the node index (Figure 4.4) with the interval node index (Figure 4.7) ... 102

Figure 4.6 LTIX data-model of the data in Figure 4.1 .. 104

Figure 4.7 The graph index S of the XML data-tree G in Figures 4.2 and 4.6 105

Figure 4.8 Data dictionary and indexes ... 106

Figure 4.9 Fraction of the graph index in Figure 4.7 .. 112

Figure 4.10 The Matrix Index structure that hold the Parent value of the graph index in Figure 4.9 . 113

Figure 4.11 More efficient dynamic Flat Index structure for the graph index in Figure 4.9 115

Figure 4.12 Representative queries for 4 types of queries ... 119

Figure 5.1 Query 5.1 hierarchical pattern .. 129

Figure 5.2 XML document ... 130

Figure 5.3 The data-tree representation of the XML document in Figure 5.2 130

Figure 5.4 The path summary of the data in Figures 5.2 and 5.3 ... 133

Figure 5.5 The node-labelled tree representation of Query 5.2 .. 139

Figure 5.6 A portion of the 50 MB DBLP XML path summary tree ... 144

xiii

Figure 5.7 The UISX hybrid query processor .. 146

Figure 5.8 Performance comparison of UISX with ROOTPATHS and DATAPATHS using

 the DBLP database .. 153

Figure 5.9 The performance comparison of UISX with ROOTPATHS using XMark database 155

Figure 5.10 The performance comparison of UISX with DATAPATHS using XMark database 156

Figure A.1 Number of returned tuples by the DBLP test queries ... 181

Figure A.2 Number of returned tuples by the XMark test queries .. 182

Figure A.3 A part of the DBLP hierarchical structure ... 183

Figure A.4 A part of the XMark hierarchical structure .. 184

xiv

List of Tables

Table 2.1 Comparison of interval labeling scheme with prefix labeling scheme 33

Table 2.2 Comparison among the three categories of graph indexing approaches 51

Table 2.3 Comparison between Top-down (ViST) and Bottom-up (PRIX) sequencing schemes ... 59

Table 2.4 Summary of comparison among the 3 categories of structural indexing schemes 64

Table 3.1 A comparison among Interval, Prefix, and LLS labeling schemes 73

Table 3.2 Statistics of DBLP and XMark datasets ... 89

Table 4.1 Details of DBLP and XMark datasets .. 119

Table 4.2 Average pruned cases, comparisons, and runtime for 4 types of queries 121

Table 5.1 The PathSummary table .. 134

Table 5.2 The LeafNodes table .. 134

Table 5.3 Part of the PathSummary of the 50 MB DBLP XML Database 143

Table 5.4 The tuples of cdrom element in the LeafNodes table .. 145

Table 5.5 Sizes of XMark and DBLP data-sets with different implementations 145

Table 5.6 Four sets of queries used in testing .. 151

Table 5.7 Characteristics of the testing query sets in Table 5.6 ... 152

Table 5.8 Characteristics of testing databases as implemented by the indicated approaches ... 152

xv

List of Algorithms

Algorithm 3.1 Evaluate an XPath Query ... 84

Algorithm 4.1 Find the parent node of a given node using the Matrix Index 114

Algorithm 4.2 Find the parent node of a given node using the Flat Index 115

Algorithm 4.3 Confirm a relationship between two given ndoes .. 116

Algorithm 5.1 Publish an internal node .. 141

Algorithm 5.2 Evaluate twig queries .. 148

xvi

List of Acronyms

ADG Approximate DataGuide
API Application Program Interfaces
DAG Directed Acyclic Graph
DBLP Digital Bibliography and Library Project
DBMS Database Management System
DOM Document Object Model
DTD Document Type Declaration
ID Identification
IDREF Indetification Reference
I/O Input/Output
IR Information Retreival
ISO International Organization for Standarization
LLS Level-based Labeling Scheme
LTIX Level-based Tree to Index XML
MPMGJN Multiple Predicate MerGe JoiN
PRIX PRufer sequences for Indexing XML
RDBMS Relational Database Management System
SAX Simple API for XML
SGML Standard Generalized Markup Language
SQL Structured Query Language
UISX Universal Index Structure for XML
ViST Virtual Suffix Tree
W3C World Wide Web Consortium
XML Exensible Markup Language

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Extensible Markup Language (XML) is becoming the dominant method of

exchanging data over the Internet. It was endorsed as a W3C recommendation in

1998 [14]. Its roots go back to SGML (Standard Generalized Markup Language)

[14]. SGML is an international standard since 1986 (ISO 8879). SGML is a meta-

language, that is, it can be used to create new languages in order to describe any

kind of data. The differences between SGML and XML arise from the aim to

develop a meta-language especially for the needs of the Web and to promote the

fast establishment of this language on the Web [117]. XML’s implementation, for

example, is much simpler than that of SGML and a DTD (Document Type

Declaration) does not have to be used with XML documents.

A DTD is used to specify some restrictions on XML data such as, among

other things, the relationship between elements and types of elements [14]. XML

Schema [121] is an extension to DTD and has been supplied with many features

CHAPTER 1. INTRODUCTION 2

to overcome some of the limitations of DTDs [21]. Both DTD and XML Schema

are analogous to a schema in Relational Database Management Systems

(RDBMS). Even with the presence of a DTD or an XML Schema, XML data is

considered as semistructured [132]. This is due to the possible use of the “any”

Type of contents in DTD and the <any> Element in XML Schema, both of which

extend an XML document with arbitrary elements [21] [70] [121].

XML database systems, including the query optimization engine, do not

have the advantage of being founded on several decades of scientific research as

do relational DBMSs. In contrast to query optimization in relational databases,

XML query optimization is a comparatively new research area.

Indexing and querying XML data are active research areas [6] [56] [65] [89]

[104] [130] [146]. Methods and techniques from other areas of Information

Technology have been adapted to index XML data. Inverted files are used for

text-dense XML documents [58] [59] [74] [109] [133] [137]. A Suffix Tree is used

by Wang et al. [130] to develop dynamic indexes, and by Zuopeng et al. [147] to

build an XML index structure. The Index Fabric by Cooper et al. [37] and the PT

index by Li et al. [79] are based on the Patricia (Practical Algorithm To Retrieve

Information Coded In Alphanumeric) Trie [73], which is a string indexing

scheme. The research on optimization of path expressions in object-oriented

database systems [52] and graph-based semistructured data models [1] [3], have

been adapted by McHugh and Widom [88] to develop Lore (an XML database

management system).

It is worth mentioning here that some researchers emphasize the fact that

database technology has to be integrated with Information Retrieval (IR)

technology in order to effectively manage XML data [9] [11] [84]. IR technology

can be used to handle the unstructured text contents of XML documents, while

CHAPTER 1. INTRODUCTION 3

the database technology can be used to handle the structured part of XML

documents.

Many systems have been proposed in the academic and commercial fields to

provide either a query engine for XML data or a complete XML database

management system. For example, some systems are designed to handle

semistructured data [19] in general, including XML documents [3] [15] [20] [46].

Other systems are designed specifically for XML data [12] [26] [38] [47] [102]

[112] [128], or have migrated to a fully XML-based data model [53] [87] [88].

Finally, there are languages that are designed to query only XML data [16] [17]

[24] [39] [98] [105] [106] [122]. The anatomy of native XML databases is discussed

by Feinberg [45].

There are two methods for storing and querying XML databases. The first

method maintains the native hierarchical nesting structure of XML databases and

is referred to as the Native Method. The other method leverages the existing

power of RDBMSs that has been established over several decades, and is called

the Relational Method. Structural indexes play a main role in data retrieval and

manipulation in both methods [124]. Both methods have drawn the attention of

the research community. As is always the case with indexes, there is a tradeoff

between the size and the power of indexes [80] [144]. The state-of-the-art XML

structural indexes either need to be large to perform well or perform poorly as a

consequence of saving space. Furthermore, the complexity of the XML data

model leads to a much larger search space for XML query optimization [26] [128].

Finally, many types of XML structural indexes require a huge number of

structural joins and match operations to establish a relation between two

elements in XML data-trees.

CHAPTER 1. INTRODUCTION 4

1.1 Motivation

The rapid growth in XML databases has resulted in the need to efficiently

query this XML data. One way to achieve fast retrieval of data is through

indexing. XML structural indexes can be used to facilitate more efficient query

processing and optimization [124].

There are many advantages to the XML data model compared with

traditional data models like the relational model [16] [56]. The structure is

integrated with the data in an XML document [5] [82], whereas, in the relational

model the structure is defined in a separate relational schema. Therefore, it is

easier to use XML as an intermediate language for exchanging data in the World

Wide Web. Also, unlike the relational approach, the XML data model adapts

easily to the evolution of the data structure in a database [127]. Finally, the XML

data model is flexible for querying data. This kind of flexibility does not exist in

SQL (Structured Query Language) [1].

Nevertheless, these advantages come with a cost. First, since the repetition

of data is irregular due to missing and/or repeated arbitrary elements, its storage

structure can be scattered over many different locations on the disk, which

decreases the performance of XML queries [32]. Second, the flexibility of

specifications of the XML queries (e.g. use of wild cards) adds to the challenge of

indexing methods [130] [146]. Third, the fact that XML documents contain the

data mixed with the structure poses a challenge to navigating the structural

relationships among XML element sets [65].

One of the main differences between XML data and relational data models is

the variety of structural relationships between various elements in XML data

[26]. For example, Figure 1.1 contains a relational database schema and data (we

mixed the data with the schema for simplicity). This database represents a small

portion of an educational institute registration system.

CHAPTER 1. INTRODUCTION 5

Figure 1.1 Simple relational database

Note that the complete data are well structured and can be linked through 3

primary/foreign key relationships. In this model we can access various sets of

data through only 3 relationships. For example, which course is taken by which

student?, what courses a specific instructor teach? … etc. This database can be

represented as an XML database. One possible representation is illustrated in

Figure 1.2.

Figure 1.2 An XML data-tree for the relational database in Figure 1.1

No C1

title DBMS

course

No S1

course C1

address Kingston

fname Tim

lname Wang

major-m Art

major-s Hisotry

GPA 3

student

No I1

course C1

address Ottawa

fname Sarah

lname Ahmad

instructor
course Math

instructor I1

Experience

1

14

16 17

18

19 20

15

12

fname

“Kingston”

name
address

“Tim”

lname

“Wang”

major

main

“Art”

secondary

“History”

21

“3”

GPA6

8 9

7

instructor

fname
“Ottawa”

nameaddress

“Sarah”

lname

“Ahmad”

10

11

experience

course

“Math”

4

student

course

No
2 title3

“DBMS”“C1”

5

“I1”

No 13

“S1”

No

CHAPTER 1. INTRODUCTION 6

Basically, the most used relationships between XML elements are ancestor,

parent, sibling, child, and descendent relationships, which can be used to infer

other types of relationships1. In our XML data model example in Figure 1.2 we

have 14 leaf data elements. Each and every one of these elements can be

associated with the other 13 elements through several relationships. So, there are

at least 13x14 relationships that have to be indexed properly in order to

manipulate and query this XML data efficiently. This adds more complexity to

the XML data model. As a result, the creation of a universal structural index that

reflects all of these relationships efficiently is a challenging task. In the relational

approach, in contrast, the relationships are much more limited between different

elements in different tables, and the data are well structured.

Labeling schemes can be divided into two categories: Interval labeling

schemes and Prefix labeling schemes. Each type of scheme has advantages and

disadvantages. Undesirably, each type of labeling’ pros are the cons of the others.

Research efforts to design a labeling scheme that works well in all environments

have flourished lately.

1.1.1 Research Track

In an effort to address the problem of XML structural indexes, we first study

the existing indexing techniques and analyse their strength and weakness. The

best way to do that is to compare these indexing techniques by using common

criteria that are applicable for all of them and can act as a benchmark. We

therefore identified the following four comparison criteria:

1 There are 13 relationships as identified by XPath – an XML query language that is recommended by the World Wide
Web Consortium (W3C).

CHAPTER 1. INTRODUCTION 7

• Retrieval power, which includes the precision and completeness of the

result, and the type of queries supported.

• Processing complexity, which covers topics related to the need to compute

the relationship between elements (such as the parent-child and the

ancestor-descendent relationships), the need for structural joins to answer

a query, and the need for additional refinement steps to fine-tune answers.

• Scalability of the index and its adaptability to queries with different path

lengths.

• Update cost, which is measured by the number of nodes that are touched

during update.

Based on our findings, we came across many issues. These issues include the

following. First, we identify structural joins as the bottleneck stage in XML query

processing. Second, there is a trade-off between the size of an index and its

answering power. Third, relational database management systems are promising

media to store and retrieve XML data, but the current mapping approaches to

map XML data into relational tables are still immature.

We believe that the labelling scheme used is the key factor in controlling the

size of indexes and to reducing the number of joins required to evaluate queries.

Some researchers combine different types of indexes to expedite query

processing, such as combining node indexes with graph indexes. In this case, we

believe that the integrated system does not have to have the structural

information available in both indexes. The intuition behind relaxing the structure

constraint in one of them – e.g. the node index - is to have more room for

designing a labeling scheme that performs better in evaluating XML queries.

Most of the present mapping approaches are based on nodes, edges, forward

paths, and reverse paths. The last approach has proved to be the best, but often

CHAPTER 1. INTRODUCTION 8

produces huge indexes. We believe that mapping XML data based on the path

summary not only reduces the size of indexes by eliminating redundant path

data, but also improves the query evaluation process by linking the indexed data

nodes to their original structure.

XML data model is based on hierarchical structure, which is absolutely

different from the relational data model. Therefore, we believe that if we want to

use RDBMSs to store and retrieve XML data efficiently, we have to address two

issues. First, the mapping scheme should reflect the original hierarchical

structure. Second, an XML engine has to be used along with a relational engine

to process queries. In this way, the XML engine optimizes queries according the

structure of the data before shredding, and the relational engine handles the data

stored in relational tables that pertain to queries under process.

1.2 Thesis Statement

We study and research the outstanding issues that are related to XML structural

indexes. In the scope of this dissertation, and based on our findings in the areas

of XML labeling schemes, native XML structural indexes, and XML-Relational

structural indexes; we propose solutions to these outstanding issues. As part of

the proposed solutions we implement: a labeling scheme called LLS; a native

XML index structure called LTIX; and an XML-Relational index structure called

UISX. We conduct our experiments to fine-tune our proposed systems in our

CHAPTER 1. INTRODUCTION 9

laboratory. The experiments support our intuitions that guided our research.

The experiments are also used for enhancing our findings.

1.3 Contributions

The thesis makes the following original research contributions:

- Develop a novel native XML index structure, which includes:

 Designing a structural summary for XML data, and

implementing an efficient construction and access algorithms to

this structural summary.

 Defining a framework to implement and use the native XML

index structure.

 Designing an efficient repository for the elements, attributes, and

values of XML data that facilitates speedy retrieval.

- Develop a novel XML-Relational index structure, which includes:

 Indexing the branching nodes to evaluate twig queries.

 Designing and implementing an efficient relational schema to

map shredded XML data using minimal storage space.

 Developing a light-weight query processor to evaluate XML

queries using native XML engine on top of SQL engine. The job

of the native XML engine is to explore potential query

optimization processes that are related to the structure of XML

data, which can not be exploited by SQL engines. The SQL

engine handles the XML-Relational data after shredding.

CHAPTER 1. INTRODUCTION 10

 Designing algorithms to evaluate XML queries efficiently that do

not use neither inequality comparison, nor “LIKE” operator,

since SQL engine does not support them efficiently.

- Develop a novel suitable labeling scheme to be used with the above two

index structures. This labeling scheme should perform well in

comparison with existing labeling schemes.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 presents the

background on XML data models and the literature study on XML structural

indexes. In Chapter 3, we present our LLS labeling scheme with a prototype to

demonstrate the effectiveness of this labeling scheme. The LTIX native index

structure is described in Chapter 4, which includes a discussion of various

techniques for building the summary graph of the index structure, and the

experimental validation of our indexing approach. The UISX XML-Relational

index structure is illustrated in Chapter 5. It includes a discussion of the various

mapping approaches. Finally, we summarize the contributions of our research

with a critical assessment, discuss some of the future work directions, and

conclude the thesis in Chapter 6.

CHAPTER 1. INTRODUCTION 11

1.5 Summary

The complexity of XML data model and flexibility of querying it creates

many new challenges for the researchers in the area of XML structural indexes

[127]. We address the problems of existing labeling schemes, which include the

updating cost and the size of the labels. The dissertation presents a novel labeling

scheme, which is designed to contain the most needed characteristic in order to

work properly and efficiently. Also, the dissertation presents two novel indexing

structures. The first is based on native XML structure and the second uses

RDBMSs to store and query XML data. We start with laying out the motivation

behind this research dissertation. Then we state our research hypotheses, the

scope of our work, and the contributions of this research in the area of XML

structural indexes. In the following chapters we provide the background study,

detail presentations of XML structural indexes, LLS labeling scheme, LTIX and

UISX index structures with experimental evaluations of their methodologies and

prototypes, and finally summarize and conclude the thesis outlining some of the

future work directions.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 12

Chapter 2

Background and Literature Study

XML, which provides a flexible way to define semistructured data, is a

de facto standard for data exchange in the World Wide Web. The trend towards

storing data in its XML format has meant a rapid growth in XML databases and

the need to query them. Indexing plays a key role in improving the execution of

a query [124]. In this chapter we give a brief history of the creation and the

development of the XML data model. We discuss the three main categories of

indexes proposed in the literature to handle the XML semistructured data model

and provide an evaluation of indexing schemes within these categories. Finally,

we discuss limitations and open problems related to the major existing indexing

schemes.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 13

2.1 Background

XML documents can be represented as directed graphs [3], which consist of

vertices and edges. For example, the directed graph in Figure 2.2 represents the

XML document in Figure 2.1. The mapping of an XML document to a graph may

result in an acyclic graph (e.g. Figure 2.2), which is tree shaped, or in a cyclic

graph (if ID/IDREF tokens are used). While some indexes support all graph data

[10] (cyclic and acyclic graphs), others only support tree-shaped data. In this

section, we review four common models for semistructured documents and the

XPath query language, which is used in this thesis to express queries.

2.1.1 Data Models

Gou and Chirkova [56] identify four basic data models to represent the

hierarchical structure of XML documents: edge-labeled tree data model, node-

labeled tree shaped data model, directed acyclic graph (DAG) data model, and

directed graph with cycles data model.

2.1.1.1 Edge-Labeled Tree Data Model

Figure 2.2 is an example of an edge-labeled model for the XML document in

Figure 2.1. Each edge represents an element or an attribute in the XML

document. For example, author is an element, and reviewer is an attribute. The leaf

nodes represent the values of the elements or attributes. For example, “Ahmad”

and “Wang” are values for the reviewer attribute and author element, respectively.

The same attribute name cannot be repeated under the same element. Attributes

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 14

are unordered and cannot be nested as in elements. The element in the fifth line

in Figure 2.1 is an example of an empty element.

Figure 2.1 XML document

Note that in a tree structure an element cannot have more than one parent.

The same tag name can be repeated along a path (i.e. an element may have a

child/descendent element and/or a parent/ancestor element with the same tag

name(s)). This is known as recursion, which requires special attention during the

evaluation process of an XML query.

Figure 2.2 Edge-labeled data-tree

<Bib>
<book>

<author>Tim</author>
</book>
<paper> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author
reviewer author

Bib

0

“Tim” “Sarah” “Wang”“Ahmad”

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 15

2.1.1.2 Node-Labeled Tree Data Model

Figure 2.3 is an example of a node-labeled data-tree for the XML document

in Figure 2.1. As in the edge-labeled model, it contains three main components:

elements, attributes, and values. The main difference is that a node in the node-

labeled tree represents an element as opposed to an edge in the edge-labeled

model. The hierarchal and nesting structure of both models is self-evident in the

trees that they represent.

Figure 2.3 Node-labeled data-tree

2.1.1.3 Directed Acyclic Graph Data Model

Generally, the directed acyclic graph data model uses ID/IDREF tokens to

identify an attribute type of an element. The ID/IDREF tokens are provided by

the XML language via DTD. Figure 2.4 is a modified version of the XML

document in Figure 2.1. Note the use of ID/IDREF and its effect on the

corresponding DAG in Figure 2.5 (the dashed arrow from node 4 to node 2).

Unlike the tree structure, a single node can be referred to by two or more

1

5 6 9

12

book

7 10

2

3

author

paper paperpaper

author
reviewer

author

Bib

“Wang”“Ahmad”
84

“Tim” “Sarah”
1311

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 16

elements in the DAG model (e.g. node number 2 in Figure 2.5). ID/IDREF is

similar to the key/foreign key relationship in the relational data model.

Figure 2.4 XML document with ID/IDREF

Figure 2.5 Directed acyclic graph data model

2.1.1.4 Directed Graph with Cycles Data Model

If we add an IDREF from the book element (“recommend=2”, line number 2

in Figure 2.6) to the paper element (“ID=2”, line number 5), a cycle is formed. This

<Bib>
<book ID=1>

<author>Tim</author>
</book>
<paper reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author reviewer author

Bib

0

“Tim” “Sarah” “Wang”“Ahmad”

reference

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 17

is also popular in XML, but it adds more complexity in query processing of XML

data. The result is a directed cyclic graph as illustrated in Figure 2.7.

Figure 2.6 XML document with ID/IDREF

Figure 2.7 Directed graph with cycles data model

2.1.2 X-Path

Many APIs (Application Program Interfaces) have been proposed to access

XML data, such as the standard Document Object Model (DOM) [53] [83] and

Simple API for XML (SAX) [85]. DOM has been defined to enable XML to be

<Bib>
<book ID=1 recommend=2>

<author>Tim</author>
</book>
<paper ID=2 reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author reviewer author

Bib

0

reference

recommend

“Tim” “Sarah” “Wang”“Ahmad”

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 18

manipulated by software [53]. The DOM defines how to translate an XML

document into data structures and thus can serve as a starting point for any XML

data model. DOM and SAX are language-independent programmatic APIs [50].

Whereas DOM creates an in-memory representation of an XML document, SAX

provides stream-based access to documents. As a document is parsed, events are

fired for each open and close tag encountered. Thus, in contrast to DOM, SAX

only supports read-once processing of documents.

Nevertheless, neither one of these APIs provides enough capabilities to

manipulate and query XML data. Motivated by this fact, query languages such as

XPath (XML Path Language) [33] and XQuery [16] were proposed. XPath

supports thirteen types of relationships or axes including child (“/ ”), descendant

(“// ”), parent, ancestor, ancestor-or-self, descendant-or-self, following, following-

sibling, preceding, preceding-sibling, attribute, self, and namespace. In this thesis

we concentrate on the child “/ ” and descendent “// ” axes. Furthermore, our

proposed approaches in this thesis are capable of supporting these two axes.

Both XQuery and XPath were developed and recommended by the W3C.

Furthermore, a version of XQuery (Version 1.0, 1997) is based on XPath [16].

XPath provides operators for path traversals in an XML tree-shaped

document. Path traversals result in a collection of subtrees (forests), which may

be repeatedly traversed until a designated destination node is reached. Starting

from a specific node, an XPath query navigates its input document using a

number of location steps. For each step, an axis describes which document nodes

(and the subtrees below these nodes) form the intermediate result forest for this

step using one of the above mentioned 13 axes.

An XML query may be either a simple single path query with or without a

recursion (“// ” descendent axis), or a multiple path (twig) query with or without

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 19

a recursion (please note that single path query is also called path query, for short,

in this dissertation). Furthermore, an XML query may have a zero, one, or

multiple predicates. A twig query specifies patterns of selection on multiple

elements related to one another by a tree structure. Next, we review a few

examples of an XPath XML queries. Query 2.1 below is an example of a single

path query.

Query 2.1: /Bib/paper/author

If we run this query against the XML document in Figure 2.3, it returns the

results {“Sarah”, “Wang”}, which are the values of the author elements under the

paper elements under the Bib element. Query 2.2 is an example of a recursive

query, which illustrates the use of the descendent axis.

Query 2.2: /Bib//author

This query returns a set of values {“Tim”,“Sarah”,“Wang”}, which represents

all author elements under the top-level Bib element. Query 2.3 is an example of a

twig query that has a predicate.

Query 2.3: //paper[/reviewer=“Ahmad”]/author

This query asks for the author of a paper that has a reviewer named “Ahmad,”

and the query returns the author “Wang.” This query demonstrates the flexibility

that XPath provides, which is not available with the relational data model. It

allows us to query about a paper without concern for where the paper is located

within the tree structure. However, it adds more complexity to the query

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 20

language where an effort has to be made to locate the paper element through

some indexing scheme, or else an exhaustive search has to take place if an index

is not available.

In query 2.3 we also see an example of using a predicate in an XPath query.

Multiple predicates could be used in an XPath query. Path patterns for the above

three XPath queries are shown in Figure 2.8. In this Figure, an oval represents an

element, the edges between elements represent the parent-child relations, the

edges that are marked with an “=” sign represent the ancestor-descendent

relationships, and the nodes with the question marks are the output nodes [56].

Figure 2.8 Schematic representation of XPath queries.

2.2 Structural Indexing Schemes for XML Data
Some XML databases structural indexes, such as the graph indexes, are

analogous to the schema of a relational database. Both of them reflect the

relationship between different parts of the data, and they are used to validate the

legitimacy of a query before executing it. For example, XML graph indexes are

used to determine if an XML path exists, before going any further in the query

authorreviewer

paper

Bib

author

paper

author

“Ahmad”

Bib

?

Query 2.1 Query 2.2 Query 2.3

?

?

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 21

processing for both single and twig path queries [108] [123]. In this section,

structural indexes for XML data are analyzed in detail.

Generally, structural indexes can be grouped into three categories:

• Node indexes [57] [78] [143] depend on labeling schemes [31] [60] including

interval labeling [40] and prefix labeling [81] [100] [119] [138].

• Graph indexes [62] include indexes that cover either single path queries only

[32] [37] [54] or both single and twig path queries [67]. We divide graph

indexes in this thesis into three types depending on their deterministic

property and bisimilarity direction(s) (see Section 2.2.3: Graph Indexing

Schemes).

• Sequence indexes [104] [129] [130] interpret queries as structure-encoded

sequences and search for a match in the structure-encoded sequences of an

XML document.

Please note that the term path index is used in the literature to refer to

different things. Sometimes it refers to graph indexes in general or to specific

types of graph indexes (the deterministic graph indexes and the non-

deterministic backward bisimilar indexes), and sometimes it may refer to some

types of node indexes (prefix indexes). In this dissertation we prefer not to use

the term path indexes and use the specific terms above in order to eliminate any

ambiguity.

2.2.1 Criteria for Evaluation of Structural Indexing
 Schemes

We evaluate the indexing schemes according to a common set of criteria.

These criteria are chosen in a way to help users decide which indexes are most

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 22

suitable for their needs by identifying the characteristics that these indexes

support, such as accuracy, completeness, response time, scalability, and

adaptability. We use the following criteria:

• Precision: When a query is evaluated, the results returned may be complete

and precise, or they may require further processing. Obviously, the first

option is more efficient if the measurements of time taken to produce the

initial answer for the two options are approximately equal. A structural

index is precise if and only if the returned answer does not contain any

incorrect answers.

• Recall: This is the probability that all relevant documents are retrieved by

the query. If the recall achieved is 100%, we say that the result is complete.

• Processing complexity: This criterion covers different kinds of complexity

depending on the type of indexing scheme that is used. It covers the

primary processing procedure as well as additional join processing.

Complexity criteria for each indexing scheme will be discussed

individually.

• Scalability: Large indexes may involve many Input/Output (I/O) accesses.

These accesses increase the processing time of a query. Some indexes

expand linearly with the size of the source data, while others increase

exponentially with the size of the data. The second type imposes

restrictions on the data growth.

• Adaptability: Graphical indexes partition the data into equivalence classes

based on their determinism and bisimilarity (backward bisimilarity, or

forward and backward bisimilarity). Two nodes are backward bisimilar if

they share the same incoming paths and forward bisimilar if they share the

same outgoing paths. The bisimilarity can be specified by a factor k. Two

nodes are backward k-bisimilar if they share the same incoming paths of a

length = k. Setting the value of k to a small value results in a small index,

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 23

while a large value of k results in a large index. The length of the path in

queries varies depending on the users’ needs. If a graph index is used

regularly to evaluate short-path queries, then a small k-value index is

sufficient. In contrast, long-path queries need a large k-value index. Based

on these observations, and depending on the queries, it would be useful if

the size of the index could be adjusted by a given parameter k that

represents the length of bisimilarity according to the users’ need.

• Type of queries supported: The two types of XML queries in general are

single path and twig path queries.

• Update cost of insertion of a node or a subtree: The nodes in a given tree index

have to be maintained in a certain organization in order to reflect ancestor-

descendent, parent-child, and sibling relationships. When a new node is

inserted into the tree, these relationships have to be preserved.

Consequently, the index has to reflect its position with regard to these

relationships, which adds more complexity, especially if there are no gaps

in the scheme that is used to label nodes. We study two types of updates

[139]: (1) the insertion of a node, which represents a small incremental

change for an edge addition (for all indexing schemes); (2) the insertion of

a subtree, which represents the addition of a new file (for some indexing

schemes).

2.2.2 Node Indexing Schemes

Node indexes hold values that reflect the nodes’ positions within the

structure of an XML tree. They can be used to find a given node’s parent, child,

sibling, ancestor, and descendent nodes. These values can be used to evaluate

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 24

single path and twig path queries. Paths are evaluated through many steps. At

each step, a structural join is performed between two nodes starting from one

end of the path and finishing at the other end [6] [78] [143].

Labeling (numbering) schemes were used prior to the creation of XML to

reproduce the structure of a tree [40]. Two of the most widely used labeling

schemes are interval (a.k.a. region) labeling [8] [29] [72] [78] [116] [135] [143] and

prefix (a.k.a. path) labeling [48] [60] [66] [80] [99] [119]. In the following, we take

the (Beg, End) labeling scheme as an example of the interval labeling and the

Dewey code scheme as an example of the prefix labeling.

2.2.2.1 Criteria for Evaluation of Node Indexes

In addition to the general evaluation criteria listed above, we refine the

processing complexity criterion into the following specific criteria.

Processing complexity:

• Relationship computation: To confirm a relationship between two given

nodes, certain operations have to be performed. These operations depend

on the type of the relationship. They also depend on the type of the

labeling scheme that is used.

• Relationships supported: Basically there are three types of relationships:

o Ancestor-descendent relationship: This relationship is needed to evaluate

queries with the “// ” axis.

o Parent-child relationship: It is useful to evaluate queries with the “/ ”

axis.

o Sibling relationship: In some cases, a group of sibling nodes form an

answer for a twig query.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 25

• Ability to infer parent/ancestor and child/descendent nodes: There are two

approaches for solving queries, especially the ones with predicates, that is,

top-down and bottom-up. A bottom-up approach is useful when the

parent/ancestor nodes of a matched leaf node, for a given query, can be

inferred from the matched leaf node. Also, identifying child/descendent

nodes is helpful when the top-down approach is used to evaluate a query.

• Data type used in indexing scheme: Comparing different data types involves

different algorithms with different operations. As an illustration,

comparing two numbers usually requires less time than that of comparing

two sequences of strings.

2.2.2.2 Interval Labeling Scheme

The (Beg,End) labeling scheme is an example of interval labeling. Zhang et al.

[143] introduce it to index the elements in a document. It assigns a pair of

numbers to each node in an XML document according to its sequential traversal

order as follows. Starting from the root element, each element, attribute of an

element, value of an attribute, and value of an element is given a Beg number

according to its sequential position in the document. When we reach the end of a

tag, an attribute, or an attribute value, we assign to that tag, attribute, or attribute

value an End number (which is equal to the next available sequential number)

before moving to a new element in the XML document. When the value of an

element is a leaf node, the Beg number of this value is equal to the End number.

Figure 2.9 is an example of (Beg,End) labeling scheme for the XML document in

Figure 2.1. The beginning and the ending numbers imply the positions of the

opening tag (<..>) and the closing tag (</..>), respectively, in an XML document.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 26

Figure 2.9 (Beg,End) labeling scheme

This labeling scheme enables us to find the ancestor-descendant relationship

as indicated in property 1 below. A Level is added to the (Beg,End) label to form a

node-triplet identification label (Beg,End,Level) for each node in the tree, where

Level represents the depth of an element in the tree [143]. This triplet

identification label is used to infer the parent-child relationship as indicated in

property 2.

Property 1 - Ancestor-descendant relationship: In a given data-tree, node x is

an ancestor of node y if x.Beg < y.Beg < x.End.

For example, in Figure 2.9 node (1,22) is an ancestor of the

node (3,5).

Property 2 - Parent-child relationship: In a given data-tree, node x is a parent

of node y if x.Beg < y.Beg < x.End and y.Level = x.Level + 1.

For example, in Figure 2.9, node (1,22,1) is a parent to the node

(2,6,2).

The (Beg,End) scheme can be used to evaluate a twig query by using

structural joins [113]. The relations that are supported by the node approach are

1

5 6 9

12

book

7 10

2

3author

paper

paper

paper

author
authorreviewer

Bib

“Wang”“Ahmad”
84

“Tim” “Sarah”
1311

(1,22)

(2,6)

(3,5)

(4,4)

(7,8) (9,13)

(10,12)

(11,11)

(15,17)

(14,21)

(18,20)

(19,19)(16,16)

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 27

mainly the parent-child “/ ” and the ancestor-descendent “// ” relationships. The

(Beg,End) labeling scheme is used to infer the relationship between two nodes at

a time. It requires two comparisons to infer any of these two relations. The

number of joins required to evaluate an XML query using a node index is equal

to the number of nodes in the query minus one, which is high for large twig

queries.

The (Beg,End) labeling scheme can be used to evaluate both single path

queries and twig path queries [113]. For a given query, the relationship between

any two nodes within a path in the query is investigated separately because this

indexing scheme’s granularity is defined at the level of each node and hence the

answer for a given query will be precise and complete.

Since the nodes’ index numbers are chosen sequentially, or randomly in an

increasing order, and the tree is not necessarily balanced, there is no way to

locate the siblings of a given node, using only the knowledge of its index

numbers. Furthermore, the exact ancestor and descendent index numbers of a

node cannot be inferred. It is possible to know the range within which the

parent/ancestor or the child/descendent nodes are located, but the exact number

of these nodes cannot be determined.

Temporal XML databases [86] [35] are based on persistent (immutable)

labeling schemes. Once a node is given an index number (e.g. “Beg,End”

numbers), it remains unchanged throughout its lifetime. Persistent labeling is

useful for examining changes to the contents of a source data over time by

reviewing historical data. The paper by Cohen et al. [34] is an example of the

early work in this area.
Unlike a prefix labeling scheme, which we explain in the next section, the

interval labeling scheme is best used for immutable encoding. Some durable

schemes, for example Li and Moon [78], suggest leaving gaps between the

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 28

interval values for new nodes to be inserted. After filling these gaps,

renumbering or other solutions are required. Cohen et al. [34] proved that

persistent labeling, which preserves the order of an XML tree, requires O(n) bits

per label where n is the size of the tree. The complexity is measured in the size of

the interval labels because this size determines the total size of the index. It is

desirable to keep the used number of bits small enough so that the index can fit

in memory. Several researchers including Silberstein et al. [116] and Chen et al.

[29] have designed dynamic labeling structures for interval indexes that allow

relabeling by using only O(log n) bits per label.

Interval labeling schemes require modest storage space. Regardless of the

depth of the data-tree, each node is represented by only two numbers, and we

can determine the relationship between any two nodes in fixed time by using

comparison operations between the index numbers. Nevertheless, updating the

labeling scheme of these types of indexes is costly. When a new node is inserted

into the tree, then all the nodes in the tree, except the left sibling subtrees of the

inserted node, have to be updated.

Surveying all the variations of interval labeling is beyond the scope of this

chapter. In the following, we list a few of the variations. Dietz [40] pioneered the

labeling of an ordered tree [56] [78]. He used (Pre-order, Post-order) numbers to

label the nodes of a data-tree. Pre-order sequence is based on traversing the tree

recursively from the root R to subtrees rooted at R in a depth-first direction. Post-

order sequence is based on traversing the tree in an opposite direction to that

given in pre-order sequence. A vertex x is an ancestor of y if and only if x occurs

before y in the pre-order traversal of the tree and after y in the post-order

traversal. Li and Moon [78] propose the (Order,Size) labeling scheme. The Order

part is based on a pre-order traversal, and the Size part is an estimate of the

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 29

number of the child/descendent nodes for a given node. This labeling scheme

leaves room for expansion in order to avoid relabeling of the data-tree in case of

insertion. Relabeling may be delayed, but eventually it is required. It occurs more

often if the data distribution in the tree is skewed.

Tatarinov et al. [119] discuss the possibility of using real numbers (rational

numbers) instead of integers to represent a position in their proposed global

order of XML trees and discarded this idea because there is a finite number of

values between any two real values stored in the computer and using real values

instead of integers does not make much difference. Later, Amagasa, Yoshikawa,

and Uemrua [8] used rational numbers instead of integers to represent a region

(interval) in node indexing. Similar to the (Order,Size) labeling scheme [78], the

rational number approach only avoids node relabeling as much as possible. If the

number of insertions exceeds a specific limit, the nodes have to be relabeled. Wu

et al. [135] propose a novel labeling scheme that uses prime numbers to label

nodes in an XML tree. In this approach, each node label can only be divided

exactly (without remainder) by its own ancestor(s).

2.2.2.3 Prefix Labeling Scheme

Dewey code labeling (Dewey labeling for short), which is an example of a

prefix labeling scheme, is another labeling scheme that was originally made for

general knowledge classification [100]. Tatarinov et al. [119] first used it for XML

tree-shaped data.

Each node is associated with a vector of numbers that represents the node-ID

path from the root to the designated node. In addition to being classified here as

a node index type, it can also be considered as a path index since each node is

represented as a complete path from the root to the indexed node.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 30

Figure 2.10 is an example of the Dewey labeling scheme for the XML

document in Figure 2.1. Each node label represents the node location within a

path by including its ancestors’ coding as a prefix (vertical coordinate), and it

also includes the node number within the siblings of the same parent (horizontal

coordinate). The level is implicitly included by counting the number of segments

that are separated by a delimiter (dot in our example in Figure 2.10) in the

Dewey labels.

Figure 2.10 Dewey labeling scheme

To decide if a parent-child or an ancestor-descendent relationship exists, we

perform a prefix matching operation on the index string. In a given data-tree,

node x is an ancestor of node y if the label of node x is a substring of the label of

node y. For example, node (0.3) is an ancestor of node (0.3.1.0). Unlike the

(Beg,End) labeling scheme, the Dewey labeling scheme does not require any

additional information in order to evaluate the parent-child relationship. For

example, it is easy to see that node (0.3) is the parent of node (0.3.1).

1

5 6 9

12

book

7 10

2

3author

paper

paper
paper

author

authorreviewer

Bib

84 1311

(0)

(0.0)

(0.0.0)

(0.0.0.0)

(0.1)
(0.2)

(0.2.0)

(0.2.0.0)

(0.3.0)

(0,3)

(0.3.1)

(0.3.1.0)(0.3.0.0)
“Wang”“Ahmad”“Tim” “Sarah”

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 31

The sibling relationship can be computed in the same way without the need

for any additional information (e.g. level number or parent ID). The Dewey

labels provide direct support for the sibling relationship. In a given tree, node x

and node y are siblings if nodes x and y have the same number of fragments in

their labels (call it n) and x.prefix = y.prefix (where the prefix length is equal to n

minus one). For example, node (0.3.0) and node (0.3.1) are siblings.

Dewey labels are much easier to update than (Beg,End) labels. When a new

node is inserted, only the nodes in the subtree rooted at the following sibling

need to be updated [119]. However, its storage size increases with the depth of

the tree. Furthermore, as the depth increases, it becomes more costly to infer the

parent-child or the ancestor-descendent relationship between any two arbitrary

nodes because the string prefix matching becomes longer.

Fisher et al. [48] propose a dynamic labeling approach that can be applied to

Dewey labels with identifiers of size O(log n) when there is type information in

the form of a DTD or Schema, where n is the size of the database. Similar to all

labeling schemes, immutable Dewey labeling requires O(n) bits per label [34].

It is easy to infer the exact ancestors or descendents of a given node in

Dewey labeling scheme indexes. For example, in Figure 2.10 the ancestors of the

node (0.3.1) are the nodes that start with a (0.3) or (0) prefix, and the descendents

are the nodes that start with the (0.3.1) prefix, such as node (0.3.1.0). Since the

complete path is recorded within a node index, Dewey labeling scheme indexes

return a precise and a complete answer for both path queries and twig queries.

Path and twig queries need join operations in order to be evaluated, specifically

the number of nodes in the query minus one join operations are required.

Many variants of prefix labels are proposed in the literature. O’Neil et al. [99]

propose the ORDPATH labeling scheme that is similar to the Dewey labeling

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 32

scheme, except that the child nodes of a given parent node are labeled by using

odd numbers, and even numbers are used later for new insertion. In the GRoup

base Prefix (GRP) labeling scheme [80] the labels consist of two parts, namely,

group ID and group prefix. Doung and Zhang [42] propose Labeling Scheme for

Dynamic XML data (LSDX), where the labels are a combination of numbers and

letters. LSDX support the ancestor-descendent relationship as well as the sibling

relationship between nodes. GRP and LSDX labeling schemes are persistent,

therefore their label sizes can reach O(n) bits per label in the worst case, where n

is the number of nodes in the tree.

2.2.2.4 Summary of Node Indexes

Table 2.1 contains a summary of the two types of labeling schemes that are

used to form node indexes. The precision of an index scheme is either precise

(does not return any false answers) or imprecise (may contain some false

answers along with the correct answers). If the recall achieved is 100% then the

result is complete, otherwise it is incomplete. Relationship computation is fixed if

we can determine the relationship between any two arbitrary nodes in a fixed

time, which may depends on the depth of the data-tree. The relationships

supported are ancestor-descendent, parent-child, and sibling relationships. The

data type is either a number or a string. The types of queries supported by these

node indexing schemes are path and twig queries. The evaluation of both types

of queries usually require join operations. The maintenance cost of the indexes

depends on the number of elements and whether or not the index is mutable or

immutable.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 33

Table 2.1 Comparison of interval labeling scheme with prefix labeling scheme

Both types are equivalent with respect to precision, completeness (recall),

and maintainability. However, they differ with respect to the other

characteristics. The (Beg,End) labeling scheme requires fixed time to compute a

relationship between any two arbitrary nodes for two reasons. First, it uses

integer values to index the nodes. Second, the size of the label that is used to

index each node is fixed depending on the depth of the tree. On the other hand,

in Dewey labeling schemes, the time that is required to compute the relationship

between any two arbitrary nodes is directly proportional to the depth of the

nodes for two reasons. First, Dewey labeling schemes use strings to represent

No. Criteria Interval Labeling
(Beg,End)

Prefix Labeling
(Dewey)

1 Precision Precise Precise

2 Recall Complete Complete

3 Computation
Complexity

Relationship
computation Fixed Directly proportional

to depth increase

Relationship
supported

- Ancestor/Descendent
- Child/Parent (if “Level”

is available)
All

Can infer exact
ancestor &
descendent nodes

No Yes

Data type Numerical String

4 Size/Scalability
for increasing depth Linear Exponential

5 Type of queries supported
efficiently (without joins) None None

6 Maintenance
cost

Mutable O (log n) O (log n)

Immutable O (n) O (n)

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 34

labels instead of integers. Second, the labels’ size increases as the depth increases.

Unlike (Beg,End) labels, each Dewey label contain the root path (the path from

the root to the designated node) information. Therefore, with Dewey labels, we

can infer any node’s parent-child or ancestor-descendent from the label of the

node. Finally, prefix labels are often easier to update than interval labels,

although, the cost of maintaining prefix labels can be the same as the cost of

maintaining interval labels in the worst case.

2.2.3 Graph Indexing Schemes

A graph index (a.k.a. summary index) is a structural path summary [36] that
can be used to improve query efficiency, especially for single path queries. It is
also capable of solving twig queries but with an additional cost of multiple join
operations.

Graph indexes consider paths, during query evaluation, as a whole path
instead of dealing with each node in the path separately. A subsequent step is
needed to join single paths together in order to evaluate a twig query. In contrast
to node indexes, the number of joins is reduced during query processing and
consequently query performance is improved.

Graph indexes have been categorized according to many criteria. For

example, Gou and Chirkova [56] group them into two classes, path indexes,

which are able to cover single path queries (such as strong DataGuides and

1-index), and twig indexes, which are able to cover twig queries (such as F&B-

index). Graph indexes can also be categorized according to their path exactness

[103]. Some schemes are exact such as strong DataGuide, Index Fabric, 1-index,

and F&B-index; while others are approximate such as approximate DataGuide,

A(k)-index, D(k)-index, and (F+B)k-index.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 35

Our classification considers the following important properties of an index:

• Path determinism: If the index tree is a Deterministic Finite Automaton, then
the paths of the tree are considered to be deterministic paths. Given a
particular input (tag name) to a particular node in a tree, it will always
produce the same single output (path) if the system is deterministic, and it
may produce several similar outputs (paths) if the system is non-
deterministic. This feature assures that every distinct path in an index
graph is represented only once. Otherwise, multiple identical paths may
exist in the index, which may add to the complexity of query evaluation.
Deterministic indexes guarantee uniqueness of paths, and non-
deterministic indexes guarantee the uniqueness of elements.

• Bisimilarity: There are two types of bisimilarity, namely, forward and
backward bisimilarity. Two nodes are backward bisimilar if they share the
same incoming paths. Two nodes are forward bisimilar if they share the
same outgoing paths. The direction of bisimilarity significantly affects the
size of an index and the answering power of an index to a given query.
Non-deterministic graph indexes with only backward bisimilarity tend to
have lower accuracy (which is corrected by some post-processing steps)
but their sizes are minimal. In contrast, graph indexes with forward and
backward bisimilarity have higher accuracy and cover twig queries, but
their sizes are larger than those of backward bisimilar indexes.

Based on path determinism and bisimilarity, we classify graph indexes into
the following categories:

• Deterministic graph indexes: This includes strong DataGuides [54],
approximate DataGuide [55], and Index Fabrics [37].

• Non-deterministic graph indexes with backward bisimilarity: This includes
1-index [90], A(k)-index [70], and D(k)-index [28].

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 36

• Non-deterministic graph indexes with forward and backward bisimilarity: This

includes F&B-index [56] [2], (F+B)k-index [67], disk-based F&B-index

[131], and AB-Index [145].

Gou and Chirkova’s [56] classification combines our first two groups into

one that covers single path queries. Their classification for graph indexes is based

on the type of queries (path or twig) an index covers, while our classification of

XML graph indexes is based on their deterministic property, in addition to

forward and backward bisimilarity.

Deterministic indexes guarantee uniqueness of paths, and non-deterministic

indexes guarantee the uniqueness of elements. Therefore, deterministic indexes

are suitable for single path queries (where the complete path is known). For

example, to evaluate the query “/P/A” over the deterministic strong DataGuide

index in Figure 2.11(B) we have to traverse one path only. In contrast, non-

deterministic graph indexes may lead to traversing more than one index path to

evaluate a single path query. For example, to evaluate the same query as

described above over the non-deterministic 1-index in Figure 2.11 (C) we have to

traverse more than one path that satisfies the query.

Non-deterministic graph indexes, on the other hand, represent every value in

the source data only once in the index tree, while deterministic graph indexes

may have the same value in the source data repeated in more than one location

in the index tree. For example, node “9” in the deterministic strong DataGuide

index in Figure 2.11 (B) is listed twice, while the non-deterministic 1-index in

Figure 2.11 (C) has it listed only once. Furthermore, deterministic indexes may

grow exponentially in the size of the original data (due to repetition of nodes),

while non-deterministic indexes grow linearly [90]. Based on this discussion, in

addition to fact that the term path indexes are used ambiguously in the literature

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 37

to refer to absolutely different types of indexes, we use determinism as one

criterion to classify graph indexes.

The other criterion that we use to classify graph indexes is the direction of

bisimilarity. This criterion further subdivides the non-deterministic indexes into

backward, and forward and backward bisimilar indexes. The direction of

bisimilarity significantly affects the size of an index and the answering power of

an index for a given query. Non-deterministic graph indexes with only backward

bisimilarity tend to have lower accuracy (which is corrected by some post

processing steps) but their sizes are minimal. In contrast, graph indexes with

forward and backward bisimilarity have higher accuracy and cover twig queries,

but their sizes are larger than those of backward bisimilar indexes.

We elaborate the development of graph index schemes according to these

three classes and analyze the schemes using the general criteria given earlier.

Please note that all graph indexing schemes provide a complete answer for both

single path queries and twig path queries. They do not require extra joins to

evaluate the single path queries but they require join operations to evaluate the

twig queries (except F&B indexes).

2.2.3.1 Deterministic Graph Indexes

In deterministic graph indexes, each unique path in a data graph is listed

once in the summary graph, and every path in a summary graph has at least one

matching path in the data graph. Three indexing schemes of this type are strong

DataGuides, approximate DataGuide, and Index Fabrics.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 38

DataGuide

Goldman and Widom [54] present one of the early structure summaries

called a strong DataGuide. In this scheme, the nodes in the source data are

partitioned based on their root path, that is, the path from the root to the indexed

node. The graph index (a.k.a. structure summary) of an XML data-graph is a

strong DataGuide if it fulfills two conditions:

• Every distinct root path in the source data appears only once in the graph

index.

• All the paths in the graph index have at least one matching root path in

the original source data. In other words, there are no invalid paths in the

graph index.

 Figure 2.11 contains an XML data-tree and its associated graph indexes.

To simplify the comparison between different schemes in Figure 2.11, we assume

an edge-labeled graph structure, use numbers inside the nodes to represent the

node IDs, and use letters to represent the elements (tag types) of the source XML

data. The letters (B,P,A, and R) in Figure 2.11(B-F) stand for book, paper, author,

and reviewer in Figure 2.11(A), respectively. Figure 2.11(A) is a modified version

of the XML data-tree in Figure 2.2. The difference is that two edges are inserted

(represented by the dashed lines in Figure 2.11(A)). The first edge connects nodes

“4” and “3”, and the second edge connects nodes “5” and “9”. These edges

transform the tree-shaped data in Figure 2.2 into directed acyclic graph-shaped

data. Unlike node indexes, graph indexes are capable of supporting DAG data

such as in Figure 2.11(A).

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 39

Figure 2.11 XML data-tree and its corresponding graph indexes

The graph index in Figure 2.11(B) is a strong DataGuide for the data in

Figure 2.11(A). Note that node number “3” occurs in both the “/B/A” and “/P/R”

paths. Node number “9” occurs in both the “/P/R” and “/P/A” paths. One may

argue that being deterministic is an advantage of the strong DataGuide structure

index. Nevertheless, a node’s repetition is directly proportional to the existence

of multiple parent nodes and cycles in the source data. In the worst case, the

structural index size may exceed the original size of the data and hence it may

lose its essential characteristic of a summary. In the case of DAG data, the size

may be exponential in the size of the original data. Tree-shaped XML data, on the

(A) XML Data Graph

1

457

PB

69

2

3

A R A

(B) Strong DataGuide

398

1

8

R

P
B

6 9

A

2

3

A
R A R

(C) 1-index

457

1

8

R

P
B

6

2

A
R A

(D) A(1)-index

457

39

1

8

R

P
B

6 9

A

2

3

A
R A R

(E) A(2)-index

457

1

8

R

P
B

6 9

A

2

3

A
R A R

(F) F&B

574

P

1

4 5 7

8

book

6 9

2

3

author

paper
paper

paper

author reviewer
author

“Tim” “Sarah” “Wang” “Ahmad”

reviewer

reviewer

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 40

other hand, requires storage space, in the worst case, equal to the size of the data

itself.

Strong DataGuides are capable of giving a complete and precise result for

single parent-child path queries [67] such as “/B/A” in our example, which

returns the node {3}. They are also complete and precise for ancestor-descendent

path queries. For instance, the query “//R,” in our example, returns the nodes

{3,8,9}.

Strong DataGuides are complete for twig queries but not precise [67]. For

example, evaluating query “/P[/A]/R,” which returns an R node that has a P

parent node and an A sibling node, over the strong DataGuide index in Figure

2.11(B) returns index nodes {3,8,9}. This answer is complete because the returned

set includes the correct answer {8,9}, but it is not precise as node {3} does not

belong to the correct answer.

The complexity of maintaining strong DataGuides depends on the structural

effect of the updates. Updating strong DataGuides could be as simple as

inserting a new leaf into tree-structured data, which requires only one target set

to be recomputed and one new object to be added to the strong DataGuide. In

the worst case, updating a tree with a subgraph of structured data that has loops

and sharing may incur recomputation of a large portion of the strong DataGuide.

An edge insertion update requires touching a number of nodes and edges that is

equal to O(n + m) in the worst case, where n is the number of nodes (objects) and

m is the number of edges of a strong DataGuide. Please note that from this point

forward DataGuide alone stands for strong DataGuide.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 41

Approximate DataGuide

Experiments have shown, in general, that the size of the strong DataGuide is

much smaller than the original database. There are cases, however, where the

size of the strong DataGuide is unreasonably large (e.g., for cyclic data).

Approximate DataGuide (ADG), which is proposed by Goldman and Widom

[55], minimizes the size of strong DataGuides. ADG ignores the second

requirement of the strong DataGuide, but maintains the first one. Therefore, it

ensures that every distinct root path in the data source appears exactly once in

the ADG, but it does not ensure that all ADG paths exist in the original data.

Hence, an ADG may have false positives but never false negatives, so that all

correct paths are guaranteed to exist in addition to some false paths. Experiments

demonstrate that there is a trade-off between the size of ADG and its accuracy. In

general, strong DataGuide characteristics are applicable for ADG, except that the

size of the ADG is often smaller.

Index Fabric

Index Fabric is proposed by Cooper et al. [37] as a solution for very large

indexes that may not fit in memory. Index Fabric utilizes its paging capabilities

to solve the size problem. It uses prefix-encoding to represent paths as strings.

These strings are classified and sorted by a special index called the Index Fabric.

The index structure is designed specifically for complete path queries that start

from the document root node. Other paths such as descendent path queries “// ”

require a post-processing stage and expensive index lookups. The notion of

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 42

refined paths (template paths) is proposed by the authors to solve this problem.

However, the refined paths are not dynamic and need to be determined prior to

index creation and loading time.

The Index Fabric indexes both paths and values in a tree. As an example,

each edge of the data-tree in Figure 2.12(A) (which is the same as the XML data-

tree in Figure 2.2) is given a designator as illustrated in Figure 2.12(B). The edge

labels along with the content of the data-tree are combined at the leaf nodes to

form a graph index for each value in the tree. Note that compression is used to

minimize the size of the tree. For example, in Figure 2.12(C), since book edges are

followed by an author edge, the bold capital B designates the path “/B/A” (book

and author), instead of “/B” alone.

A major contribution of the Index Fabric is its layered-based paging strategy

to index large data. This feature makes it possible to handle very large indexes.

The index structure is stored on disk and divided into multiple blocks of

approximately equal size, each of which holds a small sub-Trie. The Tries of the

lower levels are referenced by higher level Tries in the Index Fabric, and so forth

until we reach the root Trie, which can fit in one block. The number of the Index

Fabric levels is based on the size of the original data.

Index Fabric is conceptually similar to strong DataGuide [130] [32]. It is

deterministic and its size may grow exponentially in the size of the original data

for the DAG data, and linearly for the tree-shaped data. Furthermore, it is

complete and precise for path queries, and complete for twig queries but not

precise. DAG data can be indexed by an Index Fabric, but Index Fabric is more

efficient for tree-shaped data.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 43

Figure 2.12 Index Fabric of the data-tree in Figure 2.2

The Index Fabric is a balanced structure tree like a B-tree. Updating an Index

Fabric may include a deletion of one record and an insertion of another. The

insertion may cause one block per level of the tree to split in the worst case.

2.2.3.2 Non-Deterministic Graph Indexes with Backward
 Bisimilarity

The 1-index, the A(k)-index, and the D(k)-index are based on backward

bisimilarity partitioning. While the 1-index backward bisimilarity length is equal

to the length of the longest path in the data-graph, the A(k)-index and the

D(k)-index backward bisimilarity lengths are set by a value k. The k value in the

A(k)-index is set manually, and the k value in the D(k)-index is set

automatically.

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author reviewer author

“Tim” “Sarah” “Wang”“Ahmad”

(A) Data-tree (B) Designator dictionary

B book

P paper

A author

R reviewer

B A Tim

PB

(C) Index Fabric

P R Ahmad

R

P A WangP A Sarah

S

A

W

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 44

 (1-index)

Milo and Suciu [90] propose 1-index as an attempt to reduce the size of a

structural summary to less than that of a strong DataGuide by relaxing the

determinism constraint. Figure 2.11(C) is an example of 1-index for the data in

Figure 2.11(A). The 1-index partitions the data nodes of a document into

equivalence classes based on their backward bisimilarity from the root node to

the indexed node. Both strong DataGuide and 1-index are identical in the case of

XML data-trees. In the case of DAG data, however, a 1-index may contain similar

root paths, but represents each node in the source data-graph only once, and

hence it is possible for a node to be reachable by multiple paths (see nodes “3”

and “9” in Figure 2.11(C) for example). Based on this fact, we can say that the

1-index scheme is non-deterministic in nature. In the worst case, the size of

1-index will never exceed the size of the original data regardless of whether the

data source is a basic tree or a graph. Nevertheless, 1-index structural summaries

are often too large, and are considered inefficient when the original source data is

large [28] and irregular.

While a 1-index represents every value in the source data only once in the

index tree, a strong DataGuide may have the same value in the source data

repeated in more than one location in the index tree. Hence, a 1-index is more

node centric in its partition. Inversely, similar paths in the source data could be

represented by multiple similar paths in 1-index scheme, while strong

DataGuide represents all similar paths in the source data by only one path in the

index. Therefore, strong DataGuide is more path centric in its partition.

It is easy to see from Figure 2.11(C) that 1-index is complete and precise for

evaluating path queries such as “/B/A” and “//R”, and is complete but not precise

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 45

for evaluating twig queries like “/P[/A]/R”. In General, 1-index is always

complete, but not necessarily precise [70].

Kaushik et al. [68] review two kinds of updates for the 1-index, namely, the

addition of a subgraph, and the addition of an edge. Let the data-graph before

the addition of the new file be G, the 1-index be IG, H is a new subgraph, and the

1-index for H be IH. Let the number of nodes in IG, H, and IH be nIG, nH, and

nIH, respectively, and the number of edges be mIG, mH, and mIH, respectively.

The time taken by the subgraph addition is O(mHlog(nH) + (mIH +mIG)log(nIH +

nIG)). Note that this is independent of the size of G, but dependent on the size of

IG, which is usually smaller than the size of the data-graph.

The complexity of edge addition is measured by the number of nodes and

edges touched in the data-graph during the update process, which can be O(n +

m) in the worst case scenario, where n is the number of nodes and m is the

number of edges in the data-graph[68].

A(k)-index

The dominant disadvantage of strong DataGuide and 1-index is the size of

their indexes when the source data is large and irregular. A(k)-index is proposed

by Kaushik et al. [70], mainly to overcome the size problem. Similar to 1-index,

A(k)-index (Figure 2.11 (D and E)) is based on backward bisimilarity and is non-

deterministic. A(k)-index uses a mechanism to minimize the size of the graph

indexes by specifying a factor k that is used to decide the length of the

backward bisimilarity of the indexed nodes. Two nodes are backward

k-bisimilar if they share the same incoming paths of a length = k. For example, an

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 46

A(3)-index is an index for nodes that share the same incoming labeled (tagged)

paths of length three.

The size of an A(k)-index is generally smaller than that of a strong

DataGuide and a 1-index. Similar to the 1-index scheme, A(k)-index grows

linearly in the size of the source data regardless of the shape of the data. A

smaller value of k results in a smaller index. A(k)-index gains the advantage of

having a smaller size at the expense of precision since the index does not

necessarily reflect the complete path from the root node.

Since the A(k)-index is based on equivalence-class partitioning of nodes in a

data-graph, it is usually complete but not necessarily precise [70]. We take an

A(1)-index for the data in Figure 2.11(A), which is illustrated in Figure 2.11(D), as

an example. For path queries such as “//R”, A(1)- index is complete and precise

as it will return the node set {3,8,9}. Although, it is complete for the path queries

such as “/B/A”, as it will return {3,9}, which is a superset of the correct answer {3},

it is not precise as the answer set contains the wrong answer “9.” It is only

precise for path queries with a length that is less than or equal to the length set

by the k value. For example, an A(2)-index, as illustrated in Figure 2.11(E), is

complete and precise for both “/B/A” and “//R” queries. Note that Figure 2.11(E)

is identical to the 1-index in Figure 2.11(C). Actually, a 1-index is a special case of

A(k)-index where k value is equal to the depth of a data-graph (the longest path

in a graph). A(k)-index is complete but not precise for twig queries like

“/P[/A]/R.”

The subgraph addition algorithm for the 1-index extends to the A(k)-index.

Unfortunately, the edge insertion algorithm does not extend and hence the edge

insertion for the A(k)-index remains an open problem [68].

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 47

D(k)-index

Choosing the correct value of k in the A(k)-index scheme is the biggest

challenge. Large values may create a larger size index that may negatively affect

the query processing for both short path and long path queries. Low k values, on

the other hands, may produce smaller indexes and thus more efficient, but less

precise, query processing. Chen et al. [28] propose D(k)-index to choose the most

suitable value of k dynamically based on the workload. Therefore, D(k)-index is

more efficient than A(k)-index with regard to processing time and storage space.

In general, with regard to the rest of the above listed evaluation criteria, both

D(k)-index and A(k)-index schemes share the same levels of precision,

completeness, and scalability. For both D(k)-index and A(k)-index, if the length

of the path in a query is longer than the value of k, then a post-evaluation step

might be necessary to double check the correctness of the answer, which may be

costly.

The D(k)-index is considered for two types of updates: the addition of a new

file (subgraph), and the addition of a new edge. The update algorithm for a

subgraph addition is based on the update algorithm of 1-index by Kaushik et al.

[68]. On the other hand, the edge addition algorithm is novel and in general

performs better than the one presented by Kaushik et al. Assume that a new edge

is added to the D(k)-index IG from X to Y, and Y ’s local similarity (identical

structure) is equal to Ky. While the Kaushik algorithm, in the worst case, needs to

touch O(n+m) nodes and edges in the data-graph, the update algorithm for the

edge addition with the D(k)-index can touch nodes and edges in a distance less

than or equal to Ky in the index graph IG [28].

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 48

2.2.3.3 Non-Deterministic Graph Indexes with Forward and
 Backward Bisimilarity

We review three types of indexing schemes under this class of graph indexes:

the F&B-index, the (F+B)k-index, and the disk based F&B-index. They are

non-deterministic like the above type of graph indexes (1-index, A(k)-index, and

D(k)-index), but they differ with respect to size and query answering power as

they are larger and they cover twig queries as well as single path queries.

F&B-index

The F&B-index was introduced by Abiteboul et al. [2]. Unlike 1-index,

A(k)-index, and D(k)-index which are based only on the incoming (backward)

paths bisimilarity, this index scheme is based on the incoming and the outgoing

(forward and backward) paths bisimilarity of all nodes in the source data-tree or

data-graph. Therefore, it is considered to be a twig structural index scheme. It

can be used as a covering index for the set of all branching path queries that can

be expressed over a tree or graph of data.

To demonstrate the benefits of this indexing scheme, consider the twig query

“/P[/A]/R.” Evaluating this query over strong DataGuide (Figure 2.11(B)), 1-index

(Figure 2.11(C)), or A(2)-index (Figure 2.11(E)), returns a set of R nodes {3,8,9}.

We see that R node “3” does not contribute to the correct answer, yet it is

returned in the initial steps by all the indexes. Eventually, it is eliminated from

the final answer after performing some additional join steps. In contrast, as

illustrated in Figure 2.11(F), the F&B-index detects this mismatch early and is

able to exclude R node “3,” therefore avoiding the additional joins and

improving efficiency. F&B-index therefore is complete and precise for twig

queries as well as for path queries.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 49

The F&B-index is non-deterministic. The size of the index grows linearly in

the size of the source data document, and in the worst case does not exceed the

original data size for both data shapes (tree and graph). Kaushik et al. [67]

proved that F&B-index is the smallest index covering all branches of a given

XML graph. However, the size of an F&B-index is often too large to fit in

memory. To update the F&B-index when a subgraph or an edge is added to the

data-graph, approaches similar to those used for updating the 1-Index by

Kaushik et al. [68] can be adopted.

(F+B)k-index

Kaushik et al. [67] propose (F+B)k-index, which is a modified version of the

F&B-index. They manage the size of the F&B-index by specifying the value of k

[56]. A low value of k results in an index that can cover limited classes of

branching path queries, but the index size is often small. A high value of k, on the

other hand, can cover a wide range of classes of branching path queries at the

expense of the size since the size of the index is often large. With regard to the

rest of the comparison criteria, both F&B-index and (F+B)k-index have the same

features. The idea of (F+B)k-index as an extension to F&B-index is analogous to

A(k)-index as an extension to 1-index.

Disk-based F&B-index

The main shortcoming of the F&B-index and the (F+B)k-index is often their

large sizes, because they have more details about each node. They, therefore,

often do not fit in memory. To overcome this weakness, Wang et al. [131]

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 50

proposed a disk-based F&B-index with various clustering properties and criteria.

They integrate 1-index with F&B-index in a new clustered disk-based F&B-index

and store the index on the disk which can be dealt with efficiently as needed. In

this indexing scheme, only relevant chunks of the index are returned from disk

to main memory in order to be processed, which is similar to paging utilities that

are available in some other indexing approaches (e.g. Index Fabric).

 With regard to the other comparison criteria, in general, the disk-based

F&B-index has the same characteristics and features as the regular F&B-index, in

addition to the improvement in dealing with large size data. The authors of disk-

based F&B-index [131] did not discuss or present any updating algorithm for

their indexing scheme.

2.2.3.4 Summary of Graph Indexes

Note that 1-index and strong DataGuide indexes are suitable for small to

medium size data while disk-based F&B-index and Index Fabric are more

appropriate for very large data sources. Both 1-index and F&B-index are

considered to be exact indexes. While A(k)-index and D(k)-index could be

approximate indexes if the value of k for the used indexes is smaller than the

length of the query path. Moreover, 1-index, A(k)-index, and D(k)-index are

based on backward bisimilarity and they cover all single path queries. F&B-index

and disk-based F&B-index, on the other hand, are based on forward and

backward bisimilarity and they cover all branching queries for a given data set.

Table 2.2 contains a summary of the graph indexing schemes. The initial size

(when it is first created) of a graph index for both tree-shaped and graph-shaped

data could be either the same as the size of the data or exponential in the size of

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 51

the data, in the worst case. The scalability (growing size) could be either linear or

exponential in the size of data. The type of queries that are supported efficiently

could be path, twig, or both.

Non-deterministic forward and backward bisimilar indexes are the only type

of graph indexes that are capable of supporting twig queries if the index is exact

(i.e. F&B-index). Note that the size of a deterministic index grows linearly in the

original size of the source data if the shape of the source data is tree, and it grows

exponentially if the shape of the source data is graph.

Table 2.2 Comparison among the three categories of graph indexing approaches

Before moving into the third type of structural indexes, it is worth

mentioning here that graph indexes, in addition to being used as structural path

Deterministic Non-deterministic
Backward Bisimilar

Non-deterministic
Forward & Backward Bisimilar

Criteria Strong DataGuide, Index Fabric
Approximate DataGuide 1-index, A(k)-index, D(k)-index F&B-index, (F+B)k-index, Disk-based

F&B-index

1-Precision
Path Precise Precise Precise

Twig Not Precise Not Precise Precise

2-Recall
Path Complete Complete Complete

Twig Complete Complete Complete

3- Complexity
(joins required)

Path No No No

Twig Yes Yes No

4- Size (initial, worst)
Tree Same Same Same

Graph Exponential Same Same

4- Size (scalability, growing) Linearly (for tree data),
Exponentially (for cyclic data) Linearly Linearly

5- Query supported efficiently
(without joins) Path Path

Path
(Twig by F&B-index and disk-

based F&B-index)

6- Maintain ability (Edge
insertion, worst) O (n + m) O (n + m) O (n + m)

Notes

- Path queries are precise for
k ≥ path length

- Edge addition to A(k)-index is not
available (open for research)

- Precision and the need for joins depend
on “k” value for (F+B)k-index

- Maintainability of disk-based is not
available (open for research)

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 52

summaries, can facilitate use of statistics and other features that can aid query

processing and optimization [4]. For example, a graph index can hold sample

values for each node or statistics about the extended data such as fan-in and fan-

out of each node.

2.2.4 Sequence Indexing Schemes

Sequence indexes [104] [130] transform XML documents and queries into

structure-encoded sequences. Answering a query requires sequence string

matching between the encoded sequences of the data and the query. This

eliminates the need for joins to evaluate twig queries. We must be careful,

however, when using matching to answer a query since the sequence may not

necessarily reflect a structural tree match (see Computational Complexity,

Refinement Steps, next page). Sequence indexes combine the structure and the

values of XML data into an integrated index structure. They are used to

efficiently evaluate path queries and twig queries with keyword components

without any extra join operations with tables that hold the values.

2.2.4.1 Specific Comparison Criteria of Sequence Indexes

In addition to the general comparison criteria listed above, we include the

following specific comparison criteria for this type of index:

• Computational complexity (indexing direction): The shape of an XML graph

is similar to a triangle. At the top there is only one root element and at the

bottom there may be many leaf nodes, which are usually value nodes.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 53

A top-down search for a value in a data-tree starts from the root element

then goes down the tree according to a given query path specification. In

contrast, a bottom-up approach starts the search from the values at the

leaf nodes. Since the selectivity of leaf nodes is higher than that of nodes

in the top and the middle of the tree, a bottom-up search results in fewer

paths in the tree being examined. Therefore, the indexing direction has an

effect on the efficiency of a query evaluation.

• Computational Complexity (Refinement Steps): Sequence schemes suffer from

two anomalies, namely, false positives (a.k.a. false alarms or imprecise

result) and false negatives (a.k.a. false dismissals or incomplete result).

Refinement steps are added to the evaluation process of a query to

overcome these problems. On the one hand, the fact that these anomalies

exist in the encoded sequence is an issue by itself. On the other hand, the

way that these anomalies are dealt with is another issue. With regard to

this criterion, we are only concerned with how efficiently these problems

are resolved.

Based on the importance of tree mapping direction, we divide sequence

indexes into two types, namely, top-down sequence indexing schemes and

bottom-up sequence indexing schemes. ViST and PRIX are examples of

top-down and bottom-up indexes, respectively.

2.2.4.2 Top-down Sequence Indexes (ViST)

The ViST (Virtual Suffix Tree) index structure is proposed by Wang et al.

[130]. Before we illustrate an example of ViST, please note that the data-tree in

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 54

Figure 2.13 (B) is an encoded form of the data-tree in Figure 2.13 (A) by

substituting the edge labels Bib File, book, author, paper, and reviewer with the

letters F, B, A, P, and R, respectively. Furthermore, Figure 2.13 (A) is the same as

the example edge-labeled data-tree in Figure 2.2. As an example of ViST,

consider the data-tree in Figure 2.13 (B) and the query tree in Figure 2.13 (D).

Both trees are transformed into structure-encoded sequences as illustrated below.

Note that each pair in the sequence consists of the node’s tag and the root path of

the node’s parent.

 Data tree 2 (D2) : (F,0) (B,F) (A,FB) (P,F) (P,F) (A,FP) (P,F) (R,FP) (A,FP)

 Query (Q2.4) : (F,0) (P,F) (R,FP) (A,FP)

The underlined subsequences of data D2 match the query sequence of query

Q2.4, so we return the matched subsequence in the data-tree as an answer to the

query. We should be aware of any existing false positives in the solution. For

example, consider the data-tree 3 in Figure 2.13 (C), the sequence of this tree is

illustrated below.

 Data tree 3 (D3) : (F,0) (P,F) (R,FP) (P,F) (A,FP)

To evaluate the above query Q2.4 over the data D3 data, we notice that the

underlined sequence forms an answer for the query. It is not a correct answer,

however, because the R and the A nodes do not have the same parent P node.

This is an example of a false-positive answer.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 55

Figure 2.13 Data trees and a query

In addition to false positives, the sequence schemes also have the problem of

false negatives, which is caused by the isomorphic tree problem. It occurs when a

branch node has multiple identical child nodes. For example, the two tree

combinations which are illustrated in Figure 2.14, have the following structural

sequences.

 Data tree 1 : (F,0) (P,F) (A,FP) (P,F) (R,FP)

 Data tree 2 : (F,0) (P,F) (R,FP) (P,F) (A,FP)

If we run any one of these two trees as a query over the other tree, we will

not find a match as can be seen from the translated sequences. However,

logically both trees have the same structure and same number and types of

elements. To solve this problem in ViST, which occurs when there are similar tag

siblings in a query, we have to rewrite the given query into all possible

combinations of sequence order. After that, we evaluate each query separately,

and then union the result of all queries. In the worst case, permutations of the

query sequence are exponential in the number of the similar siblings.

book

author

paper
paper

paper

author reviewer author

“Tim” “Sarah” “Wang”“Ahmad”

F

P P P

AA R

B

A

F

P P

R A

F

P

AR

Bib File

(C) Data tree 3(A) Data tree 1, from Figure 2.2 (B) Data tree 2 (D) Query

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 56

Figure 2.14 An example of false-negative

ViST is based on top-down traversal tree. As a result, for deep and large
XML documents, the size of the index becomes a problem as it does not scale
well with an increase in data size because the top elements have to be included
within the sequence of the newly inserted elements. As the paths in XML data
get longer, the sequence length will increase and hence the size of the index will
increase exponentially in the size of data.

The false positives problem is resolved by disassembling the query tree at the
branch into multiple trees, and using join operations to combine their result. This
solution is definitely expensive, since it involves additional join operations. ViST,
which is based on the B+-tree [130], is physically implemented as two levels of
B+-trees [56]. If we assume that the fan-out of the used B+-tree is equal to b, then
O(b logb n) nodes are touched during a sequence index update at each level,
where n is equal to the number of nodes in the data-tree.

2.2.4.3 Bottom-up Sequence Indexes (PRIX)

ViST’s top-down transformation approach weakens the query processing

because it results in a large number of nodes (paths) being examined during

subsequence matching for commonly occurring non-contiguous tag names.

F

P P

R A

(B) Data tree 2

F

P P

A R

(A) Data tree 1

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 57

Motivated by this fact, Rao and Moon [104] propose another approach that

implements bottom-up transformation instead. This approach is called PRIX

(PRufer sequences for Indexing XML). It is based on Prufer sequences as

indicated by the name. The bottom-up transformation of XML data-trees in PRIX

plays a crucial role in reducing the query processing time.

Basically, the top-level elements of an XML tree are shared with lower-level

elements by being their parent or ancestor nodes. Thus, if we index a tree starting

from the top, the chances are high of having a large number of elements that

share the same starting tags in a given query path. In contrast, indexing a tree

starting from the bottom and moving upward to the top of the tree reduces the

chance of having a large number of shared elements for a given query path as the

selectivity is higher at the bottom. A bottom-up index is more efficient than a

top-down index and PRIX therefore is more efficient than ViST [104].

PRIX is based on Prufer sequences. To illustrate how a Prufer sequence is

used to denote a tree, we use the data-tree in Figure 2.15, which is the same as

the data-tree in Figure 2.13 (B). The letters inside the node circles represent the

tag types (labels) and the numbers shown beside the nodes represent the post-

order numbering of the tree. To encode the tree in Figure 2.15 with a Prufer

sequence, we repeatedly delete the leaf node that has the smallest number and

append the label of its parent to the sequence.

Figure 2.15 An example of Prufer sequence

F

P P P

AA R

B

A1

2 3 5

4 6

8

7

9

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 58

As we can see in Figure 2.15, the smallest post-order number is “1” so we

delete it and add “2” to the sequence, so it becomes {2}. We delete the node

numbered “2” and add its parent “9” to the sequence to become {2,9}, and so

forth. At the end of this process, we have the sequence {2,9,9,5,9,8,8,9}, which

represents the following tag sequence {B,F,F,P,F,P,P,F}.

In PRIX the string/character data in the XML document tree are extended by

adding dummy child nodes before the transformation process so it can be

indexed using the Prufer sequence. Similarly, query twigs are also extended

before transforming them into sequences. Indexing extended Prufer sequences is

useful for processing twig queries with values. Since queries with value nodes

usually have high selectivity, they are processed more efficiently than those

without values.

The size of a PRIX grows linearly in the total length of the sequences stored

in it because an increase in the path length will result in a sequence addition

which is equal to the amount of the increase. In the PRIX approach, the length of

a Prufer sequence, as we noticed from the above example, is linear in the number

of nodes in the tree. Hence, the index size is linear in the total number of tree

nodes regardless of the depth of the tree.

PRIX uses a complex four-phase refinement process to deal with false

positives and false negatives. Basically, PRIX overcomes the false positives

problem by using document by document post-processing which is a time

consuming process. PRIX is based on the B+-tree, and it is built in a way similar

to ViST [130]. It is mainly implemented as two levels of B+-trees. If we assume

that the fan-out of the used B+-tree is equal to b, then O(b logb n) nodes are

touched during a sequence index update at each level, where n is equal to the

number of nodes in the data-tree.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 59

2.2.4.4 Summary of Sequence Indexes

Table 2.3 includes a summary of the sequence indexing schemes. Indexing

can be implemented in either a top-down direction or bottom-up direction. Both

single path and twig queries are supported efficiently by sequence indexes.

Table 2.3 Comparison between Top-down (ViST) and Bottom-up (PRIX) sequencing schemes.

2.2.5 Structural Indexes Critique

As is always the case with indexing schemes, there is a trade-off between the

size and the precision of the index on the one hand, and between the size and the

efficiency of the index in answering a query on the other hand [110]. The

No Criteria Top-down
(ViST)

Bottom-up
(PRIX)

1 Precision False-positives
(imprecise)

False-positives
(imprecise)

2 Recall False-negatives
(incomplete)

False-negatives
(incomplete)

3 Computation
Complexity

Refinement
step Expensive Joins Complicated four-

phase process
Indexing

direction Top-down Bottom-up

4 Scaling/Size Exponential Linear

5 Type of queries supported
efficiently (without joins) Path & Twig Path & Twig

6 Maintainability O(blogb n) O(blogb n)

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 60

advantages of one index scheme can be the disadvantages of another. In this

section we compare the three categories of structural indexes, namely, node

index schemes, graph index schemes, and sequence index schemes.

2.2.5.1 Criteria for Comparison among Structural Indexing
 Schemes

In addition to the general criteria listed previously we use the following

specific criteria to compare the above three types of structural indexing schemes:

• (A) Computational complexity: Does it require structural joins?

Structural joins are considered for path queries and twig queries. In

general, to achieve high performance for a query execution, we need to

minimize the number of joins.

(B) Computational complexity: Granularity of usage to evaluate a query.

The granularity of an XML index depends on the type of the indexing

scheme. For example, the granularity could be at the node level, the path

level, or the twig level (for twig queries). As the granularity of the index

that is used to evaluate a query become coarser, the execution time

becomes shorter.

• Data supported.

 The types of data supported by the XML indexing schemes are mainly

tree-shaped data and graph-shaped data. The main difference between

them is that the graph-shaped data can be used to represent an XML

document with the ID/IDREF attribute tokens. The tree-shaped data can

be considered as a subclass of the graph-shaped data where a node cannot

have more than one parent. The indexing schemes that are capable of

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 61

supporting the graph-shaped data are more powerful than the ones that

support only the tree-shaped data.

• Ability to facilitate the use of statistics and other features.

The ability to facilitate the use of statistics, such as the fan-in and the

fan-out of nodes, helps to provide query optimization with the capability

to choose the most efficient evaluation plan for a given query.

• Values integrated into the index structure.

If the values of the elements and attributes are indexed separately from

the structure, and a query with some predicates needs to be evaluated

over that data, then joins between the structural index and the value

indexes are necessary and hence increases the complexity of the XML

query evaluation process. In contrast, integrating values into the structural

index saves some additional joins and narrows down the matching

procedure during the evaluation process, since the selectivity of the values

are always higher than that of the elements in a structural index.

2.2.5.2 Comparison among Structural Indexes

Generally, sequence indexes may initially produce a wrong answer to a

query then correct it at a later stage in the evaluation process. The deterministic

graph indexes and non-deterministic graph indexes with backward bisimilarity

may produce some wrong initial answers. The non-deterministic graph indexes

that are based on forward and backward bisimilarity, on the contrary, are more

accurate and often return only the correct answers. Finally, since the node

indexes are used for binary joins, they do not produce any initial wrong answers.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 62

Without some extra post-processing steps, false negatives may occur when

we use a sequence indexing scheme to evaluate a query. On the other hand, node

and graph indexes always return a complete answer because the order of the

nodes is not encoded within the structure of the index.

The number of structural joins that are required to evaluate a path or a twig

query varies among the different schemes. It has a significant impact on the

query processing time. Node indexes are the least efficient with respect to

structural joins since they require joins for both single path and twig queries.

Graph indexes support single path queries without the need for structural joins

but structural joins are required (for all graph indexes except F&B-index) at the

branching node to evaluate twig queries. Finally, sequence indexes are the best

because the structure is encoded within the sequence so they do not require any

structural joins for single path or twig queries.

There are three levels of granularity used to evaluate a twig query: the pair-

wise, path, and twig levels. For illustration, in order to evaluate a twig query

using a node index, we break the query into nodes, then join nodes a pair at a

time until all nodes are joined together for the complete twig path to evaluate the

query. On the other hand, to evaluate a twig query using all graph indexes

except F&B-index, we break the query into several singular paths and evaluate

each path separately, then join the results of all paths to form the answer to the

query. Finally, to evaluate a twig query by using a sequence index, we process

the twig query as a whole.

Node indexes can only support tree-shape data because of the containment

rule that is used to specify the relationship between two nodes in a data-tree. In

order for node A to be an ancestor of node B, A’s interval code has to contain B’s

interval code, and not vice versa, which may be caused by a graph-shaped data.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 63

In contrast, graph indexes support the graph-shaped data well. Like node

indexes, sequences indexes only support tree-shaped data.

Some indexes provide valuable assistance for query optimization. For

example, strong DataGuides [54] are used in Lore [87] to facilitate annotation of

sample values and statistical data. The annotated information is associated with

the DataGuide objects (nodes). This information assists in estimating the cost of

the evaluation plans for a given query. The node and the sequence indexes do

not facilitate these kinds of supporting information.

There are some attempts to integrate values into graph indexes [37] [133],

although, the majority of graph indexes do not carry any values within the

structural summary. Node indexes cannot contain values, and values have to be

indexed separately. The only indexing schemes that are designed to efficiently

integrate values into the structural index are the sequence indexing schemes. We

observe that node indexes are mainly used for path joining, graph indexes for

path selection, and sequence indexes for complete query evaluation.

We summarize our comparison of the three categories of structural indexing

schemes in Table 2.4. The granularity of usage to evaluate a query could be at the

node level, the path level, or the twig level. The types of queries that are

supported efficiently without joins by these indexing schemes could be path,

twig, or both. The maintainability of graph and sequence indexes is measured by

the number of nodes that are needed to be touched during the update process.

On the other hand, the maintainability of node indexes are measured by the size

of used labels. The supported data could be a tree-shaped or a graph-shaped.

Tree-shaped data is considered a subset of graph-shaped data.

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 64

Table 2.4 Summary of comparison among the 3 categories of structural indexing schemes.

2.3 Summary

Indexing is key factor in improving the performance of XML queries [146].

Indexes are used during most of the optimization stages. Indexing the XML data

has to reflect the structure in order to be able to support XML queries. An XML

query consists of two parts: (1) the structural part, which is specified by the

components’ structure of the query; (2) the values that are associated with these

components.

 Our classification of XML graph indexes is novel. It is based on their

deterministic property in addition to forward and backward bisimilarity, which

Criteria Node Indexes Graph Indexes Sequence Indexes
1- Precision (wrong initial

answer, false positive) No Yes/No Yes

2- Recall (missing initially
correct answer, false negative) No No Yes

3- Computation
complexity
(structural

join required)

Path Yes No No

Twig Yes Yes / No No

3- Computation complexity
(granularity of usage to

evaluate a query)

Nodes Pair-wised
Evaluation

Path
Evaluation

Twig
Evaluation

4- Size / Scalability Linear-Exponential Linear-Exponential Linear-Exponential

5- Type of queries supported
efficiently (without joins) None

Path
(Twig by exact (F&B)

indexes)
Path & Twig

6- Maintainability for
adding an edge

O(n) immutable
O(log n) mutable O (n + m) O(blogb n)

7- Data supported Tree Graph Tree
8- Can facilitate the use of statistics No Yes No
9- Hold value No Yes/No Yes

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 65

determines the possible size and accuracy of an index. Deterministic indexes may

grow exponentially in the worst case, while non-deterministic indexes grow

linearly. Forward and backward bisimilar indexes are more accurate than

backward bisimilar indexes. Deterministic indexes guarantee uniqueness of

paths, and are suitable for single path queries. They evaluate a single path query

by traversing one path only. In contrast, non-deterministic graph indexes may

traverse more than one index path to evaluate a single path query. Our

classification of XML sequence indexes is also novel. It is based on the mapping

direction of data-trees, because the mapping direction is the main factor that

drastically affects the size of sequence indexes and their answering power. The

best way to judge the strength of an indexing technique is to compare it with

other techniques using common criteria that are applicable for all of them and

can act as a benchmark. In this chapter, we use common criteria to analyze the

characteristics of the most common types of XML structural indexes.

Our analysis of structural indexes is based on the following key issues:

retrieval power, which covers the precision and the completeness of an index;

processing complexity, which demonstrates how efficient an index can be used

to answer a query; scalability of the index and its adaptability to queries with

different path lengths; and finally update cost of the index.

We observe that no single indexing scheme is capable of satisfying all users’

needs; deciding which index scheme to use depends on the users’ preferences

[22]. There is a trade-off between the size of the structural index and its precision.

For example, graph indexes with only backward bisimilarity tend to have lower

accuracy (which is corrected by some post-processing steps) but their sizes are

minimal. In contrast, graph indexes with forward and backward bisimilarity

tend to have high accuracy but at the expense of the size. Node and sequence

CHAPTER 2. BACKGROUND AND LITERATURE STUDY 66

indexes can be used only for tree-shaped data, while graph indexes can be used

for both tree-shaped and graph-shaped data. Graph indexes can be used to

efficiently facilitate additional information such as some statistical information

[139], which can be used during a query optimization process. Some indexes

cover twig and single path queries, while others cover only single path queries.

Finally, the ultimate goal of researchers is to create an indexing scheme that

will occupy minimal storage without compromising the precision, if possible, or

at least improve the trade-off in favor of precision (i.e. have a small increase in

the size to achieve higher precision).

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 67

Chapter 3

LLS: Level-based Labeling Scheme for
XML Databases

Labeling nodes of XML trees to reflect the structure is useful for indexing

and retrieving XML data. Current labeling schemes can be divided into two

groups: interval labeling and prefix labeling schemes. In this chapter, we first

discuss the advantages and disadvantages of the two groups. We then propose a

novel labeling scheme, Level-based Labeling Scheme (LLS), which has the

advantages of the two types of schemes while eliminating the main

disadvantages. The LLS is based on the levels of the nodes in XML trees and the

summary of an XML tree. We provide a set of experiments that indicate the

performance benefits of our proposed scheme compared with interval labeling

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 68

schemes using different mappings to relational tables to implement the indices.

We end the chapter by summarizing our contributions

3.1 XML Labeling Schemes

Node indexes depend on the labeling schemes used. In this section, we

discuss the most popular types of labeling schemes. We then discuss their

importance in XML data storage and retrieval. Finally, we discuss their

advantages and disadvantages, which motivate us to propose LLS. The labeling

schemes are discussed in depth in Chapter 2. For the purpose of suggesting a

novel labeling scheme that combines two types of labeling schemes in one

integrated labeling scheme and for ease of reference, we review in this chapter

the information that is related to the integrated scheme.

3.1.1 Types of Labeling Schemes

Node indexes hold values that reflect the nodes’ positions within the

structure of an XML tree. Node indexes depend on labeling schemes [7]. Two of

the most widely used types of schemes are interval (a.k.a. region) labeling and

prefix (a.k.a. path) labeling.

The (Beg,End) labeling scheme proposed by Zhang et al. [143] is an early

interval labeling scheme. In this scheme, each node in an XML tree is given a

beginning and ending number based on the sequential traversal of XML

document. Two nodes are related if one of the node’s interval contains the other

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 69

node’s interval. Figure 3.2 is an example of the (Beg,End) labeling scheme for the

data in Figure 3.1.

Figure 3.1 XML document

Figure 3.2 A (Beg,End) labeled tree representation of the XML document in Figure 3.1

Li and Moon [78] propose another type of interval labeling scheme called the

(Order,Size) labeling scheme. The Order part is based on a pre-order traversal,

and the Size part is an estimate of the number of the child-descendent nodes for a

given node. This durable approach may provide intervals for a certain number of

<Bib>
<book>

<author>Tim</author>
</book>
<paper> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

book

author paper

paper

paper

author author
reviewer

Bib

“Wang”“Ahmad”“Tim” “Sarah”

(1,22)

(2,6)

(3,5)

(4)

(7,8)

(9,13)

(10,12)

(11)

(15,17)

(14,21)

(18,20)

(19)(16)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 70

new nodes equal to the gap size in order to avoid relabeling of the data-tree

nodes in case of insertion. In this case, relabeling may be delayed, but eventually

it is required. It occurs more often if the data distribution in the tree is skewed.

Amagasa et al. [8] use real numbers (rational numbers) instead of integers to

represent an interval in node indexing to further delay relabeling on nodes upon

insertion. Wu et al. [135] propose a novel labeling scheme that uses prime

numbers to label nodes in an XML tree. In this approach, each node’s label can

only be divided exactly by its own ancestor(s).

The Dewey code labeling scheme proposed by Tatarinov et al. [119] is an early

prefix labeling scheme. In this scheme, each node is associated with a vector of

numbers that represents the node-ID path from the root to the designated node.

To decide if there is a relation between two nodes, we perform a prefix matching

operation on the nodes index strings. Figure 3.3 is an example of the Dewey code

labeling scheme for the data in Figure 3.1.

O’Neil et al. [99] propose the ORDPATH labeling scheme that is similar to

the Dewey code labeling scheme, except that the child nodes of a given parent

node are labeled by using odd numbers, and even numbers are used later for

new insertions. This labeling scheme handles insertion gracefully. Fisher et al.

[48] propose a dynamic labeling approach that can be applied to Dewey code

labels when there is type information in the form of DTD or Schema.

Other prefix labeling for XML trees include GRP [80] and LSDX [42]. In the

GRoup base Prefix (GRP) labeling scheme, the labels consist of two parts,

namely, group ID and group prefix, while in the Labeling Scheme for Dynamic

XML data (LSDX), the labels are a combination of numbers and letters.

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 71

Figure 3.3 A Dewey code labeled tree representation of the XML document in Figure 3.1

3.1.2 Importance and Usage of Labeling Schemes

Node indexes [8] [48] [78] [99] [119] [135] [143] are used at the granularity of

individual nodes in a query path. Graph indexes [2] [28] [37] [54] [67] [70] [90]

[131] are used at the granularity of sets that represent paths in a query. Finally,

Sequence indexes [104] [130] are used at the granularity of a complete query

path. Node indexes depend on labeling scheme used. Unlike graph and sequence

indexes that may suffer from false positives and false negatives, node indexes

always return precise and complete answers [92] [93]. Node indexes require

more join operations to evaluate a query in comparison to graph and sequence

indexes. Nevertheless, precision and completeness are the core advantages of

node indexes over other types of indexes, which explain their popularity among

XML structural indexes.

Node indexes depend on the labeling scheme used. Two of the most widely

used labeling schemes are (Beg,End) [143] and Dewey code [119], which belong to

interval group and prefix group of labeling schemes, respectively. Node indexes

book

author
paper

paper
paper

author author
reviewer

Bib

“Wang”“Ahmad”“Tim” “Sarah”

(0)

(0.0)

(0.0.0)

(0.0.0.0)

(0.1)

(0.2)

(0.2.0)

(0.2.0.0)

(0.3.0)

(0,3)

(0.3.1)

(0.3.1.0)(0.3.0.0)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 72

can be used exclusively to evaluate XML queries. Graph and sequence indexes,

however, need some kind of labeling scheme to label individual nodes in XML

trees in order to work properly.

3.1.3 Limitations of Existing Labeling Schemes and
 Introduction to LLS.

Comparing the interval and prefix labeling schemes, we notice that each

type’s advantages are the disadvantages of the other [92] [93]. The interval

labeling schemes require fixed time to compute a relationship between any two

arbitrary nodes for two reasons. First, it uses numerical values to index the

nodes. Second, the size of the label that is used to index each node is fixed

depending on the depth of the tree. On the contrary, in prefix labeling schemes,

the time that is required to compute the relationship between any two arbitrary

nodes is directly proportional to the depth of the nodes for two reasons. First,

prefix labeling schemes use strings to represent labels instead of numbers.

Second, the labels’ size increases as the depth increases [93] [56].

Unlike interval labels, each prefix label contains the root path (the path from

the root to the designated node) information. Therefore, with prefix labels, we

can infer any node’s parent-child or ancestor-descendent from the label of the

node [93].

Finally, prefix labels are often easier to update than interval labels. Updating

interval labels are costly. When a new node is inserted into a data-tree, then all

the nodes in the tree, except the left sibling subtree(s) of the inserted node, have

to be updated [56] [93]. While in prefix labeling scheme, when a new node is

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 73

inserted, only the nodes in the subtree(s) rooted at the following sibling(s) need

to be updated [93] [119].

Because interval node indexes require fixed time to compute a relationship

between any two arbitrary nodes, we believe that they form a solid foundation

for strong node indexes. We also believe that interval node indexes can be

extended to have the advantages of prefix indexes. We therefore propose the LLS

labeling scheme, which is based on numerical values, has fixed-size labels

regardless of the depth of the node, requires a fixed time to compute a relation

between two nodes, can be used to infer the parent-child and ancestor-

descendent nodes from their labels, and requires modest amount of relabeling

upon insertion. Table 3.1 contains a synopsis of the characteristics of the

proposed LLS labeling scheme in comparison to the interval and prefix labeling

schemes.

Table 3.1 A comparison among Interval, Prefix, and LLS labeling schemes

 Interval labeling Prefix labeling Level-based
Labeling (LLS)

Relationship
computation Fixed Directly proportional

to depth increase Fixed

Data type Numerical String Numerical

Size Fixed Directly proportional
to depth increase Fixed

Can infer exact
related nodes No Yes Yes

Maintenance cost
Expensive (may

impose considerable
relabeling)

Less expensive (may
impose limited

relabeling)

Less expensive (may
impose limited

relabeling)

The motivation behind the design of LLS is to have a single labeling

scheme that has the advantages of both groups of labeling schemes, while

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 74

avoiding their disadvantages. The LLS is capable of processing single path

queries as well as twig queries. The LLS is based on the levels of the elements in

XML trees. The element labels and values are tightly coupled with a structural

summary so the method lends itself to efficient query processing and is shown

here to perform well in comparison to existing labeling schemes.

3.2 Our Approach: LLS Labeling Scheme

In this section, we first define our basic data model that is used in the LLS.

Then we discuss the updating complexity of the LLS labeling scheme. Finally, we

present two simple examples to illustrate how LLS labels are used to evaluate a

query in comparison with (Beg,End) interval labels.

3.2.1 Data and Graph Index Models

We model an XML document as a directed graph G=(R,VR,VL,E,tagg,labelg,T).

R is the root node. VR is the set of elements and attributes (internal nodes),

excluding R and VL. VL = (VT UVE) and VL is the set of leaf nodes that contain the

set of value (text) nodes, VT, and the set of empty elements nodes, VE. Nodes in

VR and VL are tagged with the tagg function (the extra g stands for the graph G).

Nodes in VR and VE are tagged according to the tags of the elements or attributes

they represent. Nodes in VT have the same tags as their VR parent nodes. A node

v, such that v∈ VR, has one or more child nodes, which could be VR and/or VL

node(s). E is a set of child-parent edges, E={e1,e2,…,ei}, that connect all nodes of

VR and VL to form a tree. The total number of edges is |E| and the total number

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 75

of nodes is |VR| +|VL |, where |E|=|VR| + |VL| since R VR. Each node in VR

and VL is associated with only one parent through an edge, except R, which does

not have a parent since it is the root node2.

All nodes in VR and VL are assigned unique labels through the labelg function,

which is determined by the LLS labeling scheme as follows. Each node v, such

that v∈ (VR UVE) is assigned a unique vector label <d.p.s> where d and p are

taken from the label of the o node in the summary S (Figure 3.5) to which v node

belongs according to an earlier implemented partition. That is, v node is an

instance of an o node (instance and summary are defined later). s is the instance

serial number of node o, which uniquely identifies this node among similar

nodes of the same class. Nodes in VT carry the same labels as their VR parent

nodes. The set of serial paths is defined by T, where T={ r1, r2,…,rn} and n is the

number of leaf nodes |VL|. We define serial path r in Definition 3.2 below. In our

model, an edge e of a node v, where e∈ E and v∈ (VR UVE), is equal to the serial

number s of the parent node p, denoted e(v)=s(p). The edges of the nodes in VT

are equal to the edges of their parent nodes. The data-tree graph representation G

for the data in Figure 3.1 is illustrated in Figure 3.4, which is used in the

examples throughout this chapter, unless we state otherwise. Next, we give

several definitions, which are used in describing the LLS labeling scheme.

Definition 3.1. A tag path t for a node v is a sequence of tags, l1.l2…li (i ≥ 1), of

the nodes on the path from the root node to v node, separated by dots. For

example, the tag path of node <3.31.1> is Bib.paper.author.

Definition 3.2. A serial path r for a node v is a sequence of serial numbers,

s1.s2…si (i ≥ 1), of the nodes on the path from the root node to v. For example, the

2 REF/IDREF are encoded as values in XML, and can be related through their values, hence we do not
consider them as edges.

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 76

serial path of node <3.31.1> is (1.2.1), which contains the third part of the labels

of the nodes in the path from the root node to this node. Note that the d values

(the levels) of the components of a serial path r of a node v, where r = (s1.s2…si), is

d = (1,2,…,i), respectively, where i is the level of v. For example, for node

<3.31.1>, the levels of the component of the serial path (1.2.1) are (1,2, and 3),

respectively.

Figure 3.4 An LLS labeled tree representation of the XML document in Figure 3.1

Definition 3.3. A node path n for a node v is a sequence of alternating tags

and serial numbers l1.s1.l2.s2…li.si (i ≥ 1), of the nodes on the path from the root

node to v node. For example, the node path of node <3.31.1> is

Bib.1.paper.2.author.1.The tag path t of a node path n, denoted t(n), is the sequence

of tags that exist in n. For example, t(n) of Bib.1.paper.2.author.1. is Bib.paper.author.

Similarly, the serial path r of node path n, denoted r(n), is the sequence of serial

numbers that exist in n. For example, r(n) of Bib.1.paper.2.author.1. is (1.2.1).

Definition 3.4. A node with a node path n is an instance of a tag path t if the

sequence of the tag path in n is identical to the sequence of the tag path t, t(n)=t.

book

author paper

paper

paper

author

authorreviewer

Bib

“Wang”“Ahmad”“Tim” “Sarah”

(1.1.1)

(2.11.1)

(3.11.1) (2.21.1)

(2.21.2)

(3.31.1)

(3.21.1)

(2.21.3)

(3.31.2)

(3.11.1) (3.31.1) (3.21.1) (3.31.2)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 77

For example, the nodes <3.31.1> and <3.31.2> are instances of the tag path

Bib.paper.author.

 Definition 3.5. Extension of a tag path t, denoted ext(t), is a set of nodes

whose node paths are instances of a tag path t, that is, ext(t)={n : t(n)=t }. For

example, the extensions of the tag path Bib.paper are nodes <2.21.1>,<2.21.2>, and

<2.21.3>.

All nodes of an XML data-tree G can be summarized by a summary S such

that all node paths of G that share the same tag path t are represented by exactly

one tag path t in S, and every tag path t of S is a tag path of at least one node

path n of G. That is, every distinct path in the source data to appear only once in

the summary, and all the paths in the summary have at least one matching path

in the original source data. Basically, G nodes are partitioned into equivalence

classes in S where the nodes of a class have the same root path [54].

We define the summary as a directed graph S=(R,O,M,tags,labels,C). R is the

same as the data graph G root element, since an XML document can have only

one root element. O is the set of index nodes excluding R. M is the set of child-

parent edges that connects O nodes to form a tree. |M|=|O|, where |M| is the

total number of edges in the index tree and |O| is the total number of nodes in

the index tree. Nodes in O are tagged through the tags function. We tag O nodes

with the tag name of the element or attribute they extend. All nodes in the

summary are assigned a unique label through the labels function, which is

determined by the LLS labeling scheme as follows.

Each node’s label consists of a two part vector <d.p>, where d is the level

(depth) of the node, and p is the number of this node across the d level (denoted

as PerLv). An edge m of a node o, where m∈M and o∈ O, is equal to the p value of

the parent node x, denoted m(o)=p(x). C is the set of counts of instances for each

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 78

node in O, that is, C={c1,c2,…,ci : i =|O|}. For each node oj, and count cj, where

oj∈ O and cj ∈ C, cj is the count of instances of the tag path tj of node oj, where

O={o1,o2,…,oi : i =|O|}, t={ t1,t2,…,ti : i=|O|}, and node oj has tag path tj. If we

assume that in O there is a node oj whose count of instances is cj, and cj value is x,

then the s values of the instances of oj would be 1 for the first instance, 2 for the

second instance, … , and x for the last instance. Figure 3.5 contains an example

of a summary S of the XML data-tree G in Figure 3.4.

Figure 3.5 The Summary S of the XML data-tree G in Figure 3.4

For each node oi in S that has a label <di.pi>, there are instances in G that

have labels of the form <dg.pg.sg>, such that di=dg, pi=pg, and sg={1,2,…,n} where n

is equal to the count of instances of oi, that is, n=ci. For example, the numbers

beside the oval shaped nodes in Figures 3.4 and 3.5 represent the labels of the

nodes according to labelg and labels functions, respectively.

Note that the labels of the summary nodes in Figure 3.5 are created first, and

then used to create the labels for the data-tree nodes in Figure 3.4. The gaps

between the PerLv numbers in Figure 3.5 allow for expansion while maintaining

the order of the elements. The gaps’ intervals can be specified based on the

cardinality of existing nodes.

book

author

paper

authorreviewer

Bib
(1.1)

(2.11) (2.21)

(3.31)(3.21)(3.11)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 79

The summary S information of Figure 3.5 is mapped into table representation

as shown by the Summary table in Figure 3.6(A), and the VL (leaf nodes)

information of the data-tree G of Figure 3.4 is mapped into table representation

as shown by the Values table in Figure 3.6(B).

Figure 3.6 The Summary and Values tables of the data in Figures 3.5 and 3.4, respectively

In Figure 3.6(A), the Tag field contains the tag of the element of the nodes in

the summary, which is assigned through the tags function of S. The Lev and PerLv

fields represent the d and the p parts of the summary nodes labels as indicated in

Figure 3.5, respectively. These labels are allocated through the labels function of

S. The Parent field holds the labels of the parent nodes, which are the p values of

the parent nodes. The Lev(d) value of the parent node is equal to the current node

Lev value minus one, so we do not need to list the parent node level in the

Summary table. Note that the Parent value of the root element is zero since it

does not have a parent. The Type represents the type of node (e.g. element or

attribute). The Count value (C) is the number of nodes in the original XML data

that belong to the same summary group. It is used mainly to reconstruct the

subtrees that are rooted at the internal nodes VR.

In Figure 3.6(B), the Lev, PerLv, and No values together form the labels of the

leaf nodes <d.p.s>, as shown in the data-tree in Figure 3.4. These labels are

Tag Lev PerLv Parent Type Count

Bib 1 1 0 E 1
book 2 11 1 E 1
paper 2 21 1 E 3
author 3 11 11 E 1
reviewer 3 21 21 A 1
author 3 31 21 E 2

Lev PerLv No Value SerPath

2 21 1 null 1,1
3 11 1 Tim 1,1,1
3 31 1 Sarah 1,2,1
3 21 1 Ahmad 1,3,1
3 31 2 Wang 1,3,2

(A) Summary table (B) Values table

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 80

allocated through the labelg function of G. The Value field contains either the

values of the value nodes VT, or null for the VE nodes. Note that the labels of the

VT nodes in the Values table (which consist of Level, PerLv, and No) are the same

as the element or attribute labels to which they belong. Finally, the SerialPath

field contains the serial path r of each node in the tree. It represents a vector of

the No values of the nodes that constitute a path from the root node to the

designated node.

Note that the internal nodes VR can be inferred and reconstructed by using

the Summary table along the SerPath field in the Values table. We therefore do not

store them. We implement the Summary and the Values tables as relational tables.

The primary key fields of each table are underlined in Figure 3.6.

3.2.2 Cost of Updating the LLS Labels

When a new node is inserted into a database, it affects the corresponding

index structure of the database in one of the following two ways. First, if the

inserted node changes the structure of the summary (i.e. the inserted node does

not belong to any of the existing paths in the summary S), and all the gaps are

used in the summary, then the subsequent sibling nodes across the level of the

inserted node have to be updated, as shown in Figure 3.7. These updates in the

summary nodes have to be reflected on the data nodes too. This type of update

may therefore be expensive. In order to minimize the cost, we can increase the

gap between the PerLv numbers. Also, we can carry out the relabeling process in

the direction that requires fewer nodes to be relabeled. For example, the

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 81

relabeling could be carried out to the previous siblings’ nodes if it is cheaper than

relabeling the following siblings’ nodes.

The second case of an update is where the inserted node does not affect the

summary (i.e. the new node belongs to an existing tag path t in the summary S).

In this case, only the nodes that belong to the same group and located to the right

of the inserted nodes must be updated as shown in Figure 3.8. This type of

update is cheaper than the first type. It involves updating the data nodes only.

Figure 3.7 A relabeling scenario of LLS summary

Figure 3.8 A relabeling scenario for an LLS labeled data-tree

new
element

book

author

paper

authorreviewer

Bib

node
that requires
relabeling

poster

book

author

paper
paper

paper

author authorreviewer

Bib

“Wang”“Ahmad”“Tim” “Sarah”

reviewer

“Sam”

new
node node

that requires
relabeling

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 82

Figure 3.9 illustrates the necessary relabeling of the nodes following the

addition of a paper node to the XML document shown in Figure 3.1 using

interval, prefix, and LLS labeling schemes. Since our labeling scheme is based on

the levels of a tree where each level’s nodes are labeled independently of other

levels’ nodes, the insertion of a node requires the relabeling of only one level’s

nodes in the worst case as illustrated in Figure 3.9(C). In contrast, prefix labeling

may require the relabeling of more than one level of nodes, as illustrated in

Figure 3.9(B). The update cost of data nodes in our approach is approximately

equal to the cost incurred by the Dewey code prefix labeling scheme [119], which

is less than that incurred by the (Beg,End) interval labeling scheme[143]. If a new

node is inserted into a data-tree that is labeled with the (Beg,End) interval labels

(see Figure 3.9(A)), then the labels of all nodes in the data-tree have to be

updated, except the nodes rooted at the previous siblings of the inserted node

[56], and in the worst case, the labels of all nodes in the tree are subject for

relabeling. A subtree insertion is dealt with as a group of individual nodes where

one node is inserted at a time.

Figure 3.9 Worst case relabeling scenarios for Interval, Prefix, and LLS encoding

Nodes
that
require
relabelingnew

node

Nodes
that
require
relabelingnew

node
Nodes
that
require
relabeling

new
node

(A) Interval labeling (B) Prefix Labeling (C) LLS Labeling

paper paperpaper

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 83

3.2.3 Mapping to Relational Database Tables

In this section we present two examples to illustrate how the (Beg,End) and

the LLS are used to evaluate XML queries by using different types of mappings

to relational database tables. Note that the data in Figure 3.2, which represent a

(Beg,End) interval labeled tree, can be mapped into the two relational tables

shown in Figure 3.10, where the primary key fields of the tables are underlined.

This mapping is similar to the mapping suggested by Zhang et al. [143], who

introduced the interval labeling to XML documents. We called this mapping the

basic mapping. In this mapping, all nodes in the XML tree are mapped into one

table, the Nodes table (Figure 3.10(A)); and the values are mapped into a separate

table, the Values table (Figure 3.10(B)).

Figure 3.10 The mapping of the (Beg,End) labeled tree in Figure 3.2 into relational tables

To evaluate a query by using this mapping, the query is translated into an

equivalent SQL query and pushed down to the SQL engine for evaluation. The

translation algorithm is illustrated in Algorithm 3.1.

Tag Beg End Lev
Bib 1 22 1
book 2 6 2
author 3 5 3
paper 7 8 2
paper 9 13 2
author 10 12 3
paper 14 21 2
reviewer 15 17 3
author 18 20 3

WordNo Value Lev
4 Tim 4
11 Sarah 4
16 Ahmad 4
19 Wang 4

(A) Nodes table (B) Values table

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 84

Step 1 of Algorithm 3.1 identifies the element set of a given query. The

second step identifies the type of the given query, if it is single path or multiple

paths query. Step 3 verifies that the element set of the given query exists in the

element set of the Summary. Step 4 confirms that the structure of the given query

exists in the Summary, as the Summary reflects the structure of the source data.

If the tests performed in steps 3 and 4 succeed and the type of query is single

path query, we evaluate the query as outlined in step 5. If the tests performed in

Algorithm 3.1 : Evaluate an XPath Query

// F(Q) : Is a function to evaluate an XPath query and translate it into
SQL query to retrieve answers from a relational data repository.

// Input : (XPath Query)
// Output : (SQL Query)

1 S (Q) → {Eq} // Scan query Q and identify the element set of the given query.
2 T (Q) → SP or MP // Identify type of query (Single path or Multiple paths).

3 If {Eq} does not exists in {Es} : // {Es} is the element set of the Summary table.

Then : abort and exit.
Else : continue.

4 If {Eq} query structure does not match {Es} summary structure :
Then : abort and exit.
Else : continue

5 If T (Q) == SP : // If type of query is single path.
5.1 M (Q) → {(di , pi)} // mapping of Q in Summary, identify leaf nodes IDs in Summary
5.2 For each value in {(di, pi)}

select value
from value table
where Lev = di and

PerLv = pi
6 Else if T (Q) == MP :// If type of query is multiple paths.

6.1 M (Q) →{(di , pi)} //mapping of Q in Summary, identify leaf nodes IDs of all branching nodes .
M (Q) →(Lb) // mapping of Q in Summary, identify the branching node level

6.2 For each node in the first branch {d1 ,p1} set:
Begin

Identify s1 value at the branching node (Lb)
For each node in {d1+i , p1+i : 1≤ i < number of branches}
Begin

Find s1+i value
if s1 == s1+i then:

Select value
From value table
Where Lev = d1+i and

PerLv = p1+i
End

End

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 85

steps 3 and 4 succeed and the type of query is multiple paths query, we evaluate

the query as outlined in step 6. Step 5 evaluates single path query by retrieving

the matching leaf nods of the query by using SQL statements. Finally, step 6

evaluates multiple path query by joining the first branch nodes with the

matching nodes of the other branches of the given query by using the ids of the

branching nodes. Then retrieve the related nodes from the database repository.

 In the following, we show two examples that illustrate how this labeling

scheme can be used to evaluate XML queries by using both regular and binary

mapping. To evaluate the XPath Query 3.1 below over the mapped data in Figure

3.10, which is mapped by using regular mapping, the query is translated into

SQL statement, and evaluated by the SQL engine. Our approach is flexible and

can be used to translate an XPath query into several different sets of SQL

statements. One of the possible translations is illustrated in SQL Query 3.2, as

shown below. A survey on XML-to-SQL query translation can be found in

Krishnamurthy et al. [75].

XPath Query 3.1 : /Bib/paper/author

SQL Query 3.2 :
Select Values.Value
From Nodes Bib, Nodes paper,
 Nodes author, Values
Where Bib.Tag = ‘Bib’ and
 paper.Tag = ‘paper’ and
 author.Tag = ‘author’ and
 Bib.Beg < paper.Beg and
 Bib.End > paper.Beg and
 paper.Beg < author.Beg and
 paper.End > author.End and
 author.Beg < Values.WordNo and
 author.End > Values.WordNo and
 Values.Lev = author.Lev+1 and
 Bib.Lev = 1 and
 paper.Lev = Bib.Lev+1 and
 author.Lev = paper.Lev+1

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 86

Another possible mapping of (Beg,End) interval labeled nodes to relational

tables is called the binary mapping. In this mapping, the Nodes table is horizontally

partitioned based on the Tag name. That is, there is a dedicated table for each set

of nodes with the same tag name. Evaluating the XPath Query 3.1 above over a

(Beg,End) binary mapped data can be carried out by a translated SQL query that

is similar to the SQL Query 3.2 above with the exception of the first 3 lines in the

Where part. Here, the node selection part is eliminated, and the nodes are called

in the From part from the designated tables.

An LLS labeled data-tree can also be mapped using the basic and binary

mapping approaches. To evaluate XPath Query 3.1 over an LLS labeled data-tree

that is mapped into relational tables using the basic mapping approach as

shown in Figure 3.6, the query could be translated into the SQL Query 3.3 as

shown below. The evaluation of XPath Query 3.1 over an LLS labeled data-tree

that is mapped into relational tables using the binary mapping approach can be

carried out in a similar way to the (Beg,End) binary mapped data evaluation.

SQL Query 3.3 :
Select Values.Value
From Summary Bib, Summary paper,
 Summary author, Values
Where paper.Parent = Bib.PerLv and
 author.Parent = paper.PerLv and
 values.Lev = author.Lev and
 values.PerLv = author.PerLv and
 Bib.Lev = 1 and
 paper.Lev = 2 and
 author.Lev = 3

It is worth mentioning here that the binary mapping of LLS labeled data are

finer than the binary mapping of (Beg,End) data. The LLS mapped data are

partitioned horizontally based on the root path, not on the tag name, as in the

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 87

(Beg,End) labeled data. According to (Beg,End) labeled data binary mapping, it is

possible for two nodes that belong to different root paths to be partitioned

together in the same table if they have the same tag name. In contrast, this is

impossible with the LLS labeled data. This explains the superiority of our LLS

approach performance over the (Beg,End) approach performance as we shall see

in the next section.

3.3 Prototype Implementation

The validity of our labeling scheme is illustrated by experiments conducted
on a proof-of-concept prototype of the LLS that we implemented in our lab. All
experiments were performed on a 3 GHz Intel® Pentium 4 PC running
Windows® XP operating system, with 1.5 GB of RAM. The goals of the
experiments are to evaluate the performance of the LLS labeling scheme in
comparison to interval labeling schemes using the basic mapping and the binary
mapping. Evaluation of the test queries against the datasets that are labeled with
(Beg,End) labels is implemented by using Multiple Predicate MerGe JoiN
(MPMGJN) as proposed by Zhang et al. [143]. We compare the basic and binary
LLS labeling schemes with the basic and binary (Beg,End) labeling schemes,
respectively. We also compare the basic mapping index structures against their
respective binary mappings for both (Beg,End) and LLS node indexes. This allows
us to observe the impact of horizontally partitioning the Nodes table into several
tables based on the tag name in the (Beg,End) Nodes table, and the Values table
into several tables based on the root path of the nodes in the LLS Values table.

We use IBM’s DB2® V9.5 [64] database management system to store the data
for the four schemes. We evaluate each method against two test sets (see Section
3.3.2). We measure the performance using the average runtime of a query with
each method.

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 88

3.3.1 Query Engine Prototype to Test LLS Labeling
 Scheme

We implement the LLS as part of a query engine prototype shown in Figure
3.11. We use Java 1.6 to develop the prototype, which consists of 3 components:

1- The scan module, which scans an XML database according to a given
configuration and then passes the contents of the scanned documents to
the builder. The flowchart of the scanner is given in Appendix B.

2- The builder module collects the XML data from the scanner module. The
data contains information about the type of the data (e.g. element,
attribute, value, special characters, etc.) and the values of the data
(element value, attributes value). The builder uses the LLS labeling
scheme to label elements, attributes, and values then follows given
configuration instructions to map the XML database into DB2® V9.5 [64]
relational tables.

3- The query engine takes a query from a user and returns the solution to that
query. The query engine is a primitive lightweight query processor.
Basically, it translates an XPath query into an equivalent SQL query and
passes it into the SQL engine for evaluation. It uses the data in the DB2®
V9.5 backend to evaluate queries and return the answers.

Figure 3.11 Layout of the query engine prototype to test the LLS

XML
Data

Scan

Configuration

Builder

Summary and,
Values Tables

Query
Engine

Query

Configuration

LLS

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 89

3.3.2 The Datasets and Queries

We execute our experiments using two datasets: the DBLP Computer Science

Bibliography [120] dataset and the XMark [111] dataset. The DBLP dataset is

record-oriented consisting of short data items such as name, title, date, etc. The

XMark dataset, in contrast, consists of large data elements, many exceeding 7,000

characters. Statistics for the two datasets are summarized in Table 3.2. For more

information on these datasets please see Appendix A.

Table 3.2 Statistics of DBLP and XMark datasets

XPath (XML Path Language) [33] is a flexible query language that has been

proposed to access XML data. An XML query may consist of either a single path

or multiple paths (twig path). Both single path and twig path queries can be

recursive (i.e. support ancestor-descendent “// ” relationships) or non-recursive.

Based on these criteria, we consider four types of XML queries :

 Type 1 (T1): Single path non-recursive queries.
 Type 2 (T2): Single path recursive queries.
 Type 3 (T3): Twig path non-recursive queries.
 Type 4 (T4): Twig path recursive queries.

Since most XML queries fall into these four types of queries, we use them in

our experimental evaluation, and we run them against the two datasets. For each

type of query, we use 4 example queries as shown in Figure 3.12. These queries

Test
Dataset

Size
No of Elements
in the Summary

No of
Levels

Total Number
of Elements

Max
Cardinality

Avg.
Cardinality

DBLP 20 MB 71 5 582,033 109,595 8,197

XMark 15 MB 251 11 185,225 6,183 737

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 90

are chosen to cover different combinations of query path lengths, cardinality of

elements, and the number of returned tuples, which is affected by the selectivity.

Figure 3.12 contain lists of the 4 types of queries, as specified by (T1,T2,T3, and

T4). For more information on these queries please see Appendix A

(A) For DBLP database (B) For XMark database

Figure 3.12 Representative queries for 4 types of queries

3.3.3 Performance Evaluation

We execute each query ten times against its respective dataset and take the
average of the execution time of the 10 readings. The average of each type of the
4 types of queries is shown in our analysis. The time to translate the XPath
queries to SQL queries is not included and only the execution times of the
queries are recorded, which reflect the impact of the labeling scheme used.

Figures 3.13 and 3.14 shows a comparison between the (Beg,End) and LLS
approaches performance against the DBLP test cases using basic and binary
mappings. Figures 3.15 and 3.16 shows a comparison between the (Beg,End) and
LLS approaches performance against the XMark test cases using basic and binary
mappings. The results include the average runtime of the test cases. Note that
log10 scale is used to measure the execution time. We notice from Figures (3.13-

T1‐Q1 : /site/regions/africa/item/id
T1‐Q2 : /site/open_auctions/open_auction/bidder/personref/person
T1‐Q3 : /site/open_auctions/open_auction/seller/person
T1‐Q4 : /site/catgraph/edge/from
T2‐Q1 : //id
T2‐Q2 : //africa//category
T2‐Q3 : //regions//item//text
T2‐Q4 : //open_auctions//text
T3‐Q1 : /site/regions/africa/item[/location='United States']/payment
T3‐Q2 : /site/regions/africa/item[/id='item0'] /location
T3‐Q3 : /site/catgraph/edge[/from='category0']/to
T3‐Q4 : /site/people/person[/name='Kaj Carey']/phone
T4‐Q1 : //africa/item[/quantity='1']/name
T4‐Q2 : //open_auction[/reserve='3199.90']/initial
T4‐Q3 : //closed_auction[/type='Regular']/price
T4‐Q4 : //regions//item[/quantity='2']/name

T1‐Q1 : /dblp/inproceedings/cdrom
T1‐Q2 : /dblp/inproceedings/cite/label
T1‐Q3 : /dblp/inproceedings/booktitle
T1‐Q4 : /dblp/book/series/href
T2‐Q1 : /dblp//author
T2‐Q2 : //series/href
T2‐Q3 : //book//label
T2‐Q4 : //href
T3‐Q1 : /dblp/incollection[/year='2000']/booktitle
T3‐Q2 : /dblp/proceedings[/booktitle='ACCV']/isbn
T3‐Q3 : /dblp/inproceedings[/author='Adele E. Howe']/title
T3‐Q4 : /dblp/proceedings[/isbn='0‐7695‐1991‐1']/title
T4‐Q1 : //inproceedings[/mdate='2002‐08‐04']/title
T4‐Q2 : //proceedings[/booktitle='ACNS']/isbn
T4‐Q3 : //incollection[/booktitle='Temporal Databases']/year
T4‐Q4 : //incollection[/author='Jurgen Annevelink']/title

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 91

3.16) that the LLS outperforms the (Beg,End) using both basic and binary
mappings for the two datasets. The reason behind this is that the (Beg,End)
approach, whether it uses basic or binary mapping, has to deal with the
overhead that is caused by their partitioning techniques, where the partitioning
techniques are based on the tag name, even though the partitioned nodes may
belong to different paths. In contrast, LLS labeling lends itself to a more specific
partitioning that is based on the root path partitioning, and hence only related
nodes are examined as specified by a given query.

The experimental results show that in the case of the DBLP dataset, the
improvement of our approach for basic and binary mappings is higher than that
of the XMark dataset. This is because the number of elements in DBLP is greater
than that of XMark dataset, as shown in Table 3.2.

Figure 3.13 DBLP test cases result for the (Beg,End) and LLS using basic mappings

Figure 3.14 DBLP test cases result for the (Beg,End) and LLS using binary mappings

1

10

100

1,000

10,000

1 2 3 4

BE-Basic

LLS-Basic

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

1

10

100

1,000

10,000

1 2 3 4

BE-Binary

LLS-Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 92

Figure 3.15 XMark test cases result for the (Beg,End) and LLS using basic mappings

Figure 3.16 XMark test cases result for the (Beg,End) and LLS using binary mappings

Figures 3.17 and 3.18 show the performance comparison between the basic

and binary mappings of the (Beg,End) and the LLS against the DBLP test cases.

Figures 3.19 and 3.20 shows the performance comparison between the basic and

the binary mappings of (Beg,End) and LLS against the XMark test cases. The

results include the average runtime of the test cases. We notice from Figures

(3.17-3.20) that the binary mapping performance, in general, is either

approximately equal to or worse than that of the basic mapping. We believe that

evaluating a query with n elements over a binary mapped data involves n tables

and so a minimum of n disk accesses. While evaluating the same query over a

basic mapped data would require accessing less disk accesses if the data happens

to be clustered physically on the same pages.

1

10

100

1,000

1 2 3 4

BE‐Basic

LLS‐Basic

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

1

10

100

1,000

1 2 3 4

BE‐Binary

LLS‐Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 93

Figure 3.17 DBLP test cases result for the basic and binary mappings using (Beg,End)

Figure 3.18 DBLP test cases result for the basic and binary mappings using LLS

Figure 3.19 XMark test cases result for the basic and binary mappings using (Beg,End)

1

10

100

1,000

10,000

1 2 3 4

BE-Basic

BE-Binary

Query Type

Ex
ec

ut
io

n
Ti

m
e

(m
s)

1

10

100

1,000

1 2 3 4

LLS-Basic

LLS-Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

1

10

100

1,000

1 2 3 4

BE‐Basic

BE‐Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 94

Figure 3.20 XMark test cases result for the basic and binary mappings using LLS

We believe that the performance gain over the LLS labeled data, as noted

above, is due to the fact that LLS labeling scheme has the good characteristics of

(Beg,End) labeling scheme, and on top of that , with LLS labeling we can infer the

related nodes labels with the help of the summary. This feature helps to pinpoint

the nodes of interest when evaluating a query instead of examining a wider

range of nodes to find a match in query evaluation process as is the case in the

(Beg,End) labeled data.

3.4 Summary

Unlike the two widely used labeling schemes – interval [63] [78] [116] [143]

and prefix [48] [80] [99] [119] labeling schemes – our LLS labeling scheme

contains the advantages of both approaches, while avoiding their disadvantages.

The LLS is based on numerical values, has fixed-size labels regardless of the

depth of a node, requires a fixed time to compute a relation between two nodes,

can be used to infer the parent-child and ancestor-descendent nodes from their

labels, and requires modest amount of relabeling upon insertion. Index

structures that are based on the LLS are precise and complete.

1

10

100

1 2 3 4

LLS‐Basic

LLS‐Binary

Query Type

Ex
ec
ut
io
n
Ti
m
e
(m

s)

CHAPTER 3. LLS: LEVEL-BASED LABELING SCHEME FOR XML DATABASES 95

The LLS is based on the level of nodes in XML data-trees. The information of

the levels at which nodes are located can be used by the query processor

optimizer to deduce nodes that may contribute a valid answer for a given query.

The LLS also uses the summary of XML data to label the nodes in the data, so

nodes that are related to a node of interest can be identified easily.

Much research has been done to propose a persistent labeling scheme for

dynamic XML data to avoid the relabeling cost [23] [34] [77] [99]. Cohen et al.

[34] established that any persistent labeling scheme requires Ω(N) bits per label

in the absence of any clues about the data, where N is the size of the data. Such

long labels, however, require high storage in addition to being more expensive to

process than the shorter ones. In contrast, our labeling scheme, which is tightly

coupled with the summary, requires a fixed label size to cover dynamic data.

The update cost of LLS, in the worst case, requires relabeling fewer nodes

than that of the interval labeling scheme [93]. The cost of updating nodes using

the LLS is also cheaper than that of updating prefix indexes in many cases.

Previous approaches that use a universal labeling scheme across a complete

document (e.g. (Beg,End) approach) result in large labels for large documents. In

contrast, in our approach we split the labels into groups of smaller numbers that

require less memory and are easier to maintain and process than large labels.

We showed in a set of experiments the performance benefits of our proposed

scheme compared with interval labeling schemes using regular and binary

mappings to relational tables. The LLS works well for single path queries as well

as for twig queries.

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 96

Chapter 4

LTIX: A Compact Level-based Tree to
Index XML Databases

Indexing XML data is essential for XML query optimization. Most of the

existing approaches that combine a labeling scheme with a graph index use

labeling schemes that reflect the structure of the indexed data. In addition, the

labeling rules do not depend on the combined graph indexes. By designing a

labeling scheme that does not reflect the structure of XML data, since it is

available in the accompanied graph index; and by aligning the data nodes’ labels

with the graph index nodes’ labels, we can support the join process more

efficiently. In this chapter, we propose a novel native XML index structure called

LTIX (Level-based Tree Index for XML databases). This index structure is based

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 97

on Level-based Labeling Scheme (LLS) that not only minimizes the number of

joins and matches required to evaluate twig queries, if it is used with graph

indexes, but also facilitates effective query optimization through early pruning of

the space search. Experimental tests show the performance benefits of our

proposed approach.

In this chapter we review XML structural indexes, formally define our index

structure, and explain the LTIX system [95]. We conclude by presenting our

experimental results and contributions.

4.1 XML Structural Indexes

In this section we discuss hybrid XML index structures, and we briefly

review the weaknesses of XML structural indexes. We then introduce our LTIX

approach, which we propose to overcome these shortcomings.

4.1.1 Hybrid XML Index Structures

Some researchers combine node indexes with graph indexes to expedite

query processing and reduce the number of structural joins. For example,

Kaushik et al. [69], Moro et al. [97], and Haw et al. [63] integrate the (Beg,End)

interval node index with the DataGuide graph index. In these approaches

element labels are assigned and then subsequently associated with their

designated nodes in the graph index. In this case, the graph indexes, as well as

the interval node indexes, hold the structural information of the data. We believe

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 98

that it is sufficient for only one of them to hold the structure information in order

for them to work well together. We can therefore plan a labeling scheme that is

structure independent and link it with a graph index to provide the structural

information. We implement this concept in our approach. Our approach is

therefore similar to the approaches that integrate interval node indexes with

DataGuide graph indexes [63] [69] [97] with the exception of the labeling scheme.

We propose a novel index structure that is based on the LLS labeling scheme

[94], which is shown to work efficiently with DataGuides.

4.1.2 Limitations of XML Structural Indexes

The main shortcoming of node indexes is the number of structural joins

required to evaluate a query, which is equal to n-1 where n is equal to the

number of nodes in the query.

 Graph indexing schemes [2] [37] [54] [56] [67] [90] consider paths as a

whole, during query evaluation, instead of dealing with each node in the path

separately. Consequently, the number of joins is reduced during query

processing and hence query performance is improved.

Sequence indexes [104] [130] interpret the whole query as a structure-

encoded sequences and search for a match in the structure-encoded sequence of

an XML document. They suffer, however, from false positive and false negatives

[93]. Refinement steps are added to the evaluation process of a query to

overcome these problems.

An example of interval node indexes is shown in Figure 4.2. It is based on the

(Beg,End) labeling scheme of the XML document in Figure 4.1.

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 99

Figure 4.1 XML document

Figure 4.2 An interval labeled tree representation of the XML data in Figure 4.1

<students>
<student address="Kingston">

<name>
<fname>Tim</fname>
<lname>Wang</lname>

</name>
<courses>

<course>Art</course>
<course>History</course>

</courses>
</student>
<student address="Ottawa">

<name>
<fname>Sarah</fname>
<lname>Ahmad</lname

</name>
<courses>

<course>Math</course>
</courses>
<children>

<child>
<name>

<fname>Mike</fname>
<lname>Salem</lname

</name>
</child>

</children>
</student>

</students>

students

student

fname“Kingston”

name
address

“Tim”

lname

“Wang”

courses

course

“Art”

course

“History”

student

fname
“Ottawa”

name
address

“Sarah”

lname

“Ahmad”

courses

course

“Math”

(1,53)

(2,22)

(3,5)

(4,4)

(6,13)

(31,33)

(27,34)

(28,30)

(25,25)

(24,26)

(7,9) (10,12)

(8,8) (11,11)

(15,17)

(16,16) (19,19)

(18,20)

(14,21)

(36,38)

(29,29) (32,32) (37,37)

(23,52)

(35,39)

fname

name

“Mike”

lname

“Salem”

(46,48)(43,45)

(44,44) (47,47)

children
(40,51)

(42,49)

child
(41,50)

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 100

The labels are given according the sequential traversal of the document in
Figure 4.1. In this type of node indexes, a relation between two elements is
established if one element’s interval contains the other element’s interval.

Graph indexes partition element nodes in the source XML data-tree based on
their path similarity. The DataGuide graph index in Figure 4.7 is an example
graph index for the data-tree in Figure 4.2. The numbers inside the oval shaped
nodes represent the labels of the graph index nodes. Unlike node indexes, which
return the answers of XML queries at the granularity of individual instances of
elements, graph indexes return the answers of XML queries at the granularity of
the whole sets of instances of elements. Then a node index, such as the interval
node index above is used to perform structural joins in a post-processing phase
to arrive at the answers to a query. In the structural join operations, each
element’ instances in a set is compared with the other elements’ instances in the
other sets to find a match.

To evaluate a single path XML query a number of joins and comparisons are
required if we use node indexes. To overcome this shortcoming node indexes can
be integrated with graph indexes. To illustrate this consider evaluating Query 4.1
below over the data in Figure 4.2. Query 4.1 returns the first and the last names
of the students in an XML document. The node-labeled tree representation for
Query 4.1 is given in Figure 4.3.

Query 4.1: //student/name[fname]/lname

Figure 4.3 The node-labeled tree representation of Query 4.1

fname

name

?

lname

?

student

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 101

The instances of Query 4.1 elements in the XML data-tree in Figure 4.2 are

saved in a node index structure similar to the one shown in Figure 4.4 as

suggested by Zhang et al. [143], which is based on (Beg,End) labeling scheme.

Figure 4.4 The (Beg,End) interval node index for instances of Query 4.1 elements in Figure 4.2

To evaluate Query 4.1 over the data in (Beg,End) interval node index in

Figure 4.4, we need to implement 3 structural joins and 18 matches, in the worst

case. This worst case is reached if we used the standard merge join algorithm to

arrive at the final answer that contains the following tuples:

fname lname
Tim Wang

Sarah Ahmad

Zhang et al.[143] propose the Multiple Predicate MerGe JoiN (MPMGJN)

algorithm to reduce the number of joins. Much subsequent research has been

done in this area to reduce the number of joins and comparisons [6] [18] [30] [76].

Discussion of these approaches is beyond the scope of this chapter.

To evaluate Query 4.1 above by using an integrated system such as the one

shown in Figure 4.5, which integrates the DataGuide graph index (Figure 4.7)

(2,22) (23,52)
(6,13) (27,34) (42,49)

(7,9) (28,30) (43,45)
(10,12) (31,33) (46,48)

<student>
<name>

<fname>
<lname>

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 102

with the interval node index (Figure 4.4), we need to perform 2 join operations

and 8 matches in the worst case. This worst case is reached if we used the

standard merge join algorithm.

Figure 4.5 Integration of the node index (Figure 4.4) with the graph index (Figure 4.7)

From the above discussion we notice that integrating interval node indexes

with graph indexes dropped the number of joins, in our example, from 3 to 2 join

operations, and the number of matching operations have been reduced from 18

to 8 matches. Our proposed LTIX approach, which integrates a special labeling

scheme (LLS) with a DataGuide graph index, requires implementing only one

join operation during which two matches are performed in the worst case, to

evaluate Query 4.1 above. We will return to Query 4.1 example and explain how

we can achieve this by using LTIX approach in Section (4.2.2) after we elaborate

on our approach in the next section.

LLS labeling [94] scheme preserves the best traits of both interval labeling

[63] [143] and prefix labeling schemes [99] [119] (See Chapter 2). Similar to

Level PerLv Tag Start End
2 11 student 2 22
2 11 student 23 52
3 21 name 6 13
3 21 name 27 34
4 11 fname 7 9
4 11 fname 28 30
4 21 lname 10 12
4 21 lname 31 33
5 11 name 42 49
6 11 fname 43 45
6 21 lname 46 48

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 103

interval labels, the size of LLS labels is fixed regardless of the data-tree depth,

and hence requires modest storage space. Like interval labeling, integers are

used to label nodes with LLS, which is more efficient for queries processing than

the substring labels that are used in prefix labeling. Furthermore, a relation

between two nodes can be identified with a single equality comparison operation

with LLS, while with interval labeling, a relation is identified using two

inequality comparison operations.

ORDPATH labels [99] are a variant of Dewey prefix labels [34] [99]. They do

not need to be updated when new nodes are inserted, but they suffer from the

shortcomings of prefix indexes. In the interval node index approach proposed by

Zhang et al. [143], they suggest including the level of elements as a part of node

labels. In contrast, our approach not only has the level of elements as part of the

node labels, but we provide a graph index (absent from Zhang’s approach), and

the levels are also added to this graph index node labels.

4.2 Our LTIX Approach

In this section, we first introduce the XML data model used in LTIX, the

graph index, and the mapping of XML data-tree into native XML graph index

and data repository. We then trace two examples to demonstrate how LTIX is

used to evaluate twig queries and to improve the efficiency of query evaluation

process. We discuss LTIX path index construction at the end of the section.

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 104

4.2.1 XML Data and Path Index Models

We model an XML document as a directed graph G=(R,VR,VL,E,tagg,labelg,T).

The definition of this data model is given in Section 3.2.1. The LTIX data-tree

graph representation G for the data in Figure 4.1 is illustrated in Figure 4.6.

Figure 4.6 LTIX data-model of the data in Figure 4.1

In LTIX, an XML data-tree G can be summarized by a graph index S such

that all node paths of G that share the same tag path t are represented by exactly

one tag path t in S, and every tag path t of S is a tag path of at least one node

path n of G. Basically, G nodes are partitioned into equivalence classes in S where

the nodes of a class have the same root path.

We define a graph index as a directed graph S=(R,O,M,tags,labels,C). Formal

definition of the graph index S can be found in Section 3.2.1. Figure 4.7 contains

an example of a graph index S of the XML data-tree G in Figure 4.6.

1.1.1

students

3.11.1

4.11.1 4.21.1

3.31.1

4.31.1 4.31.2

3.21.1

2.11.1

student

fname
“Kingston”

name

address

“Tim”

lname

“Wang”

courses

course

“Art”

course

“History”

3.11.2

4.11.2 4.21.2

3.21.2

2.11.2

student

fname
“Ottawa”

name
address

“Sarah”

lname

“Ahamd”

3.31.2

4.31.3

courses

course

“Math”

6.11.1 6.21.1

5.11.1

fname

name

“Mike”

lname

“Salem”

3.41.1

children

4.41.1
child

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 105

Figure 4.7 The graph index S of the XML data-tree G in Figures 4.2 and 4.6

The graph index S information of Figure 4.7 is mapped into table

representation as shown by the Graph Index, and Elements and Attributes

Dictionary tables in Figure 4.8 (B and A), and the data-tree G information of

Figure 4.6 is mapped into table representation as shown by the Value Index, and

Elements and Attributes Index tables in Figure 4.8 (C and D). We implement the

Graph Index as a binary file; and the Elements and Attributes Dictionary, Value

Index, and Elements and Attributes Index as B+-trees in our LTIX system. The key

of each index is underlined in Figure 4.8.

Level

1

2

3

4

1.1 students

3.213.11

4.314.11 4.21

3.31

2.11
student

courses
address

name

courselnamefname

3.41

children

5.11

6.11 6.21

name

lnamefname

5

4.41
child

6

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 106

Figure 4.8 Data dictionary and indexes

Figure 4.8(A) contains a list of all elements and attributes in the graph index

and is referred to as the Elements and Attributes Dictionary. The Tag field is the tag

of the elements or attributes in the graph index, which is assigned through the

tags function of S. The Level and PerLv columns represent the d and the p parts of

the graph index nodes labels, respectively, as indicated in Figure 4.7. These labels

are allocated through the labels function of S. The Type represents the type of

node (e.g. element or attribute).

The Parent field in Figure 4.8(B) holds the PerLv labels of the parent nodes,

which are the p values of the parent nodes. The Level value of the parent node is

equal to the current node Level value minus one, so we do not need to list the

parent node’s level in the Graph Index. We assign a zero value for the parent of

the root node since it does not have any parent. Tables A and B in Figure 4.8

Level PerLv No Parent
1 1 1 0
2 11 1 1
2 11 2 1
3 11 1 1
3 11 2 2
3 21 1 1
3 21 2 2
3 31 1 1
3 31 2 2
3 41 1 2
4 11 1 1
.
.
.

.

.

.

.

.

.

.

.

.
4 41 1 1
5 11 1 1
6 11 1 1
6 21 1 1

Level PerLv Parent

1 1 0
2 11 1
3 11 11
3 21 11
3 31 11
3 41 11
4 11 21
4 21 21
4 31 31
4 41 41
5 11 41
6 11 11

6 21 11

(B) Graph Index (C) Value Index

Level PerLv No Value SerialPath

3 11 1 Kingston 1,1,1
3 11 2 Ottawa 1,2,2
4 11 1 Tim 1,1,1,1
4 11 2 Sarah 1,2,2,2
4 21 1 Wang 1,1,1,1
4 21 2 Ahmad 1,2,2,2
4 31 1 Art 1,1,1,1
4 31 2 History 1,1,1,2
4 31 3 Math 1,2,2,3
6 11 1 Mike 1,2,1,1,1,1
6 21 1 Salem 1,2,1,1,1,1

(A) Elements and Attributes
Dictionary

Tag Level PerLv Type

address 3 11 A
child 4 41 E
children 3 41 E
course 4 31 E
courses 3 31 E
fname 4 11 E
fname 6 11 E
lname 4 21 E
lname 6 21 E
name 3 21 E
name 5 11 E
student 2 11 E
students 1 1 E

(D) Elements and Attributes
Index

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 107

could be combined, as in the Summary table of the LLS approach in Figure

3.6(A), but we prefer to keep them separate because they are used in different

stages of queries evaluation process.

Figure 4.8(C) shows the Value Index table, which is populated with the values

of attributes and elements of the XML data-tree in Figure 4.6. The Level, PerLv,

and No values together form the labels of the leaf nodes <d.p.s>, as shown in the

data-tree in Figure 4.6. These labels are allocated through the labelg function of G.

The Value field contains the values of all leaf nodes, and null for empty elements.

Note that the value labels (which consist of Level, PerLv, and No) are the same as

the element or attribute labels to which they belong. Finally, the SerialPath field

contains the serial paths r of each node in the tree. It represents a vector of the No

values of the nodes that constitute a path from the root node to the designated

node. It is used in structural joins to evaluate twig queries, as we shall see in the

forthcoming example in Section 4.2.2.

All nodes in the XML tree are represented by the Elements and Attributes

Index as shown in Figure 4.8(D). The Elements and Attributes Index can be

extended to have the serial paths of all attributes and elements similar to the

serial paths of values, but it is not necessary in our approach. Note that the Parent

values in table (D) are different than the Parent values in table (B). In table (D)

they stand for the No value of the parent node.

In order to achieve high performance of the LTIX index structure, and since

an s value uniquely identifies a node among other nodes of the same class, we

create the Serial Graph Index that is based on the concatenation of

(Level,PerLv,SerialPath) of values. The serial graph index is used to facilitate the

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 108

link between two arbitrary nodes in two different branches of a twig query as we

shall see shortly.

4.2.2 Two Simple Examples

In this section we trace two examples. The first example shows how LTIX is

used to minimize the number of join and comparison operations. The second

example illustrates the ability of the LTIX approach to prune false positives early

during the evaluation process.

Example 4.1: We evaluate Query 4.1 below, which was introduced in Section

4.1.2, over the mapped data in Figure 4.8. This query returns the first name and

the last name of all students.

Query 4.1: //student /name [fname] /lname

Note that the branching occurs at the name node, which is the parent of the

two leaf nodes, namely, fname and lname. We can see from the Attributes and

Elements Dictionary, and the Graph Index that the fname and lname elements in

Query 4.1 map to nodes <4.11> and <4.21> in S, respectively. First, we evaluate

one side by probing the key fields of the Value Index for values whose labels start

with (“4.11”) and the two returned tuples are:

Level PerLv No Value SerialPath
4 11 1 Tim 1.1.1.1
4 11 2 Sarah 1.2.2.2

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 109

These tuples are joined with the Value Index to arrive at the final answer of

the query. In order to do that, the information of these two tuples is used by the

index structure as follows. We know that the Serial Graph Index is based on the

concatenations of (Level,PerLv,SerialPath) columns. So the index structure probes

the indexed columns in the Serial Graph Index for tuples that match (4,21,LIKE

1.1.1%), which is retrieved in one match. The LIKE 1.1.1% part retrieves all

SerialPaths values that start with 1.1.1. The search for a match to the second tuple

is carried out in the same way by the search criterion (4,21, LIKE 1.2.2%), which

retrieves the answer to this part in one match. The first three segments of the

SerialPath (“1.1.1” and “1.2.2”) are used in the search criteria because the

branching node is located at the third level. This means that the first three

segments of the SerialPath of the two branches of the query are common and

shared by the two branches.

Our approach, in contrast to the two approaches discussed previously in

Section 4.1.2 – the (Beg,End) interval node index approach, and the approach that

integrates the (Beg,End) interval node index with the DataGuide graph index –

performs only one join during which two matches are performed to evaluate the

query. In our approach, the leaf nodes of the two branches are matched directly

with each other without using the branching node as a mediator to join them, as

opposed to the previous approaches. Further, the information of tuples obtained

from evaluating the first branch leaf node is used to retrieve the exact match in

one comparison for each match by using an equality operator. The previous

approaches, in contrast, require multiple comparisons to find a match, since there

are two parameters involved in the searching criteria (start, and end), and both

are involved in an inequality comparison (less than “< ”, or greater than”>”).

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 110

Note that the first two fields of the Value Index key and the Serial Graph Index

key are the same (Level, PerLv). This fact increases the chances of a successful

memory hit when the search criteria run against the Serial Graph Index are met by

multiple tuples, and thus decreases the number of disk accesses. This clustering

helps to explain the shortest response time achieved by LTIX system in

comparison to the previous approaches as shown in our experiments in

Section 4.3.

Example 4.2: The level of XML elements in graph indexes can be used to

identify the elements’ position within an XML tree structure, and can facilitate

effective query optimization through early pruning of the space search. To

demonstrate that, we evaluate Query 4.2 below over the mapped data in Figure

4.8. This query returns the values of fname elements that have a child element

ancestor.

Query 4.2: //child//fname

Based on whether the used graph index carries the level information of the

indexed elements or it does not, we have two scenarios to evaluate Query 4.2.

First, if we assume that we do not have the level information in the graph index

S, or we have it but we do not access it in an efficient way at an early stage of the

evaluation process of a query, then we evaluate Query 4.2 as follows. We access

the graph index and search for all child and fname elements. In this process node

<4.41> of child element, plus nodes <4.11> and <6.11> of fname elements are

retrieved and investigated. Node <4.11> is excluded as the structure index

would indicate that it is not a valid choice.

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 111

The second scenario takes place if we assume that the levels of the graph

index nodes are given and used at an early stage of the evaluation process. In this

case, we match the extent of node <4.41> with only the extent of node <6.11>.

The extent of node <4.11> would be excluded at an early stage since its level is

equal to the level of <4.41> node, which contradicts the query specification. Our

index structure includes the level at which a node is located as part of the node

label in the graph index. Based on this fact, the evaluation algorithms of our LTIX

approach detect invalid choices at an early step of the evaluation process and

exclude them, thus improving the performance of query evaluation. To illustrate

this, the Elements and Attributes Dictionary table in Figure 4.8(A) can be used in

our approach to evaluate Query 4.2 as follows. If we follow a top-down

evaluation plan, then we would use the Elements and Attributes Dictionary table to

find the child element information first. The search will return the following

tuple:

Tag Level PerLv Type
child 4 41 E

This information is used as a predicate to search for fname elements that are

located at a level greater than 4. This way, the node <4.11> in the graph index of

fname element is excluded instantly without retrieving it. In contrast, other

approaches will eventually exclude it, but after retrieving and testing it.

4.2.3 LTIX Path Index Construction

Graph indexes, in general, require a large amount of memory [56] [144].

Motivated by this fact, versions of graph indexes, called approximate indexes

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 112

[55] [67] [70] have been proposed to reduce the memory requirements. The

memory reduction, however, comes at the expense of accuracy, and initial

answers to a query are often subject to refinement steps to finalize the answers

and remove false positives. Graph indexes, furthermore, are used heavily in

XML query evaluation, especially for paths that have recursion. Finally, since the

labeling scheme of our approach is based on the level of XML elements, our

algorithms use graph indexes more often than other approaches to evaluate XML

queries. Because of these facts, we discuss different alternatives to minimizing

the size of the graph indexes without compromising their accuracy.

We propose two types of implementations for graph indexes. The first is

called a Matrix Index and the second is called a Flat Index. Figures 4.10 and 4.11

are examples of the implementations of the first and the second types for the

graph index in Figure 4.9, respectively. Figure 4.9 is a portion of the graph index

in Figure 4.7. To simplify our examples we narrow the expansion gaps. The

expansion gaps are reserved for inserting new nodes between the existing nodes

while maintaining the order of the nodes.

Figure 4.9 Fraction of the graph index in Figure 4.7

1.1 students

3.33.1 3.5

2.1
student

courses
address

name 3.7

children

4.1 4.3
lnamefname

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 113

In the matrix index (Figure 4.10), sequential memory slots (numbered in the

bottom- right corner) are dealt with as if it is a matrix that has two coordinates.

The X and Y axes coordinates represent the width (PerLv) and the depth (Level) of

the graph index. The first seven slots are reserved for the first level elements, the

second seven for the second level elements, and so on. The width of the matrix is

chosen in a way to cover the width of the tree, which is 7 in our example. Each

slot contains the Parent value for its corresponding node in the graph index. The

empty slots can be used for expansion. This index-probe operation is illustrated

in Algorithm 4.1, which finds the parent node label for a given node. Note that

“V(U)” in line 2 in Algorithm 4.1 represents the value that occupies the memory

unit U. The matrix structure index does not have to have equal width and depth

as in our example. The depth and the width of the matrix index may vary

depending in the depth and the width of the graph index tree, and the formed

structure would still maintain the uniformity of access, which is based on the

chosen depth and width.

Figure 4.10 The Matrix Index structure that holds the Parent value of the graph index in Figure 4.9

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

W (Width) to represent (Per-level)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

to
represent

(Level)

D
(Depth)

0
1
1 1 1 1
3 3

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 114

Due to the increase in the number of nodes in the graph index as levels

increase, and due to the fact that this index structure width has to be the same for

all levels, the matrix would be sparse. Motivated by this fact, we propose the flat

index (Figure 4.11) that divides the graph index into three parts. In the first part,

we save the number of levels of the graph index (assume it is equal to n). The

second part contains n storage units. These storage units are used to specify how

many nodes there are in each level. For example, level 3 (in storage unit 4) has

room for seven nodes. Finally, the third part contains the PerLevel of the parent

node of all nodes in all levels, if they exist. Otherwise, null value is presented.

This index-probe operation is illustrated in Algorithm 4.2.

Algorithm 4.1: Find the parent node of a given node using the Matrix Index

// F(di,pi) : is a function to find the parent node label for a given node.
// Input : (di,Pi) is the label of a node where di and Pi are the Level and

the PerLevel of the input node, respectively.
// Output : (do,Po) is the label of a node where do and Po are the Level

and the PerLevel of the output(parent) node, respectively.
1 do=di-1; // return the Level of the output node

2 Po= V(U)=V(((di-1)*W)+Pi) // return the PerLevel of the output node

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 115

Figure 4.11 More efficient dynamic Flat Index structure for the graph index in Figure 4.9

In order to evaluate a query Q, for example, /students//fname against the

mapped data of G in Figure 4.8, we first verify that the two elements of Q exist in

S (the Elements and Attributes Dictionary, Figure 4.8(A)). If so, we get their

labels, which consist of two sets of labels, {<1,1>} and {<4,11>,<6,11>} for students

and fname elements, respectively. We then use Algorithm 4.3 to verify if a

relationship exists between the instances of these two sets of elements before

going any further in the query evaluation. The function R((d1,p1),(d2,p2)) in

4 1 2 7 3 0 1 1 1 1 1 3 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No.
of

levels

No. of elements
in each level

Graph
Index

1st

level
2nd

level
3rd

level
4th

level

Algorithm 4.2 : Find the parent node of a given node using the Flat Index

// F(di,pi) : is a function to find the parent node label for a given node.
// Input : (di,Pi) is the label of a node where di and Pi are the Level and the

PerLevel of the input node, respectively.
// Output : (do,Po) is the label of a node where do and Po are the Level and

the PerLevel of the output (parent) node, respectively.
1 Y <= V(1) ; // Assign the value in storage unit 1 to variable Y
2 Target = T = 0 ; // initialize the value of target level
3 For k=2 to di // This loop is to find the address
4 { T=V(k)+T } // of the level specified by di

5 do = di-1; // returns the value of do

6 Po =V(U)=V(1+Y+T+Pi) // returns the value of Po

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 116

Algorithm 4.3 is used to verify a child-parent or descendant-ancestor relationship

between any two arbitrary nodes.

The size of the matrix and the flat indexes are dependent on the number of

spare space available for insertion and the size of the tree. The more space we

have, the more robust the graph index structure will be, but at the expense of

size. There is a trade-off between the graph index size and its ability to adapt to

insertion. Flat index structure, however, has more control over the index size.

We believe that these types of index structure representations are useful for

XML databases. They transform the irregularity of XML databases into regular

data that can be accessed uniformly. Moreover, the address of a node itself is

used as part of the information to reconstruct the index tree, that is, we use the

Algorithm 4.3: Confirm a relationship between two given nodes

// R((d1,p1),(d2,p2)) is a function to find if a relationship
exists between two arbitrary nodes.

// Input : (d1,p1) is the node in higher level and
(d2,p2) is the node in lower level.

// Output : Boolean value: true if the relationship exists,
or false otherwise.

1 n = d2-d1;
2 di=d2;
3 Pi=P2 ;
4 for t = 1 to n
5 { (do,po) = F(di,pi); // The function of Algorithm 4.1 or Algorithm 4.2 is used
6 di=do;
7 Pi=Po }
8 if (do==d1 and po==p1)
9 then return true;

10 else return false;

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 117

address as a representation for Level and PerLevel information instead of saving

them inside the file, and hence save memory. The size of the flat index is equal to

O(n + v) were n is the number of nodes in the graph index structure and v is

equal to the number of levels in the graph index plus one. In real life situations,

where the nodes in the graph index can reach hundreds or thousands of nodes, v

becomes negligible compared to n, and hence the size of the graph index is

approximately O(n) of nodes that a graph index can hold. Since our graph index

is based on the DataGuide graph index, the size is relatively small for a regular

data-tree, and grows linearly for irregular data-trees, but does not exceed the size

of the source data in the worst case [54] [56].

Another alternative for building the graph index are B+-trees, which handle

growth gracefully. The B+-trees structure however may require more accesses

than that required by our approach to retrieve specific information. Because

B+-trees accesses depend on the size of the tree that dictates the depth of the

tree. In addition, B+-trees require huge space compared to that required by our

approach. Our graph index structure is similar to a dynamic hash index to some

extent.

4.3 Prototype Implementation

We validate the LTIX with an experimental prototype that we implemented

in our lab using Java 1.6. All experiments were performed on a 3 GHz Pentium 4

PC running Windows XP operating system, with 1.5 GB of RAM. The goals of

the experiments are to evaluate the performance of our LTIX approach that uses

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 118

the LLS labeling scheme. We therefore compare three different indexing

methods. First, we implement a basic interval node index with the MPMGJN

algorithm proposed by Zhang et al. [143]. Second, we modify the MPMGJN

algorithm to use the graph index we described above. This allows us to observe

the impact of our graph index on performance. Third, we implement our LTIX

method, which consists of the LLS labeling scheme and our graph index. We

evaluate the LLS labeling scheme’s effect in the LTIX system by comparing it

with the extended version of Zhang’s interval labeling scheme. We have two

different labeling schemes integrated with the same graph index so performance

differences should be due to the labeling schemes.

We use the Berkeley B+-tree to store the data for the three schemes, and we

use a binary file to store the graph index. We evaluate each method against two

test sets (see Section 4.3.1). We measure the performance using two platform-

independent criteria, namely the number of comparisons performed to establish

relations between two elements and the number of cases pruned by the method,

as well as the average runtime of a query with each method. The size of the

tables is not measured since they depend on the B+-tree implementation.

4.3.1 The Datasets and Queries

We execute our experiments using two datasets: the DBLP Computer Science

Bibliography [120] dataset and the XMark [111] dataset with scale factor (0.1).

Statistics for the two datasets are summarized in Table 4.1.

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 119

Table 4.1 Details of DBLP and XMark datasets

In our experimental evaluation we use the four types of queries listed in the

previous chapter. We run them against the DBLP and XMark datasets. For each

type of query, we used 4 queries as shown in Figures 4.12(A and B). Figures 4.12

(A and B) contain lists of the 4 types of queries, as specified by (T1,T2, T3, and

T4). Please note that the test queries used in this chapter are the same test queries

used in Chapter 3, since they are comprehensive and versatile.

(A) For DBLP database (B) For XMark database

Figure 4.12 Representative queries for 4 types of queries

Testing
Dataset Size No of Elements

in PathIndex
No of
Levels

Total Number
of Elements

Max
Cardinality

Avg.
Cardinality

DBLP 20 MB 71 5 582,033 109,595 8,197

XMark 15 MB 251 11 185,225 6,183 737

T1‐Q1 : /site/regions/africa/item/id
T1‐Q2 : /site/open_auctions/open_auction/bidder/personref/person
T1‐Q3 : /site/open_auctions/open_auction/seller/person
T1‐Q4 : /site/catgraph/edge/from
T2‐Q1 : //id
T2‐Q2 : //africa//category
T2‐Q3 : //regions//item//text
T2‐Q4 : //open_auctions//text
T3‐Q1 : /site/regions/africa/item[/location='United States']/payment
T3‐Q2 : /site/regions/africa/item[/id='item0'] /location
T3‐Q3 : /site/catgraph/edge[/from='category0']/to
T3‐Q4 : /site/people/person[/name='Kaj Carey']/phone
T4‐Q1 : //africa/item[/quantity='1']/name
T4‐Q2 : //open_auction[/reserve='3199.90']/initial
T4‐Q3 : //closed_auction[/type='Regular']/price
T4‐Q4 : //regions//item[/quantity='2']/name

T1‐Q1 : /dblp/inproceedings/cdrom
T1‐Q2 : /dblp/inproceedings/cite/label
T1‐Q3 : /dblp/inproceedings/booktitle
T1‐Q4 : /dblp/book/series/href
T2‐Q1 : /dblp//author
T2‐Q2 : //series/href
T2‐Q3 : //book//label
T2‐Q4 : //href
T3‐Q1 : /dblp/incollection[/year='2000']/booktitle
T3‐Q2 : /dblp/proceedings[/booktitle='ACCV']/isbn
T3‐Q3 : /dblp/inproceedings[/author='Adele E. Howe']/title
T3‐Q4 : /dblp/proceedings[/isbn='0‐7695‐1991‐1']/title
T4‐Q1 : //inproceedings[/mdate='2002‐08‐04']/title
T4‐Q2 : //proceedings[/booktitle='ACNS']/isbn
T4‐Q3 : //incollection[/booktitle='Temporal Databases']/year
T4‐Q4 : //incollection[/author='Jurgen Annevelink']/title

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 120

4.3.2 Performance Evaluation

We execute each query ten times against its respective dataset and take the

average of the 10 readings. The average of each type of the 4 types of queries is

used in our analysis. Tables 4.2 (A and B) show the results of the testing of DBLP

and XMark test cases, respectively. The results include the number of pruned

cases, the average number of comparison operations, and the average running

time to execute the queries of the test cases. The pruning is due to the use of the

graph indexes and the information about the elements’ levels. We notice that the

number of pruned cases in DBLP dataset is less than those of XMark datasets.

This is due to two factors. First, the number of levels is higher in the XMark

dataset. Second, the number of repetitive element names (elements with the same

name) is also higher in the XMark dataset. Since more elements are tested in the

twig queries, we notice that the number of pruned cases for twig queries is more

than those of single path queries for both datasets.

In both test cases, the number of row pairs compared drops to zero for both

types of single path queries (T1 and T2) when the graph index is incorporated,

and hence the performance of our approach is similar to that of the extended

approach. The basic interval node indexes require significantly more

comparisons than the extended interval node indexes and LTIX because, with the

latter two indexes, the correct set of answers is identified by the graph index.

During this process, the labels of the nodes (which consist of Level and PerLevel

parts) that match the exact answer criteria are identified by using the graph

index, then used to retrieve the answer from the data in the B+-tree index. The

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 121

data is clustered in the B+-tree by these labels so the retrieval times are much

smaller than those of the basic interval node indexes.

We see similar performance improvements for both types of twig queries (T3

and T4) in both test cases. The extended interval node indexes compare less row

pairs than the basic interval node indexes (79%-90% less comparisons), and

LTIXs compares 97.9%-99.9% less pairs than the extended interval node indexes.

Similarly, extended interval node indexes perform 46%-78% faster than the basic

interval node indexes, and our approach outperforms the extended interval node

indexes by 89%-99.6%.

Table 4.2 Average pruned cases, comparisons, and runtime for 4 types of queries.

 (A) Against DBLP dataset. (B) Against XMark dataset.

The experimental results of the twig queries (T3 and T4) show that in the

case of the DBLP dataset, our approach performs 99.5% - 99.6% faster than the

extended approach, while in the case of XMark dataset our approach performs

89% - 97% faster than the extended approach. This is because the XMark dataset

is text oriented where the size of data is very large and it exceeds 7,000 characters

for many elements; while the DBLP dataset is record-oriented and the size of the

data items is often short (e.g. name, title, date).

Query
Type

Average
Pruned
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic
Interval

Extended
Interval

LTIX
Basic

Interval
Extended
Interval

LTIX

T1 5 105,684 0 0 22,108 6 6

T2 2 32,376 0 0 15,545 12 12

T3 13 322,491 67,966 17 39,503 8,543 32

T4 14 316,409 67,384 61 35,016 18,991 96

Query
Type

Average
Pruned
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic
Interval

Extended
Interval

LTIX
Basic

Interval
Extended
Interval

LTIX

T1 29 25,915 0 0 3,250 7 7

T2 69 7,003 0 0 1,426 48 48

T3 205 32,805 3,272 12 2,304 738 22

T4 140 81,022 7,902 168 5,241 1,732 191

CHAPTER 4. LTIX: A COMPACT LEVEL-BASED TREE TO INDEX XML DATABASES 122

We believe that the performance gain of LTIX, as noted in Tables 4.2 (A and

B), is achieved mainly by two factors in our index structure. First, the LTIX graph

index is based on the levels of XML elements, which is used to prune out false

positive cases early in the evaluation process. Second, multiple inequality

comparisons are performed to find a match for a node using the basic and the

extended node indexes, while LTIX only requires one equality comparison to

find a match for a node.

4.4 Summary

Unlike the existing approaches that integrate a labeling scheme with a graph

index, in which both reflect the structure of XML data, our approach relaxes the

structure constrains from the labeling scheme of the integrated index structure.

Alternatively, the used labeling scheme (LLS) not only facilitates effective query

optimization through early pruning of the space search, but also is capable of

supporting the join process more efficiently.

Graph indexes, in general, require a large amount of memory [56] [144].

Based on this fact, we developed several efficient implementations techniques for

the graph indexes in LTIX to minimize the size of the graph indexes and increase

its efficiency at the same time. Our indexing techniques are based on flattened

indexes instead of B+-tree for two reasons. First, the B+-trees structure may

require more number of accesses to retrieve specific information. Second, B+-

trees require huge space to save them. In contrast, our graph index structures

require less access to retrieve specific indexed information, and they require

modest space.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 123

Chapter 5

Relational Universal Index Structure
for Evaluating XML Twig Queries

Numerous approaches to storing XML data in relational databases have been

proposed in order to take advantage of the maturity of relational database

management systems. Index structures have been developed with these

approaches in order to speed-up XML query processing. However, these index

structures typically either do not support efficient processing of twig queries or

are huge in size. In this chapter we propose a novel index structure that is

compact and effectively supports processing of XML twig queries. We use a

light-weight native XML engine on top of an SQL engine to perform the

optimization related to the structure of the XML data prior to shredding.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 124

Experimental results show that our approach achieves lower response time than

other similar approaches while using less space to store the XML data

In this chapter we discuss XML data mappings to relational data and we

review the types of existing mapping approaches and their limitations. We then

introduce our approach (UISX approach), explains the XML data and path

summary models used to build UISX [96], explains how the proposed index

structure optimizes the use of the space to store XML data, and illustrates how

XPath queries are evaluated by using this index structure. Finally, we present an

experimental evaluation of the UISX approach in comparison to existing

approaches and summarize this chapter.

5.1 Mapping of XML Data to Relational Data

Due to its flexibility, XML is becoming the standard for exchanging data

over the World Wide Web. XML databases can be stored and queried by using

either native XML repositories [26] [53] [98] [102] [112] [136] [141] [142] [146] or

relational database management systems [27] [49] [61] [101] [107] [114] [115] [118]

[119] [134] [140] [143]. Native approaches for storing and querying XML data are

still relatively new. On the other hand, RDBMSs are well founded, tuned, and

standardized by several decades of work. RDBMSs are also known for their

strength in data storage and manipulation, query processing and optimization,

concurrency control, recovery, and security. Finally, huge volumes of data are

already stored in relational database management systems. Motivated by these

facts, researchers and vendors (such as IBM®, Oracle®, Sybase®, and

Microsoft®) are working on ways to improve the capabilities of RDBMS to store

and retrieve XML [25] [43] [44] [49] [61] [101] [114] [115] [118] [119] [140] [143].

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 125

5.1.1 Types of Mappings

Many research projects have proposed mapping XML data to RDBMSs. These
proposals can be divided into two groups: mappings that are based on the
schemas of XML data [126], which are referred to as structure-mappings; and
mappings that are not based on XML schemas, which are referred to as model-
mappings [118]. In structure-mapping, XML data is mapped to different relational
schemas depending on the existing XML schemas. In model-mapping [91], the
XML data is mapped to the same relational schema regardless of the structure of
the mapped data, whether an XML schema exists or not. Shanmugasundaram et
al. [115] and Florescu et al. [49] proposed two of the early approaches for
mapping XML data. The first approach is based on structure-mapping, and the
latter is based on model-mapping. Since our approach is based on model-
mapping, we are going to concentrate on model-mapping approaches.

5.1.2 Problems with Model-Mapping Approaches

There are three types of model-mapping approaches: edge, node, and path
approaches. The edge model-mapping approach proposed by Florescu and
Kossmann [49] is based on the edge-labeled data model. It maps all edges in an
XML data-tree into a single relational table that has the scheme
(Source,Target,Tag,Flag,Value). Each edge represents an element that has a Source
and Target identification. An XPath query is evaluated by matching the Target id
of one element (edge) with the Source id of the following element in the path of a
query starting from one end and finishing at the other end. The Flag represents
the type of the node (e.g. int, string). The edge approach requires a minimum of
n-1 join operations to evaluate a query with n elements for both single path and
twig path queries. In addition, it does not efficiently evaluate queries with the
ancestor-descendent “// ” axis.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 126

Zhang et al. [143] proposed a model-mapping approach based on the node-

labeled data model. They use intervals to label the nodes and map XML tree

elements to a relational table that has the scheme (Beg,End,Tag,Level,Value). Two

elements can be joined together if the interval (Beg,End) of one element contains

the other element interval. Unlike the edge approach, node model-mapping can

efficiently evaluate queries with the ancestor-descendent “// ” axis, but it still

requires n-1 joins to evaluate a single path or a twig path query with n elements.

Yoshikawa et al. [140] proposed a model-mapping approach that is based on

forward-paths of elements in an XML data-tree. A forward-path is a path that

starts from an element in the higher part of an XML data-tree (e.g. root element)

and ends at an element at the lower part (e.g. the mapped element). In this

approach, elements are shredded into a relational table with the scheme

(Path,Beg,End,Value). Each element is identified by its root-path (which is a

forward-path). Single path queries are evaluated with one match. Twig queries,

however, are evaluated by decomposing the twig into multiple single paths.

Each path is evaluated separately and then joined together to obtain the final

answer. The number of joins required to evaluate a twig query is usually equal to

the number of branches in the query. The forward-paths approach reduces the

number of joins required to evaluate a query, however, it may produce incorrect

answers when recursion exists in XML data [56]. To overcome this problem Pal et

al. [101] proposed a similar approach using reversed-paths instead of forward-

paths. A reversed path is a path that starts from an element at a lower part in an

XML data-tree and ends at an element in a higher part. The reversed-paths

approach not only eliminates the possibility of producing false results, but also

improves the performance of query evaluation. The reversed-paths approach has

been used by IBM® System RX, Microsoft® SQL Server 2005, and Oracle® DB

[56].

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 127

Chen et al. [27] use a reversed-path approach where each node in an XML

data-tree is given a global id, and then shredded into relational tuples with the

scheme (HeadId, SchemaPath, LeafValue, IdList). The HeadId is the id of the node at

which a reversed-paths ends, SchemaPath represents the reversed-paths of XML

data nodes, LeafValue represents the values of the leaf nodes in the path of the

mapped elements, and IdList contains lists of the global ids of the nodes that

constitute a path from the HeadId to the designated mapped nodes. Two index

structures were proposed with the approach. The first is the ROOTPATHS index,

which indexes only the prefixes of the root-to-leaf paths. The second is the

DATAPATHS index, which indexes all subpaths of root-to-leaf paths, including

the root-to-leaf paths. The key idea of this approach is to create an index for all

branching nodes. To process a twig query, in the case of ROOTPATHS index, all

branches are evaluated and the returned IdLists are then merged or hash-joined

to arrive at the final solution. In the case of DATAPATHS index, a twig query is

processed by evaluating the base branch (the branch that is evaluated first) to get

the ids of the branching nodes which are available in the IdList. Then a search is

carried out for the secondary paths that are rooted at the identified branching

nodes and that have the exact reversed-path given in the query. The

reversed-paths that are used to evaluate a twig query in DATAPATHS index

start from the leaf node of the query and end at the branching nodes. The

DATAPATHS index reduces access to the index to a single index lookup in order

to find a match for fully specified, single path query without any recursion.

Consequently, solving twig queries, which can be divided into multiple single

path queries, requires a relatively small number of index lookups.

Chen’s et al [27] index structure does not have a path summary table like

our approach. Their approach, however, has a dictionary to encode schema paths

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 128

by using special characters to designate elements and attributes instead of using

the whole names. This dictionary has to be accessed at an early stage of an XML

query evaluation process. Our approach, in contrast, uses the path summary

table, which has approximately the same size as the dictionary table. The key

idea of both approaches is to index all leaf nodes in relation to the branching

nodes, and so minimize the number of index accesses required to evaluate a twig

query.

5.1.3 Introduction to Our Approach (UISX)

Our approach falls under the model-mapping category and it is based on

indexing branching nodes through which we can join XML data-tree nodes. The

UISX is also based on a novel type of mapping, that is, structure summary

mapping (summary mapping for short). In what follows, we introduce the

Universal Index Structure for XML [96].

Elements in XML data are linked through a hierarchical structure. Any two

elements are linked through their common ancestor. Therefore, indexing

common ancestors can facilitate the evaluation of twig queries. For example,

consider the XPath query 5.1.

Query 5.1: //student [/ fname =‘Sue’ and lname =‘Jones’] / program

This query returns the program of the student Sue Jones. Its pattern can be

represented as a node-labeled tree as shown in Figure 5.1. A single line

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 129

represents a parent-child relation and a double line represents an ancestor-

descendent relation.

Figure 5.2 contains an XML document, which is represented as the

hierarchical node-labeled tree in Figure 5.3. The nodes’ labels are given inside the

nodes of Figure 5.3. Query 5.1 can be evaluated over the data in Figure 5.3 as

follows. We first evaluate the branch with fname=‘Sue’. This part returns the node

<4.2.3> and the branching node <3.1.3>, assuming that all branching nodes for

each node in the data-tree are recorded in the database. We call the branch that is

evaluated first the base branch, and the branch(es) evaluated afterward the

secondary branch(es).

Figure 5.1 Query 5.1 hierarchical patterns

Now to evaluate the second branch lname=‘Jones’, we have to search for the

lname element that has a value “Jones” and whose parent node label is <3.1.3>.

The only node that matches these criteria is node <4.3.3>. Note that the other two

nodes that have the same last name “Jones,” namely, nodes <4.3.1> and <4.3.2>,

are excluded early in the search because their parent node is not <3.1.3>. Finally,

we search for branch program relative to its parent <3.1.3>. So the value “CS” is

returned as the final answer.

student

fnameprogram

? “Sue”

lname

“Jones”

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 130

Figure 5.2 XML document

From the above example, we can see that twig queries can be evaluated by
using knowledge of their branching nodes. We propose an approach that utilizes
this idea to evaluate twig queries efficiently by building a Universal Index
Structures for XML databases (UISX). This index structure guarantees to find a
complete and accurate match for each node of any arbitrary base branch by
executing a single index lookup. That is, all relevant matching tuples are
retrieved without any false positives.

Figure 5.3 The data-tree representation of the XML document in Figure 5.2

<course number="251">
<name>XML</name>
<students>

<student>
<program>Math</program>
<fname>Omar</fname>
<lname>Jones</lname>

</student>
<student>

<program>Physics</program>
<fname>Ayah</fname>
<lname>Jones</lname>

</student>
<student>

<program>CS</program>
<fname>Sue</fname>
<lname>Jones</lname>

</student>
</students>
<instructor>Beth</instructor>

</course>

2.1.1

3.1.1 3.1.2 3.1.3

4.2.2 4.3.2

2.3.1

1.1.1
course

student

“251”
student

number

“Beth”

student

“Sue”

fname

“Ayah”

lname

“Jones”

2.4.1instructor2.2.1

“XML”

name

“Physics” “CS”

4.2.1 4.3.1
fname lname

“Jones”

4.2.3 4.3.3
fname

“Jones”

lname

students

4.1.1
program

4.1.2
program

4.1.3
program

“Omar”“Math”

4.2.2 4.3.2 4.1.3 4.2.3 4.3.34.1.24.3.14.2.14.1.1

2.4.12.2.12.1.1

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 131

Finding matching elements of a twig is a core operation in XML query

processing [27]. Much research has been done to match elements at different

branches of twig queries [27] [37] [54] [67] [88]. Generally, these approaches

suffer from either being huge in size, or not being able to support twig queries as

efficiently as they support single path queries. A good study of the trade-off

between index space and evaluation efficiency is given by Chen et al. [27]. They

implement two index structures: ROOTPATHS and DATAPATHS.

ROOTPATHS has small size, but it is not as efficient as DATAPATHS, whose

size is much larger. The reason behind the DATAPATHS superior performance

is the fact that it indexes all possible subpaths of root-to-leaf paths, which are

used to match any two arbitrary branches.

Our proposed approach has a compact size, yet, it supports efficient

evaluations of twig queries. It uses a RDBMS to store and query XML

documents. It also uses path summaries, which are based on DataGuides [54], to

facilitate a query evaluation.

5.2 Our Approach: Universal Index Structure
for XML Data

Based on the observation that branching nodes are the key element in solving

twig queries, we propose the UISX approach [96] to efficiently match and join any

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 132

two arbitrary nodes that share the same branching node. In this approach the base

branch is evaluated first. Then, for each returned base branch node, the secondary

branches are examined, and the matching nodes of each branch are located

through their common ancestor node by using only one index lookup.

5.2.1 XML Data and Path Summary Models

In this section we describe our basic data model, and path summary that we

used in developing the UISX system. Then we discuss the query language, the

size optimization, and the query processor of the UISX.

We model XML documents as trees. An XML tree is a directed ordered graph

G=(R,VR,VL,E,tagg,labelg,T). Formal definitions of this data model can be found in

Section 3.2.1. The data-tree representation G of the data in Figure 5.2 is illustrated

in Figure 5.3.

In UISX, an XML data-tree G can be summarized by a path summary S such

that every distinct path in the source data to appear only once in the path

summary, and all the paths in the summary have to have at least one matching

path in the original source data. Basically, G nodes are partitioned into

equivalence classes in S where the nodes of a class have the same root path [54]

[93].

We model path summary as a directed ordered tree S=(R,O,M,tags,labels,C).

Formal definition of the path summary S can be found in Section 3.2.1. Figure 5.4

contains an example of a path summary S of the XML data-tree G in Figure 5.3. Note

that the leaf nodes’ labels in G are represented by their parent nodes’ labels.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 133

Figure 5.4 The path summary of the data in Figures 5.2 and 5.3

The path summary in Figure 5.4 is mapped to the relational table
PathSummary as shown in Table 5.1, which is similar to the Summary table of LLS
approach (Figure 3.6(A)). The leaf nodes data of Figure 5.3 is mapped to the
relational table LeafNodes as shown in Table 5.2.

In Table 5.1, the Tag field contains the tags of the elements of the nodes in the
summary, which is assigned through the tags function of S. The Level and PerLv
fields represent the d and the p parts of the path summary nodes labels as
indicated in Figure 5.4, respectively. These labels are allocated through the labels
function of S. The Parent field holds the label of the parent nodes, which are the p
values of the parent nodes. The Level value d of the parent node is equal to the
current node Level value minus one, so we do not need to list the parent node
level in the PathSummary table. Note that the Parent value of the root element is
zero since it does not have a parent. The Type represents the type of node (e.g.
element or attribute). The Count value C is the number of nodes in the original
XML data that belong to the same summary group. It is used mainly to
reconstruct the subtrees that are rooted at the internal nodes (see Section 5.2.3).

2.22.1

3.1

4.2 4.3

2.42.3

1.1
course

studentsnumber name

student

instructor

lnamefname

Level

1

2

3

4 4.1
program

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 134

Table 5.1 The PathSummary table

Table 5.2 shows the LeafNodes table, which is populated with the data of all

leaf nodes VL in the XML tree. In this table, the Level, PerLv, and No values

together form the label of the leaf nodes d, p, and s, respectively, as shown in the

data-tree in Figure 5.3. These labels are allocated through the labelg function of G.

The Value field contains the values of the node for VT nodes, and null for VE

nodes. The Lev1,…, Lev4 fields are explained below.

Table 5.2 The LeafNodes table

Tag Level PerLv Parent Type Count
course 1 1 0 E 1
number 2 1 1 A 1
name 2 2 1 E 1
stduents 2 3 1 E 1
instructor 2 4 1 E 1
student 3 1 3 E 3
program 4 1 1 E 3
fname 4 2 1 E 3
lname 4 3 1 E 3

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4
2 1 1 251 1 1 0 0
2 2 1 XML 1 1 0 0
2 4 1 Beth 1 1 0 0
4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3
4 2 1 Omar 1 1 1 1
4 2 2 Ayah 1 1 2 2
4 2 3 Sue 1 1 3 3
4 3 1 Jones 1 1 1 1
4 3 2 Jones 1 1 2 2
4 3 3 Jones 1 1 3 3

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 135

Branching Indices : In order to achieve high performance of the UISX index

structure, and since an s value uniquely identifies a node among other nodes of

the same class, we split the serial path parts that are separated by dots

previously, and save each part in a different field (see Table 5.2). Each field is

titled after the level of the s values it contains. That is, each field is titled Lev(i),

where i ∈ [1,…,n], and n is the number of levels in G. Each field of these fields is

used for indexing branching nodes located at the corresponding level. We define

H as a set of branching indices that we create to index si values, where

H={H1,H2,…,Hn}, i∈ [1,…,n], and n is the number of levels in G. Each index for

each level is based on the concatenation of (si,d,p) values (see Table 5.2). All s

values of V nodes in G are covered by the H set.

The index structure of UISX has mainly three components: path summary

table, leaf nodes table, and branching indices. The tables’ key fields are underlined

in Tables 5.1 and 5.2. The key field of the PathSummary table is (Tag), and the key

fields of LeafNodes table are (Level,PerLv,Value). The two tables are related

through the (Level,PerLv) fields. The branching indices are the H set of indexes,

which are used to facilitate the link between two arbitrary nodes in a twig query.

Our index structure covers nodes that belong to the same XML document; the

extension to multiple documents can be implemented by adding the document id

to the labels of S and G nodes.

5.2.2 X-Path Query Expressions

In what follows we introduce three definitions that are used in defining

X-Path query expressions formally, as they are used in the UISX.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 136

Definition 5.1. A query Q is covered by a summary S if and only if: (1) the

nodes of Q exist in S, and (2) the Q nodes exist in S according the structure

specified by Q.

For example, the query “/instructor[/name=‘XML’]/course” is not covered by

the path summary S in Figure 5.4. Although the first condition is met, but not the

second. If we switch the positions of course and instructor tags

“/course[/name=‘XML’]/instructor,” then the mapping of Q nodes to S nodes

succeeds and S covers Q.

Definition 5.2. To evaluate a twig query Q over a data graph G by using S, we

say that the matching of an instance of one group with the instances of another

group is complete if the returned nodes contain all the relevant nodes.

Definition 5.3. To evaluate a twig query Q over a data graph G by using S, we

say that the matching of an instance of one group with the instances of another

group is precise if the returned nodes do not contain any irrelevant node.

The pattern of single path query expressions can be represented as

“t1.rel.t2…rel.tx,” where (t1,t2,…,tx) are tags of the query and rel represent the

relation between the adjacent tags, and it may be a parent-child relation “/ ” or

ancestor-descendent relation “//.” We refer to single path query expressions that

have only the “/ ” axis as simple single path queries, and to single path query

expressions that have one or more “// ” axes as single complex path queries. Both

types are evaluated by finding the extension of tx, that is, ext(tx). In the relational

tables in UISX, the mapped data are sorted by <d.p> keys, and hence one index

look up is sufficient to evaluate these types of queries by probing the index for

tuples that match <y.x>, where <y.x> is the label of tx, and d=y and p=x. Twig

queries patterns can be represented as:

t1.rel.t2…rel.tb[rel.t1.rel.t2…tf1][rel.t1.rel.t2…tf2]…rel.t1.rel.t2…tfi

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 137

This twig pattern expression consists of multiple single path expressions. The

expressions inside the square brackets and the expression that follows at the end

are the branches of the twig. The branching element tags are denoted by tb.

(tf1.tf2…tfi) are the leaf elements’ tags of the first branch, second branch, and ith

branch, respectively, where i is the number of branches in the twig. Given an

XML data-tree G with a path summary S, in general, with UISX we evaluate a

twig query Q against G in two steps. First, we map nodes of Q to nodes of S. If

the mapping succeeds (i.e. Q is covered by S), we move to the next step in the

evaluation process. In the second step we use only the extension of tags tb and

(tf1, tf2,…,tfi) to evaluate the query. Before we present an example, we need to

introduce the following theorem.

Theorem 5.1. In UISX, one index lookup into a branching index H is sufficient

to join a pre-defined node of one group of the leaf nodes with the complete and

precise matching nodes in another group of leaf nodes of a twig query.

Proof. First consider the following twig query with two branches:

Q : t1.rel.t2…rel.tb[rel.t1.rel.t2… tf1][rel.t1.rel.t2…tf2]

In this query, we assume that the level of the branching node tb is Lb, and Q

has two leafs: tf1 and tf2. The extension of tf1 is a set of nodes Vf1, that is,

ext(tf1)=Vf1={vf11,vf12,…,vf1n}, and similarly ext(tf2)=Vf2={vf21,vf22,…,vf2n}, where n

is the number of instances in each set. According to query Q, we want to prove

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 138

that one index lookup into HLb is sufficient to join a single node in Vf1 node-set

with all matching nodes in Vf2 node-set.

From the data-graph G definition, the labels of Vf j sets, where j∈ [1,2],

consist of the three parts <d.p.s> . The first two parts (d and p) are the same for all

nodes in each set. The third part s is the part that uniquely distinguishes each

node among all nodes of the same class (or group). Each node in Vf j sets has a

serial path r (Definition 3.2), which consist of the s part of the labels of the nodes

in the path from the root node to the designated node. Since s is unique for each

instance of a class, then r can be used to uniquely identify the labels of all nodes

in the serial path of a node. Assume that the value of s of the branching node tb

that is located at level Lb is sx. The two branches’ nodes that share tb node in their

serial paths are matched if the value of each serial path r at tb node is equal to sx

value. This way, the matching process will return either an empty set if there is

no match, or it will return the complete and precise matches since all nodes that

share this common ancestor tb node have their r values at tb set to sx.

Consequently, there is no chance for any false positives to be retrieved. Since all s

values of V nodes in G are covered by the H set of indexes (see branching

indices), and HLb index is based on s values of Lev(Lb) field, then by using an

index structure that contains HLb, it would require only one index lookup to find

a complete and precise match for any arbitrary node in one branch with one or

more nodes in any other branch of a twig provided that they share a joining

node. This matching process can be extended to evaluate multiple branches

queries with n branches by evaluating two branches at a time until all branches

are evaluated as illustrated in Algorithm 5.2 (to be discussed shortly). �

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 139

Example 5.1. Consider twig Query 5.2 over the data-tree G shown in Figure

5.3, which returns the list of students’ first name and the programs in which they

are enrolled.

Query 5.2: /course//student [/ program]/fname

Figure 5.5 The node-labeled tree representation of Query 5.2.

This query node-labeled tree representation is shown in Figure 5.5. It is easy

to see that S covers Q because the mapping of Q query over S path summary of G

data-tree can be carried out successfully. In this case student node is the

branching node tb, program node is the first leaf node tf 1, and fname node is the

second leaf node tf 2. These three Q nodes maps to S nodes <3.1>, <4.1>, and

<4.2>, respectively. Note that Lb=3. We next retrieve ext(tf 1), the extension of tf 1,

which returns the tuples:

student

fname

course

program

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4
4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 140

To find a match for the first tuple above, and since Lb=3, we use the index

structure to probe the H3 branch index, which is based on columns

(Lev3,Level,PerLv), to retrieve all nodes that match (1,4,2) search criterion.

Similarly, the second and the third tuples are matched by probing the same H3

branch index for nodes that match (2,4,2) and (3,4,2) search criteria, respectively,

and hence the following tuples below are returned. If there are multiple nodes

that match a search criterion, we retrieve them by invoking only one index

lookup because they are physically clustered together.

Program Fname
 Math Omar
Physics Ayah

 CS Sue

5.2.3 Size Optimization

The UISX system only maps leaf nodes because internal nodes can be

regenerated using the PathSummary and the LeafNodes tables.

Claim 5.1. Suppose S is a path summary for an XML data-tree G, VL is the set

of leaf nodes of G, and T is the set of serial paths of VL. Then we can use S and T

to reconstruct the subtree that is rooted at any internal node v, where v∈VR.

Next, we present Algorithm 5.1 that reconstructs a subtree that is rooted at

an internal node v where v∈VR. The algorithm is a proof for Claim 5.1 above,

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 141

which establishes that a subtree rooted at any internal node can be reconstructed

by using S and T.

Algorithm 5.1 : Publish an internal node

Input : An internal node v .
Output : Subtree(s) rooted at v .
1 Identify by using S:

a- The branching node v according to a given path,
b- structure of the subtree ST that is rooted at v , and
c- leaf nodes L of ST, and sort them by Level and PerLev .
CheckedNodes = empty set { }

2 For each node l in L
Begin
For i = 1 to l c // l c is the count of node l

Begin
While(CurrentNode.Level ≤ v.Level and CurrentNode Not in CheckedNodes)

Add CurrentNode (ChildNode,ParentNode) to CheckedNodes
CurrentNode=CurrentNode.Parent

End
End

3 Sort nodes in CheckedNodes based on <d,p,s>.
For each root node v in CheckedNodes

Begin
Subtree = empty tree { }
IdentifyChildren(v)

Begin
Add v to Subtree
ChildrenSet ={v.child}
For each child y in ChildrenSet

Begin
if y Is Not in LeafNode

IdentifyChildren(y)
else

Add v to Subtree
End

End
End

Return the subtree rooted at v node .

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 142

Step 1, as outlined in the left-hand side of Algorithm 5.1, identifies the

internal node v that need to be published, the structure of the subtree ST rooted

at v, and the leaf nodes L of ST. This step also initializes an empty set of checked

nodes. Step 2 identifies all instances of all nodes that exist in ST and adds them to

the temporary storage repository CheckedNodes. For each node, it adds the labels

of the child (the current node) and the parent nodes, which are connected

through an edge. Step 3 contains a recursive function that takes all nodes in the

CheckedNodes repository and builds the subtrees that exist in these nodes

according to parent-child relations using the labels obtained at the previous step.

Note that step 2 follows a bottom-up tree traversal direction, while step 3 follows

a top-down tree traversal direction. This algorithm is designed to reconstruct a

subtree rooted at single S node that satisfies a query path. Adjustment to adapt to

multiple S nodes that satisfy a given query path can be implemented by adding

an outer loop to the algorithm to cover all satisfying nodes. All nodes N of ST are

scanned and retrieved only once in which they are added to a temporary

repository that are used at a subsequent step to rebuilt the original subtrees, and

hence the complexity of this algorithms is O(N) database accesses in the worst

case. Since nodes N are clustered by their <d.p> values, the actual database

accesses are less than that expected by the worst case analysis. Next, we trace a

simple example that shows how an internal node is published to demonstrate

our claim.

Example 5.2. To illustrate how the reconstruction of an internal node is

carried out, we use parts of the DBLP XML database that we use in our

experimental evaluation. Table 5.3 represents a portion of the actual

PathSummary table of the DBLP database that we implemented using DB2® V9.5.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 143

Figure 5.6 illustrates a portion of the DBLP summary tree. The numbers below

the elements’ tags represent the count C of the extent nodes in the source XML

database for the designated elements in the summary, which are taken from the

COUNT field in the PathSummary table (Table 5.3). For simplicity, we assume in

this example that the book element has only three child elements (title, cdrom, and

cite).

Table 5.3 Part of the PathSummary of the 50 MB DBLP XML Database

To evaluate the query “//book” we have to reconstruct the internal node book

as per the structure shown in Figure 5.6. We use the PathSummary and the

LeafNodes tables to implement the reconstruction as follows.

• From the PathSummary table we can see that the C value of book element is

1249, in other words, there are 1249 instances of the book element, and

these instances are associated by child relations with: 1249 instances of the

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 144

title element, 4 instances of the cdrom element, and 3319 instances of the

cite element. For repetitive referencing, we refer to the book element here as

the parent element, and the title, cdrom, and cite elements as the child

elements.

• At this stage we want to determine which child instances are associated

with each parent instance. In order to show how to do that, we use the

LeafNodes table. We take only the instances of the cdrom element in the

LeafNodes table, which are shown in Table 5.4, as an example.

• Note that the parent element (the root element of the subtree) is located at

level 2 (Lb=2) and the child elements are located at level 3 as shown in

Figure 5.6. Also, from Table 5.4, we can see that the first instance (the first

tuple in Table 5.4), whose SerNo=1, of the cdrom element is associated with

instance number 4 (s value at Lev2) of the book parent element. Similarly,

the second instance of cdrom element is associated with instance number

22 of the book parent element, and so on.

Figure 5.6 A portion of the 50 MB DBLP XML path summary tree

2.2

book

3.13
title

3.23 3.24
citecdrom

1249 33194

1249
Level 2

Level 3

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 145

In this way we can reconstruct and publish the internal nodes. In our

example in Figure 5.6, each instance of the book element has only one title child

element. Just 4 instances of the book element have 4 instances of cdrom child

element, in one-to-one relation. Finally, some instances of the book parent element

have multiple instances of the cite child element.

Table 5.4 The tuples of cdrom element in the LeafNodes table

Since we can reconstruct internal nodes from the LeafNodes and the

PathSummary tables, we do not need to store them, so the size of the mapped

database can be reduced significantly. For example, the actual size savings in our

experiments are 115 MB and 88 MB for the XMark and the DBLP databases,

respectively (see Table 5.5). Another source of space saving in our approach is

the fact that the paths of the nodes (elements and attributes) are not recorded in

the database, as the case in other approaches [27] [37], because we can regenerate

them from the PathSummary table by using the nodes’ labels.

Table 5.5 Sizes of XMark and DBLP data-sets with different implementations

Level PerLevel SerNo Value Lev1 Lev2 Lev3 Lev4
3 23 1 AHV/Toc.pdf 1 4 1 0
3 23 2 BERNSTEIN/Contents.pdf 1 22 2 0
3 23 3 MAIER/CONTENTS.pdf 1 151 3 0
3 23 4 Wiederhold/toc.html 1 443 4 0

Original
size

UISX with Internal
nodes mapping

UISX without internal
nodes mapping

Saved
space

Percentage of
saved space

XMARK 100 MB 250 158 115 42%

DBLP 50 MB 155 85 88 51%

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 146

5.2.4 UISX Query Processor

This section discusses the components of the UISX query processor and the

algorithm used in evaluating twig queries. We evaluate twig queries using a

light-weight native XML engine on top of an SQL engine as illustrated in Figure

5.7. Hence we refer to this method as a hybrid query processor. The job of the

native XML engine is to explore potential query optimization processes that are

related to the structure of XML data, which can not be exploited by SQL engines.

The SQL engine handles the XML-Relational data after shredding.

Figure 5.7 The UISX hybrid query processor

We developed Algorithm 5.2 to evaluate twig queries with one branching

node. To evaluate a query with multiple branching nodes, the query is divided

SQL Engine

RDBMS
PathSummary Table
LeafNodes Table

Translator & Coordinator

XML Engine

XML Query Interface

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 147

into several subtrees that are rooted at the branching nodes. The most nested

subtree is evaluated first, and then the result is used to evaluate the subtree that

is rooted at the next higher branching node, and so on.

The algorithm consists of 5 parts, which are indicated on the left-hand side of

the algorithm. Please note that curly brackets stand for a set that can contain one

or more node(s) or element(s); (d,p) represents the node in the path summary table

whose Level is specified by d and PerLv is specified by p; and (d,p,V,Lev(x)) stands

for the tuple in the LeafNodes table whose Level is d, PerLv is p, the Value of the

tuple is V, and the Lev(x) represent the value of Lev(x) in the LeafNodes table

where x is equal to the level of the branching node, namely Lb.

Step 1 of Algorithm 5.2 identifies the labels d and p (Level, and PerLv) of the

leaf nodes for all branches in a twig query, in addition to the level of the

branching node Lb. The second step identifies the branch with the minimal

cardinality if no predicates are given in the query, where the cardinality can be

identified from the Count field in the PathSummary table, or it identifies the

branch with the higher selectivity if predicates are used in the query [13]. We

need this step to minimize the number of nodes examined to identify a match,

and hence reduce the evaluation cost. Step 3 in the algorithm identifies the set of

secondary branches, which contains all the branches identified in step 1 minus

the base branch identified in step 2. Step 4 evaluates the base branch by

identifying the set of tuples that satisfy the predicates obtained in the preceding

steps. These predicates include the values of d, p, and x. Note that the first two

predicates are obtained from step 2, and the third predicate is obtained from step

1 where x (to be used in Lev(x)) is equal to Lb. We use these predicates to identify

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 148

V and Lev(x) values of the leaf nodes of the base branch. Finally, in step 5, the

information obtained in the previous steps - specifically d, p, and Lev(x) values -

is used to evaluate the secondary branches and obtain the final answers, which

are returned to the user as the answer to the given query.

Algorithm 5.2: Evaluating twig queries

Algorithm to evaluate twig queries by using the hybrid method.
Input : Multiple paths XML query Q .
Output : Answer to all leaf nodes of the query .
1 //Use the PathSummary table to identify the Level & PerLev sets {(di , pi)}

//for all leaf nodes of all branches, plus the Level of the branching node Lb.
M (Q)→ {(di , pi)} // mapping of Q in S, identify leaf nodes
M (Q)→ (Lb) // mapping of Q in S, identify the branching node level

2 //define the base branch (dmin ,pmin).
(dmin , pmin)=(d1,p1)
For k = 2 to i

if Count(dk , pk) < Count(dmin, pmin)
then (dmin, pmin)=(dk,pk)

3 //define the secondary branches (dr , pr).
{(dr ,pr)}={{(di , pi)} – (dmin , pmin)}

4 //Evaluate the base branch first.
use LeafNodes table to find set of tuples {(dj ,pj ,Vm ,Lev (x))}

where dj=dmin and
pj=pmin and
x = Lb

5//Evaluate the secondary branches by using the base branch information .
For each tuple in {(dj ,pj ,Vm , Lev (x))} returned by step 4

Begin
For each branch in {(dr , pr)}

Find {(dr , pr , Vn , Lev (y))}
where y = Lb and

Lev(x)= Lev(y)
Return (Vm, {{ Vn}})

End

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 149

In Algorithm 5.2 there are two factors that affect the number of accesses to

indexes: the number of branches and the selectivity of the branches. Generally,

the number of accesses to indexes is affected exponentially by the number of

branches and linearly by the selectivity of the leaf nodes. The numbers of

returned tuples and indexes accesses are inversely proportional to the selectivity

of the leaf nodes of the branches in twig queries. False positive answers for a

query are not possible with this algorithm since the set of retrieved tuples

(candidate tuples) forms the exact answer to the query.

5.3 Prototype Implementation

To validate our approach, we implemented a prototype of the UISX in our

lab using Java 1.6 and DB2® V9.5. We performed all experiments on a 3 GHz

Intel® Pentium 4 PC running Windows® XP, with 1.5 GB of RAM. We use IBM’s

DB2® V9.5 RDBMS [64] to store and retrieve XML shredded data. The goal of the

experiments is to evaluate the performance in terms of elapsed time to execute a

query and the sizes of the databases, and the supporting indexes that are used by

UISX system. We compare our approach with the approaches proposed by Chen

et al. [27] for two reasons. First, they adopt a similar approach by creating

branching nodes indexes that facilitate and guarantee one index lookup to find

matches for each node returned by the base branch evaluation. Second, they

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 150

compared their approach with five existing indexing schemes including: Edge

table [88] and simulated DataGuide [54], which are based on edge model-

mapping; simulated Index Fabric [37] and Access Support Relation (ASR) [71],

which are based on forward-paths model-mapping; and Join Indices (JI) [125].

Chen et al. [27] proved experimentally that, in general, their approaches

outperform these schemes.

5.3.1 Testing Data and Queries

Our experiments were carried out using the XMark [111], and DBLP [120]

datasets. We used the test queries proposed by Chen et al. [27] because they are

broad and cover different criteria such as cardinality, selectivity, recursion, and

depth of the branch node. For ease of reference, the queries are listed in Table 5.6.

Table 5.7 contains a summary of the characteristics of the test query sets in Table

5.6. The first set covers single path queries. The second set covers twig (multiple

paths) queries with different selectivity and high branch points. The third set

covers twig queries with low branch points. The fourth set covers recursive

queries. The “X” and the “D” in the “Query No” column in Table 5.6 stand for the

XMark and the DBLP databases, respectively.

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 151

Table 5.6 Four sets of queries used in testing

Set
No

Qry
No Testing Query

Result
per

Branch

1

Q1X
Q1D
Q2X
Q2D
Q3X
Q3D

/site/regions/namerica/item/quantity [. = 5]
/dblp/inproceedings/year [. = 1968]
/site/regions/namerica/item/quantity [. = 2]
/dblp/inproceedings/year [. = 1988]
/site/regions/namerica/item/quantity [. = 1]
/dblp/inproceedings/year [. = 2004]

1
1

709
1746
9228

10660

2

Q4X

Q5X

Q6X

Q7X

Q8X

Q9X

/site [/people/person/profile/@income = 46814.17]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 46814.17]
[/people/person/name = ‘Hagen Artosi’]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/ increase = 3.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’]
/open_auctions/open_auction /bidder[/increase = 3.00]

1
55
1
1

55
2038

55
2038
7519

55
2038
5172
2038
7519
5172

3

Q10X

Q11X

/site/open_auctions/open_auction
[/annotation/author/@person = ‘person22082’]
/bidder/time
/site/open_auctions/open_auction
[/annotation/author/@person = ‘person22082’]
[/bidder/increase = 3.00]
/bidder/time

2
59486

2
5172

59486

4

Q12X

Q13X

Q14X

Q15X

/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/mailbox/mail/to
/site//item[/quantity = 2]
[/location = ‘United States’]
/site//item[/quantity = 2]
[/location = ‘United States’]
/mailbox/mail/to

41
20946

41
20946
20946
1543

16294
1543

16294
20946

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 152

Table 5.7 Characteristics of the testing query sets in Table 5.6

We executed each query ten times against its respective dataset and used the

average of the 10 readings in our analysis. The time to translate the XPath queries

to SQL queries is not included and only the execution times of the queries are

recorded, which reflect the impact of the index structures.

5.3.2 Experimental Results

Table 5.8 summarizes the characteristics of the ROOTPATHS, DATAPATHS,

and UISX index structures for the XMark and the DBLP databases. The tables

and indexes sizes are in Megabytes. Note that the original sizes of XMark and

DBLP datasets are 100 MB and 50 MB, respectively.

Table 5.8 Characteristics of testing databases as implemented by the indicated approaches

Query
Set Branches Result Per

Branch
Branch
Depth Recursion

1 1 1 – 10660 N/A 0
2 2-3 1 – 7519 High 0
3 2-3 2 – 59486 Low 0
4 2-3 41 – 20946 Low 1

ROOTPATHS DATAPATHS UISX

XMARK Tables Size MB 267 1,285 158
DBLP Tables Size MB 151 381 85
XMARK Indexes Size MB 509 2,535 325
DBLP Indexes Size MB 282 402 183
XMARK No. of Tuples 2,995,272 15,734,707 1,158,492
DBLP No. of Tuples 2,709,327 8,022,673 1,296,328

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 153

The ROOTPATHS and DATAPATHS indexes in Table 5.8 were not subjected

to the compression methods listed in Chen et al.’s paper. To save the shredded

data of the XMark database, UISX used a space equal to 59% of the space used by

ROOTPATHS, and 12% of the space used by DATAPATHS. Similarly, to save the

shredded data of the DBLP database, UISX used a space equal to 56% of the

space used by ROOTPATHS, and 22% of the space used by DATAPATHS. With

regard to the indexes size for XMark database, UISX used 64% of the space used

by ROOTPATHS, and 13% of the space used by DATAPATHS. With regard to

the indexes size of the DBLP database, UISX used 65% of the space used by

ROOTPATHS, and 46% of the space used by DATAPATHS. Finally, the number

of tuples that is required by UISX to shred the XMark XML database is equal to

39% of the tuples required by ROOTPATHS, and 7% of the tuples required by

DATAPATHS; and for DBLP, UISX requires 48% of the number of tuples

required by ROOTPATHS and 16% of the tuples required by DATAPATHS.

The results of the performance tests of UISX compared to ROOTPATHS and

DATAPATHS with regards to the sets of test queries in Table 5.6 are illustrated

in Figures 5.8-5.10. Note that log10 scale is used to measure execution time.

Figure 5.8 Performance comparison of UISX with ROOTPATHS and DATAPATHS using the

DBLP database

1.0

10.0

100.0

1 2 3

UISX

DATAPATHS

ROOTPATHS

Query Number

El
ap
se
d
tim

e
(m

s)

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 154

We tested the DBLP data-tree with just the single branch queries since its

depth is shallow. The results of the 3 test queries, given in Figure 5.8, show that

UISX performs 67% - 76% better than the ROOTPATHS, and 76% - 79% better

than DATAPATHS.

Figure 5.9 presents the elapsed execution time of the test queries with UISX

compared with ROOTPATHS using the XMark database. We notice that the gain

in performance is fairly steady (53% – 64%) for the first type (single branch

queries 1-3). On the other hand, the percentage gain in performance for the

second type of queries (queries 4 – 9) decreases from the 81% to 31% as the

selectivity decreases, since the number of pages that contain the returned tuples

of the elements with high selectivity are smaller than those with low selectivity.

The gain in performance for the third type of test queries is extremely high (99%)

because with ROOTPATHS, each tuple returned by the base branch evaluation

result has to be hash-joined or merged with the tuples returned by the secondary

branches in order to find the matching tuples. While in UISX, the matching

tuples of each secondary branch are retrieved with one comparison for each

tuple returned by the base branch. The gain in performance for the fourth type of

queries is high (79% - 89%) for the selective queries (queries 12 and 13), and

relatively low (19% - 37%) for the queries with low selectivity (queries 14 and 15).

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 155

Figure 5.9 The performance comparison of UISX with ROOTPATHS using XMark database

Figure 5.10 shows the comparison of UISX with DATAPATHS using the

XMark database. We notice that the gain percentage for the first type of queries is

steady and it is in the fifties. Similar to the performance tests against the

ROOTPATHS, the gain percentage in the performance of the second type of

queries decreases as the selectivity decreases and ranges between (9% - 53%). The

gain percentage in performance for the third type is ranging between (48% -

50%). Also, the gain percentage in performance for the first two queries of the

forth type of queries (queries with high selectivity) ranges between (36% - 44%),

which is higher than that of the last two queries (queries with low selectivity),

which ranges between (9% -24%).

1.0

10.0

100.0

1000.0

10000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UISX

ROOTPATHS

Query Number

El
ap
se
d
tim

e
(m

s)

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 156

Figure 5.10 The performance comparison of UISX with DATAPATHS using XMark database

Our approach performs well in comparison to ROOTPATHS and

DATAPATHS. Generally, we believe that the UISX performance gains over

ROOTPATHS are mainly because UISX does not produce any false positive

answers, while ROOTPATHS does. DATAPATHS does not produce any false

positive, and it is an efficient index structure, but its size is large. UISX

performance gains over DATAPATHS are due to the relatively small size of the

UISX index structure. Larger indexes require a deeper B+-tree, and hence require

more search. An efficient way to evaluate a query using DATAPATHS index

structure is by evaluating the base branch first. Then a mechanism has to be

implemented in order to extract the ids of the branching nodes from the returned

IdLists (e.g. scan the IdList string by implementing a string matching operations).

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UISX

DATAPATHS

El
ap
se
d
tim

e
(m

s)

Query Number

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 157

In UISX, in contrast, when the base branch is evaluated, the branching nodes ids

(labels) are returned in the fields (Lev2,Lev3,Lev4,..etc), and are ready to be used

in matching operations directly without the need for extra techniques to extract

the branching nodes ids.

To evaluate recursive queries (queries 12-15), the reversed-path approaches

use the Optional String Pattern Matching (OSPM) function (“LIKE”) to evaluate a

path with ancestor-descendent axis [56]. For example, if we assume that S and A

stands for student and address elements, respectively, then the query

“//student/address” would be evaluated by using an SQL query that would

contain the statement “SchemaPath LIKE AS%” along with other statements. In

contrast, UISX approach uses only the exact string pattern matching (“=”). For

example to find the nodes that match the path in the above query, we would run

the following SQL query:

Select s1.level, s1.perlv
From PathSummary as s1, PathSummary as s2
Where s1.tag='address' and
 s2.tag='student' and
 s1.parent=s2.perlv

It is known that SQL supports exact string pattern matching efficiently by

using the B+-tree indexes, while B+-tree indexes does not support (“LIKE”)

efficiently [56].

5.4 Summary

Twig queries can be evaluated by using knowledge of their branching nodes.

We propose an approach that utilizes this idea to evaluate twig queries

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 158

efficiently by building a universal index structure that covers all nodes in XML

databases. This index structure guarantees to find a complete and accurate match

in a secondary branch for each node of any arbitrary base branch by executing a

single index lookup.

Our proposed approach has a compact size, yet, it supports efficient

evaluations of twig queries. It uses a RDBMS to store and query XML

documents. It also uses path summaries, which are based on DataGuides [54], to

facilitate a query evaluation. The path summary, which is modeled as a simple

table in a relational database, reduces the number of matches required to

evaluate a query by preserving a path summary of the original XML data

structure before shredding. Path summaries reduce the size of the stored XML

databases. This reduction in size is achieved by: (1) eliminating redundant data

from the database, such as the path of an element, which can be regenerated

when needed from the summary, and (2) by using the summary to regenerate the

internal nodes of the XML data-tree along with their subtrees. Therefore, internal

nodes do not need to be shredded and stored in relational tables. In our

approach, only the leaf nodes are shredded and stored in relational tables. The

root-paths are recorded for all leaf nodes, where the information of the internal

nodes is encoded.

Zhang et al. [143] observed that RDBMSs do not support the inequality-joins

efficiently, while they support the equality-joins efficiently. Our XML-relational

approach evaluates XML queries by using equijoins, while most XML-relational

approaches use inequality-joins [56] [143].

We use light-weight native XML engine on top of an SQL engine to evaluate

queries. The job of the native XML engine is to explore potential query

optimization processes that are related to the structure of XML data, which can

CHAPTER 5. RELATIONAL UNIVERSAL INDEX STRUCTURE FOR EVALUATING XML TWIG QUERIES 159

not be exploited by SQL engines. The SQL engine handles the XML-Relational

data after shredding.

We implement the UISX index structure in our laboratory successfully using

the DB2® V9.5 DBMS [64], and the experimental results show that it performs

well in comparison to existing state-of-the-art approaches in terms of size and

response time.

CHAPTER 6. CONCLUSIONS 160

Chapter 6

Conclusions

XML employs a tree-structured data model. Therefore, an XML query

typically consists of two parts: structure constraints and values. Since the

repetition of XML data is irregular due to missing and/or repeated arbitrary

elements, its storage structure can be scattered over many different locations on

the disk, which decreases the performance of XML queries [32]. Furthermore, the

flexibility of specifications of the XML queries (e.g. use of wild cards) adds to the

challenge of indexing methods [130] [146]. These complexities offer many new

challenges for the researchers and software vendors. In this dissertation we

present a labelling scheme and two index structures for XML databases. We

conclude our dissertation in this chapter by providing a summary of the

previous chapters and discussing some of the future work directions.

CHAPTER 6. CONCLUSIONS 161

6.1 Summary

In Chapter 2 we give a brief history of the creation and the development of

the XML data model. Then we discuss the three main categories of structural

indexing schemes proposed in the literature to handle the XML semistructured

data model. Finally, we discuss limitations and open problems related to the

major existing indexing schemes. We classify XML structural indexes according

to two important characteristics: determinism and bisimilarity, since these

characteristics controls the size of indexes and their query answering power.

Two of the most widely used labeling schemes are interval and prefix labeling

schemes. Each type of scheme has advantages and disadvantages. We design a

labeling scheme that has the advantages of the two types of schemes while

eliminating the main disadvantages in Chapter 3. This labeling scheme is based

on the levels of elements in XML trees.

There are two methods for storing and querying XML databases. The first

method relies on native hierarchical nesting structure of XML databases. The

other method leverages the existing power of RDBMSs that has been established

over several decades. We design a native and an XML-Relational index

structures in Chapters 4 and 5, respectively.

We address the excessive number of joins and match operations required to

evaluate a query in Chapter 4 and we propose an index structure that

remarkably reduces them. The proposed index structure also eliminates a great

number of search space that is associated with XML data model.

CHAPTER 6. CONCLUSIONS 162

Generally there is a tradeoff between the size and the power of indexes [56]

[144]. The state-of-the-art XML structural indexes suffer from either being huge

to perform well or perform poorly as a consequence to saving size. Chapter 5

presents an indexing approach that minimizes the size of XML structural

indexes, yet performs well. This approach is based on two ideas: indexing the

branching nodes of XML trees and map XML data into relational tables using a

novel mapping scheme that is based on graph summary mapping. In the

following section we present our future work directions before concluding the

dissertation.

6.2 Future Directions and Challenges

The main challenge in indexing XML data is the irregularity of data and

structure. Value-based queries can be evaluated by using traditional indexing

schemes, such as B+-trees or inverted lists. However, efficient support for the

structural part is a challenging task. The semistructured nature of XML data and

the flexibility of the query languages pose another distinctive concern for

deriving or selecting proper indexing methods. Designing representations for

efficient storage of semistructured data is also a difficult task.

Making the existing labeling schemes – including the LLS – dynamic so that

they adapt gracefully to deletion and insertion of new nodes is not an easy task.

Choosing an appropriate index definition that covers a given query workload is

an open problem for (F+B)k-index. Also, efficient index building and updating

algorithms are needed for non-deterministic forward and backward bisimilar

indexes. Efficient integration of graph indexes with value indexes is another

CHAPTER 6. CONCLUSIONS 163

interesting area. This will minimize the I/O accesses by eliminating the need to

access two different indexes to evaluate an XML query with a predicate. A

hierarchy of graph covering indexes is yet another open area of research. The

hierarchies could be defined in terms of summary tables, where higher level

summaries could be extracted from lower level summary tables.

Sequence indexes support solving a twig query only in a certain order. If the

query order does not match the index order it will return an incorrect answer. To

run a query against a sequence index all possible orders of the query nodes have

to be tested in order to get an accurate result. The node and graph indexes do not

have this problem. Another limitation of sequence indexes is that they may

require a large number of accesses to the index, consequently, it might result in

expensive random I/O accesses. Finally, the overhead of the false positives

problem is a major drawback of sequence indexes.

One of the challenges we are planning to pursue is to identify a suitable set

of statistics for a given graph-based data that can be efficiently computed and

stored without having a fixed graph index. We are also planning to use a

customized XML storage media for the data in LTIX system, instead of using

B+-tree storage media. We would like to extend our relational indexing scheme

by adding a module to the XML query engine that translates XPath queries into

SQL queries where the hierarchy of XML paths is reflected properly.

Finally, we are planning to improve on the native XML query engine that

works on top of the SQL engine in UISX system. We think that coordinating the

query optimization tasks between these two engines can improve XML query

processing. Despite the fact that the size of the shredded data in UISX system is

minimized, since the leaf nodes contain details about both themselves and the

internal nodes, we noticed that some of these details are redundant among

CHAPTER 6. CONCLUSIONS 164

multiple leaf nodes. For example, leaf nodes that share the same branching node

have similar information about the path from the root node to the branching

node. It worth investigating if there is a way to eliminate these redundancies and

improves performance at the same time.

TRADEMARKS 165

Trademarks
• IBM and DB2 are trademarks or registered trade-marks of International

Business Machines Corporation in the United States, other countries, or both.

• Windows is a trademark of Microsoft Corporation in the United States,

other countries, or both.

• Intel is a trademark or registered trademark of Intel Corporation or its

subsidiaries in the United States and other countries

• Oracle is a registered trademark of Oracle Corporation and/or its affiliates

• Sybase is a registered trademark of Sybase, Inc.

• Java is a trademark or registered trademark of Sun Microsystems, Inc, in

the United States and other countries

REFERENCES 166

References

[1] Abiteboul. S., 1997. Querying semistructured data. In Proc. of the International Conference on

Database Theory, ICDT’97, Delphi, Greece, LNCS 1186, pp. 1–18.

[2] Abiteboul, S., Buneman, P., and Suciu, D., 2002. Data on the Web: From Relations to

Semistructured Data and XML, San Francisco, California, USA: Morgan Kaufmann

Publishers.

[3] Abiteboul, S., Quass, D., McHugh, J., Widom, J., and .Wiener. J., 1997. The Lorel Query

Language for Semistructured Data. International Journal on Digital Libraries, 1(1), 68-88.

[4] Aboulnaga, A., Alameldeen, A., and Naughton, J., 2001. Estimating the Selectivity of XML

Path Expressions for Internet Scale Application. In Proc. of the 27th VLDB Conference, Roma,

Italy, pp. 591-600.

[5] Ali, M.S., Consens, M., Gu, X., Kanza, Y., rizzolo, F., and Stasiu, R., 2007. Efficient, Effective

and Flexible XML Retrieval Using Summaries. In Comparative Evaluation of XML Information

Retrieval Systems, LNCS 4518, pp. 89-103.

[6] Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, J., Srivastava, D., and Wu, Y., 2002.

Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In Proc. of the 18th

ICDE, pp. 141-154.

[7] Alstrup, S., Bille, P., and Rauhe, T., 2003. Labeling Schemes for Small Distances in Trees. In

Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Mathematics, Baltimore, Maryland,

USA, pp. 689-698.

[8] Amagasa, T., Yoshikawa, M., and Uemrua, S., 2003. QRS: A Robust Numbering Scheme for

XML Documents. In Proc. of the 19th International Conference on Data Engineering, Bangalore,

India, pp. 705-707.

[9] Amer-Yahia, S., Baeza-Yates, R., Consens, M., and Lalmas, M., 2007. XML Retrieval: DB/IR

in Theory, Web in practice. In Proc. of the 33rd International Conference on Very Large

Databases, Vienna, Austria, pp. 1437-1438.

REFERENCES 167

[10] Angles, R. and Gutierrez, C., 2008. Survey of Graph Database Models. ACM Computing

Surveys, 40(1), Article No.1.

[11] Baeza-Yates, R., Consens, M., 2004. The Continued Saga of DB-IR Integration. In Proc. of the

30th VLDB Conference. Toronto, Canada, pp. 1245-1246.

[12] Barta, A., Consens, M., and Mendelzon, A., 2004. XML Query Optimization Using Graph

indexes. In Proc. of the 1st International Workshop on XQuery Implementation, Experience, and

Perspectives, in cooperation with ACM SIGMOD, Paris, France, pp. 43-48.

[13] Barta, A., Consens, M., and Mendelzon, A., 2005, Benefits of Path Summaries in an XML

Query Optimizer Supporting Multiple Access Methods. In Proc. of the 31st VLDB Conference,

Trondheim, Norway, pp. 133-144.

[14] Bary, T., Paoli, J., and Sperberg-McQueen, C. (Eds.). 1998. Extensible Markup language (XML)

1.0. Retrieved January 22, 2009, from http://www.w3.org/TR/1998/REC-xml-

19980210.html.

[15] Bertino, E., Rabitti, F., and Gibbs. S., 1998. Query Processing in a Multimedia Document

System. ACM Transactions on Office Information Systems, 6(1), 1–41.

[16] Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., and Simeon, J. (Eds.). 2007.

XQuery 1.0: An XML Query Language. Retrieved January 19, 2009, from

http://www.w3.org/TR/xquery.

[17] Bonifati, A., Ceri, S., 2000. Comparative Analysis of Five XML Query Languages. ACM

SIGMOD Record, 29(1), pp. 68-79.

[18] Bruno, N., Koudas, N., and Srivastava, D., 2002. Holistic Twig Joins: Optimal XML Pattern

Matching. In Proc. of the ACM SIGMOD. pp. 310-321.

[19] Buneman, P., 1997. Semistructured data. In Proc. of the 16th ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems, Tucson, Arizona, USA, pp. 117–121.

[20] Buneman, P., Davidson, S., Hillebrand, G., and Suciu. D., 1996. A Query Language and

Optimization Techniques for Unstructured Data. In Proc. of the ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada, pp. 505-516.

[21] Carey, P., 2004. New Perspective on XML-Comprehensive. Boston, Massachusetts, USA:

Course Technology.

[22] Catania, B., Maddalena, A., and Vakali, A., 2005. XML Document Indexes: A Classification.

IEEE Internet Computing, vol. (9)5, pp. 64-71.

REFERENCES 168

[23] Catania, B., Ooi, B., Wang, W., and Wang, X., 2005. Lazy XML Updates: Laziness as a

Virtue of Update and Structural Join Efficiency. In Proc. of the 2005 ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, USA, pp. 515-526.

[24] Chamberlain, D., Robie, J., and Florescu, D., 2000. Quilt: An XML Query Language for

Heterogeneous Data Sources. In The World Wide Web and Databases, 3rd International

Workshop, WebDB’00, Dallas, Texas, USA, LNCS 1997, pp. 1-25.

[25] Chaudhuri, S., and Shim, K., 2003. Storage and Retrieval of XML Data Using Relational

Database. In Proc. ICDE’03, p. 802.

[26] Che, D., Aberer, K., and Ozsu, M., 2006. Query optimization in XML Structured-document

Databases. The VLDB Journal, 15(3), 263-289.

[27] Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J., Srivastava, D., 2007.

Index Structures for Matching XML Twigs Using Relational Query Processors. Data &

Knowledge Engineering, 60(2), 283-302.

[28] Chen, Q., Lim, A., and Ong, K., 2003. D(k)-Index: An adaptive Structural summary for

graph-structured data. In Proc. of the ACM SIGMOD International Conference on Management

of Data, San Diego, California, USA, pp. 134-144.

[29] Chen, Y., Mihaila, G.A., Bordawekar, R., and Padmanabhan, S., 2004. L-Tree: a Dynamic

Labeling Structure for Ordered XML Data. In Current Trends in Database Technology –

EDBT’04 Workshops, Herakleion, Greece, LNCS 3268, pp. 209-218.

[30] Chien, S., Vagena, Z., Zhang, D., Tsotras, V., and Zaniolo, C., 2002. Efficient Structural Joins

on Indexed XML Documents. In Proc. of 28th ICDE, pp. 263-274.

[31] Christophides, V., Plexousakis, D., Scholl, M., and Tourtounis, S., 2003. On Labeling

Schemes for the Semantic Web. In Proc. of the 12th International conference on World Wide Web,

Budapest, Hungary, pp. 544-555.

[32] Chung, C., Min, J., and Shim, K., 2002. APEX: An Adaptive Graph index for XML data. In

Proc. of the ACM SIGMOD International Conference on Management of Data, Madison,

Wisconsin, USA, pp. 121-132.

[33] Clark, J., and DeRose, S. (Eds.). 1999. XML Path Language (XPath) Version 1.0. Retrieved

January 22, 2009, from http://www.w3.org/TR/xpath.

[34] Cohen, E., Kaplan, H., and Milo, T., 2002. Labeling Dynamic XML Trees. In Proc. of the 21st

ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems, Madison,

Wisconsin, USA, pp. 271-281.

REFERENCES 169

[35] Combi, C., Lavarini, N., and Oliboni, B., 2006. Querying Semistructured Temporal Data. In

EDBT 2006 Workshops, LNCS 4254, p. 625-636.

[36] Consens, M., Rizzolo, F., and Vaisman, A., 2008. AxPRE Summaries: Exploring the (Semi-)

Structure of XML Web Collections. In Proc. of the 24th International Conference on Data

Engineering, ICDE’08, Cancun, Mexico, pp. 1519-1521.

[37] Cooper, B., Sample, N., Franklin, M., Hjaltason, G., and Shadmon. M., 2001. A Fast Index

for Semistructured Data. In Proc. of 27th International Conference on Very Large Databases

(VLDB), Roma, Italy, pp. 341-350.

[38] De Aguiar, J., Filho, M., and Harder, T., 2006. Statistics for Cost-Based XML Query

Optimization. In 18th GI-Workshop on the Foundations of Databases (Tagungsband zum 18. GI-

Workshop über Grundlagen von Datenbanken), Wittenberg, Sachsen-Anhalt, Germany:

Institute of Computer Science, Martin-Luther-University, pp. 110-114.

[39] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D., 1998. XML-QL: A query

language for XML. Retrieved January 20, 2009, from http://www.w3.org/TR/NOTE-xml-

ql.

[40] Dietz. P. 1982. Maintaining order in a linked list. In Proc. of the 14th annual ACM symposium

on Theory of Computing, San Francisco, California, USA, pp. 122 –127.

[41] Dong, X., and Halevy, A., 2007. Indexing Dataspaces. In Proc. of the ACM SIGMOD

International Conference on Management of Data, Beijing, China, pp. 43-54.

[42] Duong, M., and Zhang, Y., 2005. LSDX: A New Labeling Scheme for Dynamically Updating

XML Data. In Database Technologies 2005, Proc. of 16th Australasian Database Conference,

Newcastle, Australia, Vol.39, pp. 185-193.

[43] Dweib, I., Awadi, A., Elrhman, S., and Lu, J., 2008. Schemaless Approach of Mapping XML

Document into Relational Database. In Proc. of CIT’08, pp. 167-172.

[44] Elghandour, I., Abolnaga, A., Zilio, D., Chiang, F., Balmin, A., Beyer, K., and Zuzarte, C.,

2008. An XML Index Advisor for DB2. In Proc. of the ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada, pp. 1267-1270.

[45] Feinberg, G., 2004. Anatomy of a Native XML database. In XML 2004 Conference &

Exhibition, Washington, D.C., USA. Retrieved January 13, 2009 from

http://www.idealliance.org/proceedings/xml04/ abstracts/paper170.html.

REFERENCES 170

[46] Fernandez, M., Florescu, D., Kang, J., Levy, A., and Suciu. D., 1998. Catching the Boat with

Strudel: Experiences with a Website Management System. In Proc. ACM SIGMOD

International Conference on Management of Data, Seattle, Washington, USA, pp. 414– 425.

[47] Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G., Neumann, J., Schiele, R., et al., 2002.

Anatomy of a Native XML Base Management System. The VLDB Journal, 11(4), 292-314.

[48] Fisher, D., Lam, F., Shui, W., and Wong, R., 2006. Dynamic Labeling Schemes for Ordered

XML Based on Type Information. In Proc. of the 17th Australasian Database Conference,

Hobart, Australia, Vol. 49, pp. 59-68.

[49] Florescu, D., and Kossmann, D., 1999. Storing and Querying XML Data Using an RDMBS.

Bulletin of the Technical Committee on Data Engineering, 22(3), 27-34.

[50] Freire, J., and Benedikt, M., 2004. Managing XML Data: An Abridged Overview. Computing

in Science & Engineering, IEEE, 6(4), 12-19.

[51] Fujimoto, K., Kha, D., Yoshikawa, M., and Amagasa, T., 2005. A Mapping Scheme for XML

Documents into Relational Databases using Schema-based Path Identifiers. In Proc. of the

International Workshop in Web Information Retrieval and Integration, Tokyo, Japan, pp. 82-90.

[52] Gardarin, G., Gruser, J., and Tang, Z., 1996. Cost-based Selection of Path Expression

Processing Algorithms in Object-oriented Databases. In Proc. of the 22nd International

Conference on Very Large Databases, Bombay, India, pp. 390–401.

[53] Goldman, R., McHugh, J., and Widom, J., 1999. From semistructured data to XML:

Migrating the Lore data model and query language. In Proc. of the 2nd International Workshop

on the Web and Databases, ACM SIGMOD Workshop, Philadelphia, Pennsylvania, USA, pp.

25-30.

[54] Goldman, R., and Widom, J., 1997. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases. In Proc. of 23rd International Conference on

Databases, VLDB’97, Athens, Greece, pp. 436-445.

[55] Goldman, R., and Widom, J., 1999. Approximate DataGuide. In Proc. of the Workshop on

Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Israel.

[56] Gou, G., and Chirkova, R., 2007. Efficiently Querying Large XML Data Repositories: A

Survey. Transactions on Knowledge and Data Engineering, 19(10), 1381-1403.

[57] Grust, T., 2002. Accelerating XPath Location Steps. In Proc. of the ACM SIGMOD

International Conference on Management of Data, Madison. Wisconsin, USA, pp. 109-120.

REFERENCES 171

[58] Guo, L., Shao, F., Botev, C., and Shanmugasundaram, J., 2003. XRANK: Ranked Keyword

Search over XML Documents. In Proc. of the ACM SIGMOD International Conference on

Management of Data. San Diego, California, USA, pp. 16-27.

[59] Halverson, A., Burger, J., Galanis, L., Kini, A., et al., 2003. Mixed Mode XML Query

Processing. In the Proc. of the 29th International Conference on VLDB, Berlin, Germany, pp.

225-236.

[60] Harder, T., Haustein, M., Mathis, C., and Wagner, M., 2007. Node Labeling Schemes for

Dynamic XML Documents Reconsidered. Data & Knowledge Engineering, 60(1), pp. 126-149.

[61] Harding, P., Li, Q., and Moon, B., 2003. XISS/R: XML Indexing and Storage System Using

RDBMS. In Proc. of VLDB, pp. 1073-1076.

[62] Haw, S. and Lee, C., 2008. Evolution of Structural Path Indexing Techniques in XML

Databases: A Survey and Open Discussion. In Proc. of the 10th International Conference on

Advanced Communication Technology, Gangwon-Do, pp. 2054-2059.

[63] Haw, S., and Lee, C., 2009. Extending Graph Index and Region Encoding for Efficient

Structural Query Processing in Native XML Databases. The Journal of Systems and Software.

82(2009): 1025-1035.

[64] IBM homepage on DB2. [Online]. Available: http://www-01.ibm.com/

software/data/db2/linux-unix-windows/.

[65] Jiang, H., Lu, H., Wang, W., and Chin Ooi, B., 2003. XR-tree: Indexing XML Data for

Efficient Structural Joins. In Proc. of the 19th International Conference on Data Engineering.

Bangalore, India, pp. 253-263.

[66] Kaplan, H., Milo, T., and Shabo, R., 2002. A Comparison of Labeling Schemes for Ancestor

Queries. In Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms, San

Fransisco, CA, USA, pp. 954-963.

[67] Kaushik, R., Bohannon, P., Naughton, J., and Korth, H., 2002. Covering Indexes for

Branching Path Queries. In Proc. of the ACM SIGMOD International Conference on

Management of Data, Madison, Wisconsin, USA, pp. 133-144.

[68] Kaushik, R., Bohannon, P., Naughton, J., and Shenoy, P., 2002. Updates for Structure

Indexes. In Proc. of 28th International Conference on Very Large Databases, Hong Kong, China,

pp. 239-250.

REFERENCES 172

[69] Kaushik, R., Krishnamurthy, R., Naughton, J., and Ramakrishnan, R., 2004. On the

Integration of Structure Indexes and Inverted Lists. In Proc. of the ACM SIGMOD ICMD, pp.

779-790.

[70] Kaushik, R., Shenoy, P., Bohannon, P., and Gudes, E., 2002. Exploiting Local Similarity for

Indexing Paths in Graph-structured Data. In Proc. of 18th International Conference on Data

Engineering, San Jose, California, USA, pp. 129-140.

[71] Kemper, A., and Moerkotte, G., 1990. Access Support in Object Bases. In Proc. of SIGMOD,

pp. 364-374.

[72] Kha, D., Yoshikawa, M., Uemura, S., 2001. An XML Indexing Structure with Relative

Region Coordinate. In Proc. of the 17th International Conference on Data Engineering,

Heidelberg, Germany, pp. 313-320.

[73] Knuth. D., 1998. The Art of Computer Programming: Vol. III. Sorting and Searching, Reading,

MA., USA: Addison-Wesley, 3rd ed., pp. 492-507.

[74] Kobayashi, M. and Takeda, K., 2000. Information Retrieval on the Web. ACM Computer

Surveys, 32(2), pp. 144-173.

[75] Krishnamurthy, R., Kaushik, R., and Naughton, J., 2003. XML-to-SQL Query Translation

Literature: The State of the Art and Open Problems. In Database and XML Technologies, First

International XML Database Symposium, XSym’03, Berlin, Germany, LNCS. 2824, pp. 1-18.

[76] Li, H., Lee, M., Hsu, W., and Chen, C., 2004. An Evaluation of XML Indexes for Structural

Join. ACM SIGMOD Record, 33(3), pp. 28-33.

[77] Li, C. and Ling, T., 2005. QED: A Novel Quaternary Encoding to Completely Avoid Re-

labeling in XML Updates. In Proc. of the 14th ACM International Conference of Information and

Knowledge Management, Bremen, Germany, pp. 501-508.

[78] Li, Q., and Moon, B., 2001. Indexing and Querying XML Data for Regular Path

Expressions. In Proc. of 27th International Conference on Very Large Databases, Roma, Italy, pp.

361-370.

[79] Li, Y., Yi, P., and Li, Q., 2005. Optimizing Path Expression Queries of XML Data. In Proc. of

the IEEE International Conference on e-business Engineering, ICEBE’05, Beijing, China, pp. 497-

504.

[80] Lu, J., and Ling, W., 2004. Labeling and Querying Dynamic XML Trees. In Advanced Web

Technologies and Applications, 6th Asia-Pacific Web Conference, Hangzhou, China, LNCS 3007,

pp. 180-189.

REFERENCES 173

[81] Lu, J., Ling, T., Chan, C., and Chen, T., 2005. From Region Encoding to Extended Dewey:

On Efficient Processing of XML Twig Pattern Matching. In Proc. of the 31st International

Conference on Very Large Databases. VLDB, Trondheim, Norway, pp. 193-204.

[82] Luk, R., Leong, H., Dillon, T., Chan, A., Bruce, W., and Allan, J., 2002. A Survey in Indexing

and Searching XML Documents. Journal of the American society for Information Science and

Technology, 53(6), pp. 415-437.

[83] Lv, J., Wang, G., Yu, J., and Yu, G. 2002. Performance Evaluation of a DOM-Based XML

Database: Storage, Indexing, and Query Optimization. In Advances in Web-Age Information

Management, 3rd International Conference, WAIM’02, Beijing, China, LNCS 2419, pp. 13-24.

[84] Mariano, P., and Baeza-Yates, R., 2005. Database and Information Retrieval Techniques for

XML. In Advances in Computer Science-ASIAN, Data Management on the Web, 10th Asian

Computing Science Conference, Kunming, China, LNCS 1318, pp. 22-27.

[85] Megginson, D., and Brownell, D., 2004. Simple API for XML (SAX). Retrieved January 22,

2009, from http://www.saxproject.org/.

[86] Mendelzon, A., Rizzolo, F., and Vaisman, A., 2004. Indexing Temporal XML Documents. In

Proc. of the 30th VLDB Conference. Toronto, Canada, pp. 216-227.

[87] McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J., 1997. Lore: A Database

Management System for Semistructured Data. ACM SIGMOD Record, 26(3), 54-66.

[88] McHugh, J., and Widom, J,. 1999. Query Optimization for XML. In Proc. of 25th International

Conference on Very Large Databases, VLDB’99, Edinburgh, Scotland, UK, pp. 315-326.

[89] Miler, J. and Sheth, S., 2000. Querying XML Documents. IEEE Potentials Magazine, 19(1), pp.

24-26.

[90] Milo, T., and Suciu, D., 1999. Index Structures for Path Expressions. In Database Theory –

ICDT’99, Proc. of 7th International Conference on Database Theory, Jerusalem, Israel, LNCS

1540, pp.277-295.

[91] Min, J., Kim, J., and Lee, M., 2005, Effective Path Indexes for XML data on Relational

Databases. In Proc. of the 7th International Conference on Advanced Communication Technology,

Phoenix Park, Korea, vol. 2, pp. 1355-1359.

[92] Mohammad, S., and Martin, P., 2009. XML Structural Indexes (Technical Report No. 2009-

560). Kinston, Ontario, Canada: Queen’s University.

REFERENCES 174

[93] Mohammad, S., and Martin, P., 2009. Index Structures for XML Databases. In Li, C., and

Ling, T. W. (Eds.). Advanced Applications and Structures in XML processing: Label Streams,

Semantics Utilization and Data Query Technologies. IGI Global. pp. 98-124

[94] Mohammad, S., and Martin, P., 2010. LLS: A Level-based Labeling Scheme for XML

Databases. In Proc. of CASCON 2010, Toronto, Canada. pp. 115-127.

[95] Mohammad, S., and Martin, P., 2010. LTIX: A Compact Level-based Tree to Index XML

Databases. In Proc. of International Database Engineering and applications Symposium,

Montreal, Canada, pp. 21-25.

[96] Mohammad, S., Martin, P., and Powley, W., 2011. Relational Universal Index Structure for

Evaluating XML Twig Queries. Accepted for publication in Proc. of the International

Conference on Communications and Information Technology – ICCIT 2011, Aqaba, Jordan.

[97] Moro, M., Vagena, Z., and Tsotras, V., 2005. Tree-Pattern Queries on a Lightweight XML

Processor. In Proc. of the 31st VLDB Conference, pp. 205-216.

[98] Naughton, J., DeWitt, D., Maier, D., Aboulnaga, A., Chen, J., Galanis, L., et al., 2001. The

Niagara Internet Query System. Bulletin of the Technical Committee on Data Engineering, 24(2),

27-33.

[99] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., and Westbury, N., 2004. ORDPATHs:

Insert-Friendly XML Node Labels. In Proc. of the ACM SIGMOD International Conference on

Management of Data, Paris, France, pp. 903-908.

[100] Online Computer Library Center. 2008. Dewey Decimal Classification. Retrieved January 13,

2009, from http://www.oclc.org/dewey/versions/ ddc22print/intro.pdf.

[101] Pal, S., Cseri, I., Seeliger, O., Schaller, G., Giakoumakis, L., and Zolotov, V., 2004. Indexing

XML Data Stored in a Relational Database. In proc. of VLDB, pp. 1146-1157.

[102] Paparizos, S., Jagadis, H., Patel, J., Al-Khalifa, S., Ladshmanan, L., Srivastava, D., et al.,

2003. TIMBER: A Native System for Querying XML. In Proc. of the ACM SIGMOD

International Conference on Management of Data, pp. 672-672.

[103] Polyzotis, N., Garofalakis, M., and Ioannidis, Y., 2004. Approximate XML Query Answers.

In Proc. of the ACM SIGMOD International Conference on Management of Data, Paris, France,

pp. 263-274.

[104] Rao, P., and Moon. B., 2004. PRIX: Indexing and Querying XML Using Prufer Sequences. In

Proc. of the 20th International Conference on Data Engineering, ICDE 2004, Boston, MA, USA,

pp. 288-300.

REFERENCES 175

[105] Robie, J. (Ed.), Derksen, E., Fankhauser, P., Howland, E., Huck, G., Macherius, I., et al.,

1999. XML query language (XQL). Retrieved January 20, 2009, from

http://www.ibiblio.org/xql/xql-proposal.html.

 [106] Sahuguet, A., 2000. Kweelt, the Making-of: Mistakes Made and Lessons Learned (Tech. Rep. No.

MS-CIS-00-23). Pennsylvania, USA: University of Pennsylvania, Department of Computer

and Information Science.

[107] Sainan, L., Caifeng, L., and Liming, G., 2008, A Storage Method for XML Document based

on Relational Database. In Proc. of International Symposium on computer Science and

Computational Technology, Shanghai, China, pp. 50-53.

[108] Sakr, S., 2008. Improving the Relational Evaluation of XML Queries by Means of Path

Summaries. In Proc. of the Intelligent Data Engineering and Automated Learning – IDEAL’08,

Daejeon, South Korea, LNCS 5326, pp. 378-386.

[109] Salton, G., and McGill, M.J., 1983. Introduction to Modern Information Retrieval. New York,

NY, USA: McGraw-Hill, pp. 16-21.

[110] Schmidt, K. and Harder, T., 2010, On the use of Query-driven XML Auto-Indexing. In Proc.

of IEEE 26th International Conference on Data Engineering Workshops (ICDEW), Long Beach,

CA, USA, pp. 81-86.

[111] Schmidt, A., Waas, F., Kersten, M., Florescu, D., Manolescu, I., Carey, M., and Busse, R.,

2001. The XML Benchmark Project. Technical Report INS-R0103.

[112] Schoning, H., 2001. Tamino – a DBMS Designed for XML. In Proc. of ICDE, pp. 149-154.

[113] Shalem, M. and Bar-Yossef, Z., 2008. The Space Complexity of Processing XML Twig

Queries over Indexed Documents. In Proc. of International Conference on Data Engineering,

Cancun, pp. 824-832.

[114] Shanmugasundaram, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, E., Naughton, J.,

and Tatarinov, I., 2001. A General Technique or Querying XML Documents Using a

Relational Database System. ACM SIGMOD Record, 30(3), 20-26.

[115] Shanmugasundaram, J., Tufte, K., and He, G., 1999. Relational Databases for Querying

XML Documents: Limitations and Opportunities. In proc. of VLDB, pp. 302-314.

[116] Silberstein, A., He, H., Yi, K., and Yang, J., 2005. BOXes: Efficient Maintenance of Order-

Based Labeling for Dynamic XML Data. In Proc. of the 21st International Conference on Data

Engineering, ICDE’05, Tokyo, Japan. pp. 285-296.

REFERENCES 176

[117] Sturtz Electronic Publishing (STEP). 1998. Introduction to XML [White paper]. Retrieved

January 22, 2009, from http://www.xml.org/xml/step_intro_to_XML.shtml

[118] Suei, P., Wu, J., Lu, Y., Lee, D., Chou, S., and Lin, C., 2009. A Novel Query Pre-processing

Technique for Efficient Access to XML-Relational Databases. In Proc. of the 1st International

Workshop on Database Technology and Applications, pp. 565-569.

[119] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., and Zhang. C., 2002.

Storing and Querying Ordered XML Using a Relational Database System. In Proc. of the

ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA,

pp. 204-215.

[120] The DBLP Computer Science Bibliography. 2009. DBLP XML records [Data file]. Retrieved

January 22, 2009, from http://www.informatik.uni-trier.de/~ley/db/.

[121] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N. (Eds.). 2004. XML Schema Part

1: Structures Second Edition. Retrieved January 26, 2009, from

http://www.w3.org/TR/xmlschema-1/.

[122] University of Washington. 2001. The Tukwila system. Retrieved January 14, 2009, from

http://xml.coverpages.org/tukwila.html.

[123] Vagena, Z., Moro, M., and Tsotras, V., 2004. Twig Query Processing over Graph-Structured

XML Data. In Proc. of the 7th International workshop on the Web and Databases (WebDB’04),

Paris, France, pp. 43-48.

[124] Vakali, A., Catania, B., and Maddalena, A., 2005. XML Data Stores: Emerging Practices.

Internet Computing, IEEE. 9(2), 62-69.

[125] Valduriez, P., 1987. Join Indices. ACM Transactions on Database Systems (TODS), 12(2), 218-

246.

[126] Varlamis, I. and Vazirgiammis, M., 2001. Bridging XML-Schema and Relational Databases.

A System for Generating and Manipulating Relational Databases Using Valid XML

Documents. In Proc. of the ACM Symposium on Document Engineering, Georgia, USA, pp.

105-114.

[127] Vianu, V., 2003. A Web Odyssey: from Codd to XML. ACM SIGMOD Record, 32(2), pp. 68-

77.

[128] Wang, G., Liu, M., Xu Yu, J., Sun, B., Yu, G., Lv, J., and Lu, H., 2003. Effective Schema-based

XML Query Optimization Techniques. In Proc. of 7th International Data Engineering

Symposium, Hong Kong, pp. 230-235.

REFERENCES 177

[129] Wang, H., and Meng, X., 2005. On the Sequencing of Tree Structures for XML Indexing. In

Proc. of the 21st International Conference on Data Engineering, ICDE’05, Tokyo, Japan, pp. 372-

383.

[130] Wang, H., Park, S., Fan, W., and Yu., P,. 2003. ViST: A Dynamic Index Method for

Querying XML Data by Tree Structures. In Proc. of the ACM SIGMOD International

Conference on Management of Data, San Diego, California, USA, pp. 110-121.

[131] Wang, W., Wang, H., Lu, H., Jiang, H., Lin, X., and Li, J., 2005. Efficient Processing of XML

Path Queries Using the Disk-based F&B Index. In Proc. of the 31st International Conference on

Very Large Databases, Trondheim, Norway, pp. 145-156.

[132] Weigel, F., 2002. A Survey of Indexing Techniques for Semi structured Documents. Ludwig

Maximilians Universitat Munchen. Munich, Germany.

[133] Weigel, F., Meuss, H., Bry, F., and Schulz, K.U., 2004. Content-Aware DataGuides:

Interleaving IR and DB Indexing Techniques for Efficient Retrieval of Textual XML Data. In

Advances in Information Retrieval, Proc. of 26th European Conference on Information Retrieval,

ECIR’04. Sunderland, UK, LNCS 2997, pp. 378-393.

[134] Weigel, F., Schulz, K., and Meuss, H., 2005. Exploiting Native XML Indexing Techniques

for XML Retrieval in Relational Database Systems. In Proc. of the 7th International Workshop

on Web Information and Data Management, Bremen, Germany, pp. 23-30.

[135] Wu, X., Lee, M., and Hsu, W., 2004. A Prime Number Labeling Schemes for Dynamic

Ordered XML Trees. In Proc. of the 20th International Conference on Data Engineering, Boston,

MA, USA, pp. 66-78.

[136] Xing, G., Esanakula, J., and Jayanty, S., 2006. Index and Storage Design in Native XML

Databases. In Proc. of the 43rd Annual Southeast Regional Conference, Kennesaw, Georgia, pp.

218-219.

[137] Xu, Y., and Papakonstantinou, Y., 2005. Efficient Keyword Search for Smallest LCAs in

XML Databases. In Proc. of the ACM SIGMOD International Conference on Management of

Data, Baltimore, Maryland, USA, pp. 527–538.

[138] Yang, B., Fontoura, M., Shekita, M., Rajagopalan, S., and Beyer, K., 2004. Virtual Cursors

for XML Joins. In Proc. of the 13th ACM International Conference on Information and Knowledge

Management, CIKM’04, Washington, DC, USA, pp. 523-532.

REFERENCES 178

[139] Yi, K., He, H., Stanoi, I., and Yang, J., 2004. Incremental Maintenance of XML Structural

Indexes. In Proc. of ACM SIGMOD International Conference on Management of Data, Paris,

France, pp. 491-502.

[140] Yoshikawa, M., Amagasa, T., Shimura, T., and Uemura, S., 2001. XRel: A Path-Based

Approach to Storage and Retrieval of XML Documents using Relational Databases. ACM

Transaction on Internet Technology (TOIT), vol. 1, no. 1, pp. 110-141.

[141] Zhang, N., 2004. XML Query Processing and Optimization. In EDBT 2004 Workshops, LNCS

3268, pp. 121-132.

[142] Zhang, N., Kacholia, V., and Ozsu, M., 2004. A Succinct Physical Storage Scheme for

Efficient Evaluation of Path Queries in XML. In Proc. of the 20th International Conference on

Data Engineering, Boston, USA, pp. 54-65.

[143] Zhang, C., Naughton, R., Dewitt, D., Luo, Q., and Lohman, G., 2001. On Supporting

Containment Queries in Relational Database Management Systems. In Proc. of ACM

SIGMOD International Conference on Management of Data, Santa Barbara, California, USA,

pp. 425-436.

[144] Zhang, N., Ozsu, M., Ilyas, I., and Aboulnaga, A., 2006. FIX: Feature-based Indexing

Technique for XML Documents. In Proc. of the International Conference of VLDB, Seoul,

Korea, pp. 259-270.

[145] Zhang, B., Wang, W., Wang, X., and Zhou, A., 2007. AB-Index: An Efficient Adaptive Index

for Branching XML Queries. In Advances in Databases: Concepts, Systems and Applications,

Proc. on the 12th International Conference on Database Systems for Advanced applications,

DASFAA’07, Bangkok, Thailand, LNCS 4443, pp. 988-993.

[146] Zou, Q., Liu, S., and Chu, W., 2004. Ctree : A Compact Tree for Indexing XML Data. In Proc.

of the 6th annual ACM international workshop on Web Information and Data Management,

WIDM’04, Washington, DC, USA, pp. 39-46.

[147] Zuopeng, L., Kongfa, H., Ning, Y., and Yisheng, D., 2005. An Efficient Index structure for

XML Based on Generalized Suffix tree. Information Systems, 32(2), pp. 283-294.

APPENDICES 179

Appendix A
The datasets and queries used in testing the LLS and LTIX approaches

DBLP
The DBLP is a computer science bibliography website hosted at the

University of Trier, in Germany. The DBLP server provides bibliographic

information on major computer science journals and proceedings. The server

initially was focused on DataBase systems and Logic Programming (DBLP).

Recently, it is being expanded to include other fields of computer science. So

“DBLP” now may be read as "Digital Bibliography & Library Project."

The DBLP indexes more than one million articles on computer science and

contains more than 10,000 links to home pages of computer scientists. Journals

tracked on this site include, to name a few, VLDB, a journal for very large

databases; the IEEE Transactions; and the ACM Transactions. Proceedings are

also tracked from several conferences. The DBLP XML records can be

downloaded from the DBLP’s website.

The DBLP XML records are used in testing the proposed LLS, LTIX, and

UISX systems in this dissertation. Figure A.1 shows the number of tuples

returned by the queries used to test the LLS system (Section 3.3) and the LTIX

system (Section 4.3). Figure A.3 shows a small part of the hierarchical structure of

APPENDICES 180

the DBLP as provided by the DB2 XML Document Viewer Utilities for the DBLP

data used in this dissertation.

XMark
XMark is a well-known benchmark for XML data management. It consists of

a scalable document database modeling an internet auction website. XMark

offers a document generator that generates XML documents of different sizes

according to a numeric scaling factor. The document size grows linearly with

respect to the scaling factor. For instance, factor 0.01 corresponds to a document

of (about) 1.16 MB and factor 0.1 corresponds to a document of (about) 11.6 MB,

and so on. The benchmark is intended to help both implementers and users to

compare XML database systems independent of their own specific applications.

In this dissertation, we use XMark document generator to generate XML

databases with different scaling factors. Then we use the generated data to test

the proposed LLS, LTIX, and UISX systems. Figure A.2 shows the number of

tuples returned by the queries used to test the LLS system (Section 3.3) and the

LTIX system (Section 4.3). Figure A.4 shows a small part of the hierarchical

structure of the XMark database used in this dissertation as provided by the DB2

XML Document Viewer Utilities.

APPENDICES 181

Figure A.1 Number of returned tuples by the DBLP test queries

Query
No. Query Matching

Nodes IDs
Cardin-

ality
Returned

Tuples

T1‐Q1 /dblp/inproceedings/cdrom <3.54> 211 211
T1‐Q2 /dblp/inproceedings/cite/label <4.7> 340 340
T1‐Q3 /dblp/inproceedings/booktitle <3.50> 43524 43524

T1‐Q4 /dblp/book/series/href <4.3> 579 579

T2‐Q1 /dblp//author see below 116276 116276

<3.3> 5026 5026
<3.19> 1649 1649
<3.53> 7 7
<3.45> 109594 109594

T2‐Q2 //series/href see below 1089 1089
<4.3> 579 579
<4.6> 510 510

T2‐Q3 //book//label <4.1> 2977 2977
T2‐Q4 //href see below 1238 1238

<4.4> 59 59
<4.2> 90 90
<4.3> 579 579

<4.6> 510 510

T3‐Q1 /dblp/incollection[/year='2000'] <3.6> 2526 53
/booktitle <3.7> 2526 53

T3‐Q2 /dblp/proceedings[/booktitle='ACCV'] <3.36> 794 3

/isbn <3.40> 733 3
T3‐Q3 /dblp/inproceedings[/author='Adele E. Howe'] <3.45> 109594 12

/title <3.46> 43524 12
T3‐Q4 /dblp/proceedings[/isbn='0‐7695‐1991‐1'] <3.40> 733 1

/title <3.36> 794 1

T4‐Q1 //inproceedings[/mdate='2002‐08‐04'] <3.43> 43524 213

/title <3.46> 43524 213
T4‐Q2 //proceedings[/booktitle='ACNS'] <3.36> 794 5

/isbn <3.40> 733 5
T4‐Q3 //incollection[/booktitle='Temporal Databases'] <3.7> 2526 23

/year <3.6> 2526 23
T4‐Q4 //incollection[/author='Jurgen Annevelink'] <3.3> 5026 3

/title <3.4> 2526 3

APPENDICES 182

Figure A.2 Number of returned tuples by the XMark test queries

Query
No. Query Matching

Nodes IDs
Cardin-

ality
Returned

Tuples

T1 ‐ Q1 /site/regions/africa/item/id <5.1> 55 55
T1 ‐ Q2 /site/open_auctions/open_auction/bidder/personref/person <6.28> 6182 6182
T1 ‐ Q3 /site/open_auctions/open_auction/seller/person <5.80> 1200 1200
T1 ‐ Q4 /site/catgraph/edge/from <4.10> 100 100
T2 ‐ Q1 //id see below 6025 6025

<4.7> 100 100
<4.12> 2550 2550
<4.21> 1200 1200
<5.1> 55 55
<5.11> 200 200
<5.21> 220 220
<5.31> 600 600
<5.41> 1000 1000
<5.51> 100 100

T2 ‐ Q2 //africa//category <6.2> 198 198
T2 ‐ Q3 //regions//item//text see below 6242 6242

<8.1> 39 39
<7.5> 53 53
<6.4> 37 37
<10.1> 63 63
<8.3> 143 143
<6.7> 137 137
<7.10> 210 210
<10.2> 86 86
<8.5> 175 175
<7.15> 212 212
<6.12> 148 148
<10.3> 129 129
<6.13> 441 441
<7.19> 590 590
<8.7> 360 360
<10.4> 276 276
<6.17> 707 707
<7.24> 985 985
<8.9> 689 689
<10.5> 491 491
<6.21> 72 72
<7.29> 88 88
<8.11> 70 70
<10.6> 41 41

T2 ‐ Q4 //open_auctions//text see below 2327 2327
<10.7> 622 622
<8.15> 887 887
<6.31> 818 818

T3 ‐ Q1 /site/regions/africa/item[/location='United States'] <5.2> 55 47
/payment <5.5> 53 45

T3 ‐ Q2 /site/regions/africa/item[/id='item0'] <5.1> 55 1
/location <5.2> 55 1

T3 ‐ Q3 /site/catgraph/edge[/from='category0'] <4.10> 100 1
/to <4.11> 100 1

T3 ‐ Q4 /site/people/person[/name='Kaj Carey'] <4.13> 2550 1
/phone <4.18> 1263 1

T4 ‐ Q1 //africa/item[/quantity='1'] <5.3> 55 52
/name <5.4> 55 52

T4 ‐ Q2 //open_auction[/reserve='3199.90'] <4.23> 607 1
/initial <4.22> 1200 1

T4 ‐ Q3 //closed_auction[/type='Regular'] <4.39> 975 456
/price <4.36> 975 456

T4 ‐ Q4 //regions//item[/quantity='2'] see below 2175 162
/name see below 2175 162

… /quantity='2' <5.3> 55 3
/name <5.4> 55 3

… /quantity='2' <5.13> 200 17
/name <5.14> 200 17

… /quantity='2' <5.23> 220 22
/name <5.24> 220 22

… /quantity='2' <5.33> 600 36
/name <5.34> 600 36

… /quantity='2' <5.43> 1000 77
/name <5.44> 1000 77

… /quantity='2' <5.53> 100 7
/name <5.54> 100 7

APPENDICES 183

Figure A.3 A part of the DBLP hierarchical structure

APPENDICES 184

Figure A.4 A part of the XMark hierarchical structure

APPENDICES 185

Appendix B
 The LLS Scanner Flowchart

<
La

st
Th

in
g

?

<
La

st
Th

in
g

=
El

m
En

d
Le

ve
l=

Le
ve

l-1
W

or
dF

in
is

he
=F

al
se

D
at

a
St

ar
t

-L
ev

el

=
0

-
C

om
pl

et
eW

or
d=

“”
-

W
or

dF
in

is
he

d
=

Tr
ue

-
La

st
Th

in
g

=
“”

W
hi

le
 !

eo
f

R
ea

d
N

ex
t C

ha
ra

ct
er

to
 T

em
pC

ha
r

El
se

 (e
.g

.L
et

te
r)

C
om

pl
et

eW
or

d=
C

om
pl

et
eW

or
d+

Te
m

pC
ha

r
W

or
dF

in
is

he
d

?

““
(S

pa
ce

)

W
or

dF
in

is
he

d
?

El
m

Be
g

W
or

dF
in

is
he

d=
Tr

ue
Fa

rA
w

ay
El

m
=T

ru
e

Tr
ue

C
om

pl
et

eW
or

d
=

“”Fa
ls

e

Tr
ue

La
st

Th
in

g
?

El
m

tB
eg

or
 A

ttV
al

W
or

dF
in

is
he

d=
Fa

ls
e

La
st

Th
in

g=
At

tri
bu

e
Le

ve
l=

Le
ve

l+
1

=
La

st
Th

in
g

?

“
La

st
Th

in
g

?

C
om

pl
et

eW
or

d
=

“”
La

st
Th

in
g=

(=
)

At
tV

al
W

or
dF

in
is

he
d=

Tr
ue

=
W

or
dF

in
is

he
d=

Fa
ls

e
La

st
Th

in
g=

 A
ttV

al

C
om

pl
et

eW
or

d
=

“”

<
Le

ve
l=

Le
ve

l+
1

W
or

dF
in

is
he

d=
Fa

ls
e

La
st

Th
in

g=
El

m
Be

b

>
W

or
dF

in
is

he
d=

Tr
ue

La
st

Th
in

g
?

At
tV

al
La

st
Th

in
g=

>
El

m
Be

g

SC
H

EM
A

TA
BL

E
In

 (C
om

pl
et

eW
or

d,
Le

ve
l,P

ar
en

t)
If

ne
w

 :
C

re
at

e
(P

er
Le

ve
l,S

er
N

o)
R

et
ur

n
ID

If
ol

d
:

 R
et

ur
n

ID
ST

AC
K

TA
BL

E
pu

sh
 it

 C
om

pl
et

eW
or

d
=

“”
La

st
Th

in
g

=
>

>
W

or
dF

in
is

he
d=

Fa
ls

e
La

st
Th

in
g=

El
em

en
tV

al
ue

Fa
ls

e
La

st
Th

in
g?

El
em

en
tV

al
ue

C
om

pl
et

eW
or

d=
C

om
pl

et
eW

or
d+

Te
m

pC
ha

r

C
om

pl
et

eW
or

d
=

“”
La

st
Th

in
g=

 <

ST
AC

K
TA

BL
E

Po
p

up
 L

IF
O

Le
ve

l =
 L

ev
el

-1

El
m

En
d

ST
AC

K
TA

BL
E

Po
p

up
 L

IF
O

C
om

pl
et

eW
or

d
=

“”
La

st
Th

in
g

=
>

EL
M

AT
T

TA
BL

E
Ad

d
it

SC
H

EM
A

TA
BL

E
In

 (C
om

pl
et

eW
or

d,
Le

ve
l,P

ar
en

t)
If

ne
w

 :
C

re
at

e
(P

er
Le

ve
l,S

er
N

o)
R

et
ur

n
ID

If
ol

d
:

 R
et

ur
n

ID
ST

AC
K

TA
BL

E
pu

sh
 it

VA
LU

E
TA

BL
E

Ad
d

it
(E

)

EL
M

AT
T

TA
BL

E
Ad

d
it

VA
LU

E
TA

BL
E

Ad
d

it
(A

)

SC
H

EM
A

TA
BL

E
In

 (C
om

pl
et

eW
or

d,
Le

ve
l,P

ar
en

t)
If

ne
w

 :
C

re
at

e
(P

er
Le

ve
l,S

er
N

o)
R

et
ur

n
ID

If
ol

d
:

 R
et

ur
n

ID
ST

AC
K

TA
BL

E
pu

sh
 it

 EL
M

AT
T

TA
BL

E
Ad

d
it

\n
 o

r
\t

El
se

La
st

Th
in

g=
“<

“

El
m

en
tV

al
ue

/
La

st
Th

in
g

?

El
se

C
om

pl
et

eW
or

d=
C

om
pl

et
eW

or
d+

Te
m

pC
ha

r

>
Fa

rA
w

ay
El

m
=F

al
se

La
st

Th
in

g=
“<

“
El

m
en

tV
al

ue
C

om
pl

et
eW

or
d

=
C

om
pl

et
eW

or
d+

Te
m

pC
ha

rEl
se

TM
PE

LM
AT

T
TA

BL
E

Ad
d

it

